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Abstract. Crane detection under transmission lines, crucial for power system 

safety monitoring, faces challenges in accuracy and generalization, particularly 

in environments with structural interference (e.g., utility poles) and dynamic veg-

etation occlusion. To address these issues, we propose YOLOCrane, an enhanced 

YOLOv8-based algorithm. First, a simplified backbone network reduces compu-

tational complexity by 33% while maintaining robust feature extraction. Second, 

by incorporating learnable mask parameters and multi-channel fusion, the chan-

nel-wise LBP algorithm adaptively extracts texture features across dimensions, 

addressing the limitations of traditional LBP in fixed 3×3 windows. Finally, a 

heterogeneous dual-branch attention fusion module integrates convolutional fea-

tures with LBP texture patterns, enabling complementary learning of spatial and 

texture information. Experimental results on the CraneLine dataset demonstrate 

that YOLOCrane achieves an mAP0.5 of 85.8%, surpassing YOLOv8x by 2.4%, 

YOLOv11x by 2.1%, and RT-DETRx by 1.7%, while improving inference speed 

by 9.72 FPS. These advancements underscore YOLOCrane's capability to tackle 

detection challenges in complex environments, providing a robust solution for 

real-time safety monitoring of transmission lines. 

Keywords: Crane detection under transmission lines, simplified backbone (SB), 

channel-wise LBP, dual-branch attention Fusion (DAF). 



1 Introduction 

As a critical component of power systems, the safe and stable operation of transmission 

lines is essential for the sustainable development of the socio-economy [1]. With the 

continuous expansion and increasing complexity of transmission line networks, there 

is a growing demand for safety monitoring of surrounding construction activities [2]. 

This is critical in scenarios where cranes frequently operate near transmission lines. 

Ensuring a safe distance between cranes and transmission lines to prevent power 

accidents caused by accidental collisions has become an urgent and significant 

challenge to that must be addressed [3]. 

1.1 Related Work 

The advancement of artificial intelligence technologies, particularly the widespread 

application of deep learning techniques, has opened new avenues for crane detection. 

For instance, object detection algorithms based on Convolutional Neural Networks 

(CNNs), such as Faster R-CNN [4] and the YOLO series [5-6], have demonstrated 

remarkable performance in general object detection tasks. Recent studies have further 

explored specialized methods for crane detection. Chian et al. [7] utilized CenterNet to 

dynamically identify potential areas for crane load drops, while Lu et al. [8] proposed 

a Swin Transformer-based method for crawler crane detection, leveraging drone-

captured images to identify hazardous work zones and provide real-time risk 

information to operators. Sun et al. [9] enhanced the detection capabilities of crane 

hooks and personnel by improving the YOLOv5 network, albeit at the cost of increased 

model parameters and reduced inference speed. Xia et al. [10] introduced a rotation-

based object detection paradigm using YOLOv8, achieving high-precision detection 

for cranes with high aspect ratios, although with limited generalization ability in 

complex environments. 

1.2 Motivations 

Despite these advancements, existing algorithms still face significant limitations in 

crane detection within transmission line scenarios. The primary issues stem from a sin-

gular improvement strategy that relies solely on increasing model parameters, as well 

as the challenges associated with generalization in complex environments. Further-

more, most current research focuses on general object detection [11-12], resulting in a 

notable lack of specialized studies focused on crane detection in transmission line sce-

narios. Given the exceptional performance of the YOLO algorithm in the field of object 

detection [13-14], we have improved the YOLOv8 model to create a specialized algo-

rithm, YOLOCrane, specifically designed for crane detection in transmission line sce-

narios, scenarios. This development achieves state-of-the-art performance within the 

YOLO series for crane detection tasks. In summary, our contributions are as follows: 

1) Simplified Feature Extraction Network: The optimized backbone of YOLOv8x 

mitigates overfitting risks and enhances computational efficiency by eliminating redun-

dant module stacking during feature extraction. 

2) Channel-wise LBP: The enhanced LBP algorithm significantly improves the 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

computational efficiency of the multidimensional feature maps and demonstrates its 

excellent texture extraction capability on different networks and datasets. 

3) Dual-Branch Attention Architecture: The network adaptively integrates convo-

lutional features with LBP features, optimized within the YOLOv8 framework, achiev-

ing exceptional generalization performance in crane detection tasks. 

2 Methodology 

The network architecture of YOLOCrane, as illustrated in Fig. 1, is composed of three 

key components: Backbone, Neck, and YOLO Head. The Backbone is primarily re-

sponsible for extracting hierarchical features from the input image at various scales. 

The Neck integrates feature maps from different stages of the backbone, enriching se-

mantic information and improving the accuracy of target feature representations. Fi-

nally, the YOLO Head serves as the output layer, generating bounding boxes and cate-

gory predictions based on the extracted feature maps to achieve precise object detec-

tion. This well-structured design ensures efficient feature extraction, robust feature fu-

sion, and accurate detection output, making YOLOCrane highly effective for crane de-

tection tasks in complex environments. 

 

Fig. 1. Architecture of the YOLOCrane network. 

Simplification of The Backbone Feature Network. The backbone feature network of 

the YOLOv8 algorithm is innovatively based on the CSPDarkNet-53 architecture [15], 

introducing the C2f structure to replace the original C3 structure. The C2f structure not 

only inherits the advantages of CSPDarkNet-53 but also optimizes gradient flow, 

thereby enhancing model performance. In the backbone feature network, the stacking 

counts of C2f are initially set to 3, 6, 6, and 3, while the model size can be flexibly 

controlled by adjusting the width and depth factors. This design ensures a balance be-

tween computational efficiency and feature extraction capability, making the network 

adaptable to various detection tasks. 

In the original YOLOv8 backbone, the stacking configuration of the C2f layers is 

{3, 6, 6, 3}. When applied to the single-class task of crane detection, this redundant 



stacking is likely to lead to model overfitting. Specifically, while the performance met-

rics during training are strong, the detection accuracy on the test set significantly de-

creases. To address this issue, we adjusted the stacking counts of the C2f structure in 

the backbone feature network to {1, 1, 1, 1}.  

The simplified backbone design aligns with the Information Bottleneck Principle , 

which optimizes feature representation by eliminating redundant layers that propagate 

noise while retaining task-critical features. As demonstrated in Table 2, this architec-

tural refinement improves the test set AP50 from 95.5% to 97.6% (↑2.1%), confirming 

its enhanced generalization capability. Specifically, for the YOLOv8x model with 

480×480 input resolution (Fig. 2), the parameter size is reduced by 42 MB (33% reduc-

tion) through the adjustment of C2f layer stacking from {3,6,6,3} to {1,1,1,1}.  

 

Fig. 2. Simplified backbone architecture: The original C2f stacking {3,6,6,3} (left) is reduced to 

{1,1,1,1} (right), with parameter size decreased by 33% 

Additionally, although SPPF (Spatial Pyramid Pooling Fusion) effectively captures 

feature information through its multi-scale pooling operations, we chose to exclude 

SPPF in the crane detection task due to the relatively fixed size of cranes. This decision 

aims to simplify the model structure and reduce the number of parameters ( by approx-

imately 2.5 MB, thereby enhancing the model’s operational efficiency. 

Channel-wise LBP. The Local Binary Pattern (LBP) algorithm [17] is a widely used 

operator for describing local texture features in images, renowned for its significant 

grayscale invariance. However, the application of traditional LBP algorithms is limited 

because they only characterize textures within a small fixed-radius region (e.g., 3x3). 

The LBP algorithm can be summarized as follows: 
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Fig. 3. The Channel-wise LBP module. Extracting channel LBP Features combined with learna-

ble mark to obtain normalized output feature map 

In the LBP algorithm, ),( cc yx  represents the center point within a 3×3 window, while 

ci  and ci  denote the grayscale values of the center point and its neighboring pixels, 

respectively. The function )(s is a binary function defined as follows: 
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In contrast, feature maps generated by convolutional neural networks (CNNs) not 

only exhibit higher resolution but also contain a greater number of channels. Conse-

quently, directly applying the LBP algorithm to convolutional operations significantly 

increases computational complexity [18]. This limitation restricts its use in real-time 

applications or resource-constrained environments. 

To address these limitations, we propose a channel-wise LBP feature extraction 

method that integrates LBP and convolutional features with learnable mask parameters 

and normalization. This method efficiently processes multi-dimensional feature maps, 

capturing intricate texture patterns by analyzing inter-channel feature variations. It is 

particularly effective in transmission line scenarios, where the texture distinctions be-

tween cranes and background elements (e.g., utility poles and vegetation) are more pro-

nounced, as illustrated in Fig.  3. 

Given an input feature map I  with dimensions ( )WHCN ,,, , we utilize the unfold 

operation with a window size of k  and a stride of s during feature extraction. This 

operation selects elements from the second and third dimensions of the feature map and 

concatenates them along an additional channel dimension using 
cR , constructing the 

neighborhood 
0N . The expression is as follows: 

 )stride,ekernel_siz],3,2([. skunfoldINo ===  (3a) 



 )( oco NRN =  (3b) 

Drawing inspiration from the LBP algorithm, we first identify the central feature 

map 
jiCenter ,
 along the channel dimension of oN . This center map is then compared 

element-wise with the feature maps of the remaining channels in oN , generating a 

channel-wise binary map that reflects feature differences across channels. Next, we 

perform an element-wise multiplication between this set of binary values and a learna-

ble mask feature map M , resulting in the computation of the value L for oN across 

both the width and height dimensions. This process can be expressed as: 
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where 
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L



  denotes the gradient of

 

the loss function with respect to the learnable mask.  

)(  is the indicator function. L  is the gradient of the overall loss function L  with 

respect to the model parameter  . The summation covers all spatial locations (i.e., 

height H and width W dimensions) 

This approach not only captures fine-grained variations in features but also utilizes 

learnable parameters to adaptively concentrate on the most informative regions. This 

significantly enhances the model's ability to extract discriminative features, especially 

for tasks such as crane detection in complex environments. 

After traversing the height H and width W dimensions, we obtain the sparse LBP 

feature map cL . By summing cL  along the channel dimension using )2,(sum  and 

applying normalization norm  to ensure robustness against variations in scale and in-

tensity, we derive the final output of the channel-wise LBP, denoted as 
oF . This process 

can be expressed as: 

 ))2,(( co LsumnormF =
 

(6) 

 

Dual-branching Attention Mechanism Fusion (DAF) Strategy. To enhance the per-

formance of YOLOv8, we introduce a Channel-wise Local Binary Pattern (LBP) mod-

ule and propose a Dual-Branch Attention Mechanism Fusion Strategy (DAF), as illus-

trated in Fig. 4. The simplified backbone reduces redundant parameters (by 33%, Fig. 

2), while the dual-branch attention compensates for potential information loss by adap-

tively fusing LBP texture features, achieving a balance between efficiency and accuracy 

(Table 2). The DAF module is utilized for downsampling operations within both the 

backbone feature network and the feature fusion network. It integrates convolutional 

features and LBP features by leveraging an attention mechanism to enable self-learning 

attention between the two types of features. This approach fully exploits the strengths 

of both feature types, thereby enhancing the model's ability to capture detailed texture 

information and spatial relationships. 
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(a) DAF outer layer                        (b)  Fusion module internal structure 

 

Fig. 4.  Structure of the dual-branch attention fusion (DAF) module. 

In the Fusion module, the convolutional feature branch C  and the LBP feature 

branch L  maintain consistent input dimensions and compute attention scores using 

shared weights. This weight-sharing mechanism fosters mutual supervision during the 

feature fusion process, thereby enhancing the model's generalization capability [19]. 

Furthermore, weight sharing allows the convolutional branch and the LBP branch to 

utilize shared computational logic and hardware resources during attention calculation, 

thereby, improving computational efficiency. This process can be expressed as follows: 

 )),( LCDAF share=
 (7) 

Where 
share represents the Fusion module of the shared weight attention mecha-

nism, and the input-output feature graph maintains consistent. 

 

3 Experiments 

This section evaluates the performance of YOLOCrane using the CraneLine dataset 

[20], which features synthetic images of cranes set against transmission line back-

grounds. The dataset comprises 4,739 training images and 300 validation images, each 

containing 11 cranes of varying sizes and positions, along with 100 real-world test im-

ages. This configuration ensures a thorough assessment of the model's accuracy, ro-

bustness, and generalization capabilities in both synthetic and real-world scenarios. 

The experimental environment was configured as follows: Ubuntu 20.04 operating 

system, NVIDIA A800-160GB GPU, and the PyTorch 2.1 framework. During training, 

all models were trained for 300 epochs with a batch size of 16. The first 5 epochs were 

used for model warm-up, and the initial learning rate was set to 0.008. Both training 

and testing images were resized to 480×480 pixels, and the AdamW optimizer was 

employed. The evaluation metrics included mAP50, precision (P), and recall (R) to com-

prehensively assess model accuracy and performance. 



3.1 Performance of Channel-wise LBP 

To validate the performance of Channel-wise LBP across different datasets, we selected 

VGG16 [21] due to its straightforward network architecture as the baseline model. 

Based on this, we conducted comparative experiments on the CIFAR-10 and CIFAR-

100 datasets, comparing the LBP pooling algorithm proposed in [18] with our own 

method. All experiments maintained consistent training configuration parameters to en-

sure a fair comparison. This evaluation aims to demonstrate the effectiveness and gen-

eralization capability of our improved LBP algorithm in enhancing feature extraction 

and model performance across diverse datasets. 

 

Table 1. Comparison of the performance metrics on CIFAR-10 and CIFAR100 datasets. 

Datasets method Acc (Train) Acc (Val) Train-time 

CIFAR10 

VGG16 

 

-- 97.1 91.4 3.1h 

+ LBP 97.7 92.8 10.4h 

+Our 98.5 93.1 3.2h 

CIFAR100 

-- 92.9 69.8 9.5h 

+ LBP 93.7 71.2 30.7h 

+Our 95.4 73.6 9.7h 

 

As presented in Table 1, our method demonstrates higher accuracy on both datasets 

compared to the original LBP algorithm,with only a minimal increase in training time. 

The performance improvement is particularly notable on the more complex CIFAR-

100 dataset, where training accuracy and validation accuracy increase by 2.5 percentage 

points and 3.8 percentage points, respectively. This clearly illustrates the effectiveness 

of our method on complex datasets and highlights its unique advantage in enhancing 

model generalization capabilities. These results underscore the robustness and adapta-

bility of our improved LBP algorithm in diverse and challenging scenarios. 

In Fig. 5, the blue curve represents our method, showing a rapid decline in loss dur-

ing the early training phase. As training progresses, the loss continues to decrease, sta-

bilizing at a low value after 50 epochs on both the CIFAR10 and CIFAR100 datasets. 

This demonstrates that our method efficiently accelerates training and achieves rapid 

convergence. The red curve corresponds to the combination of LBP and VGG16. While 

LBP provides some performance improvement for VGG16, the enhancement is limited. 

The loss decreases significantly in the early stages but flattens later, with a relatively 

higher final loss. The green curve represents the baseline VGG16, which exhibits a 

slower loss reduction and the highest final loss, indicating its limited performance on 

both CIFAR datasets.   
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(a) CIFAR10                                             (b) CIFAR100    

Fig.5 Comparison of the training loss of the three algorithms on different data sets 

Our method achieves the fastest loss reduction and the lowest final loss, highlighting 

its advantages in feature learning and generalization capability. In contrast, traditional 

LBP offers only marginal improvements, likely due to its fixed mask feature selection 

and computationally intensive single-channel feature map processing, which restrict 

further performance gains. These results underscore the superiority of our approach in 

enhancing model training efficiency and generalization across diverse datasets. 

 

3.2 Ablation experiment 

In this section, we conduct ablation studies to validate the effectiveness of the proposed 

methods. We select YOLOv8x as the baseline network and perform ablation experi-

ments to evaluate the impact of the simplified backbone and the Dual-Branch Attention 

Fusion (DAF) module at various positions within the network architecture. Here, SB 

denotes the simplified backbone, DAF(B) represents the application of DAF in the 

Backbone, and DAF(N) indicates the use of DAF in the Neck. These experiments aim 

to systematically analyze the contributions of each component to the overall perfor-

mance of the model. 

Table 2. Ablation experiment of YOLOv8x on CraneLine dataset. 

Baseline 
SB   DAF   DAF 

(B)      (N) 
mAP50 P R AP50(test) Params FPS 

YOLOv8x 

--       --       -- 

√        --       -- 

√        √       -- 

√        --       √ 

√        √       √ 

83.4 90.9 72.1 95.5 130MB 37.81 

81.3 93.6 69.7 97.6 85.5MB 47.65 

82.6 94.1 69.5 97.9 87.3MB 47.61 

82.2 93.9 70.1 97.8 86.2MB 47.64 

85.8 94.5 71.8 98.1 88MB 47.53 

 

As shown in Table 2, simplifying the backbone of YOLOv8x for the crane detection 

task results in a decrease in accuracy metrics on the training set. However, the simpli-

fied model demonstrates higher accuracy on the test set. Analyzing precision (P) and 



recall reveals that the more complex model may learn specific noise or redundant in-

formation from the training set, performing well on similarly distributed data but being 

prone to overfitting, as indicated by decreased P and increased R. In contrast, the sim-

plified model exhibits stronger generalization capabilities across different domains, 

leading to better performance on the test set. Additionally, the simplified model offers 

significant advantages in terms of parameter reduction and inference speed, making it 

more efficient and practical for real-world applications. 

 

3.3 Comparison of YOLOCrane with SOTA Models 

To ensure a fair comparison, we evaluated YOLOCrane against state-of-the-art (SOTA) 

object detectors using the same training configuration and at a similar scale. The results, 

presented in Table 3, demonstrate that the proposed algorithm outperforms other meth-

ods across all four evaluation metrics, showcasing its exceptional performance. This 

underscores the effectiveness of YOLOCrane in achieving superior accuracy, precision, 

recall, and mAP. 

Table 3. Performance comparison between YOLOv8x and SOTA model with similar scale on 

CraneLine datastet. 

Algorithms AP50 AP50-95 AP50(test) FPS 

YOLOv5x 83.1 59.8 95.1 38.19 

TPH-YOLOv5x 83.4 60.6 96.3 21.42 

YOLOv11x 83.7 61.1 96.0 29.54 

RT-DETRx 84.1 60.3 96.7 37.2 

YOLOCrane 85.8 61.7 98.1 47.53 

 

To further validate the generalization capability of our method, we selected 4 repre-

sentative images from the 2024 China Southern Power Grid AI Competition Crane Da-

taset and compared YOLOCrane with YOLOv11x [22], RT-DETRx [23], and TPH-

YOLOv5x [24].  

As shown in Fig. 6, the selected three test images feature cranes with small propor-

tions and complex backgrounds, including columnar interferences such as utility poles. 

Comparative detection results demonstrate that our algorithm achieves the highest ac-

curacy, successfully detecting cranes in all four test images. 

4 Conclusion 

This study proposes YOLOCrane, an enhanced YOLOv8-based algorithm specifically 

designed for crane detection in transmission line scenarios. YOLOCrane incorporates 

a simplified network to mitigate overfitting, a channel-wise LBP mechanism for robust 

texture extraction, and a dual-branch attention fusion module to improve feature fusion. 

Experimental results on the CraneLine dataset demonstrate the superiority of 

YOLOCrane over existing methods in terms of accuracy, robustness, and generaliza-

tion. 
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Fig. 6. Detection results of YOLOCrane versus baseline models on complex transmission line 

scenarios. 

However, there are still limitations to be addressed in future work. Firstly, 

YOLOCrane's computational efficiency needs to be further optimized, especially for 

high-resolution images. Secondly, extending YOLOCrane to support multi-category 

detection would broaden its applicability. Lastly, advanced fusion techniques between 

LBP and neural network features could be explored to enhance the accuracy-efficiency 

trade-off. Despite these limitations, YOLOCrane offers significant potential for practi-

cal applications and further research in the field of object detection. 
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