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Abstract. Multi-label drill cuttings classification reveals the current lithologies 

during drilling, which is crucial for guiding oil drilling operations. Many existing 

methods rely on annotated images for feature extraction, making their accuracy 

highly dependent on dataset size. However, due to equipment and manpower 

constraints, datasets in this field are generally small, posing a significant chal-

lenge for improving traditional methods for accurate multi-label classification. 

Notably, we observed that geological layers influence the distribution of drill cut-

tings, highlighting the importance of effectively leveraging geological priors for 

classification. In this paper, we propose a geological layer-aware cross-modal 

learning framework, which explicitly leverages local layer-wise information and 

global label co-occurrence patterns for multi-label drill cuttings classification. 

Unlike conventional end-to-end models, our framework first estimates the geo-

logical layer of a given image and derives a corresponding cuttings proportion 

vector. These priors are then employed to guide the alignment between visual 

and textual features, leading to more precise visual representations. Furthermore, 

we introduce a global co-occurrence matrix that captures label dependencies and 

enhances the learning of visual representations through a graph convolutional 

network (GCN), resulting in more accurate label predictions. Experiments on our 

dataset demonstrate that our approach significantly outperforms state-of-the-art 

methods, achieving a mean average precision (mAP) of 98.8%. 

Keywords: Multi-label Image Classification, Drill Cuttings, Layer-Wise Pro-

portion, Co-Occurrence Matrix. 

1 Introduction 

Multi-label image classification (MLIC) aims to predict multiple labels for an image, 

serving a wide range of practical applications, such as image retrieval [1] and scene 



 

 

understanding [2]. During petroleum drilling, particles and debris collected from the 

bottom of the well are processed and photographed to obtain drill cuttings images. Typ-

ically, a single cuttings image contains a mixture of various rock fragments, such as 

sandstone, mudstone, limestone, shale, and volcanic rock. However, many existing 

methods focus on performing single-label classification for rock fragments [3, 4], 

which may lead to incomplete results when applied to real-world multi-lithology cut-

tings images. MLIC can effectively identify the lithology of drill cuttings, revealing the 

geological composition and aiding both resource exploration [4] and drilling opera-

tions. 

 

Fig. 1. Example Images of Drill Cuttings: Mixed vs. Pure Lithologies. The first row shows dom-

inant lithologies mixed with a small amount of other rock types: mudstone with sparse sandstone, 

sandstone with sparse shale, shale with sparse sandstone, and limestone with sparse shale. The 

second row shows pure samples of the dominant lithologies: mudstone, sandstone, shale, and 

limestone. 

Many existing methods for multi-label drill cuttings classification rely on directly 

extracting features from annotated images. While these approaches can achieve prom-

ising results, their accuracy largely depends on the size and quality of the dataset. How-

ever, collecting high-quality color images of drill cuttings remains a major bottleneck 

during drilling due to equipment constraints and limited human resources, making ac-

curate classification even more challenging with conventional methods. To address this 

limitation, it is essential to explore the potential of leveraging the unique prior 

knowledge of drill cuttings datasets to enhance classification. As shown in Fig. 1, each 

geological layer of our dataset corresponds to a dominant lithology, which constitutes 

the majority of the images collected from that layer, accompanied by a small amount 

of other lithologies. This observation suggests that the lithologies in mixed drill cuttings 

images are strongly influenced by the geological layer from which they originate. 

Moreover, images collected from the same layer share nearly identical dominant lithol-

ogy, resulting in highly similar visual features that facilitate layer division. Thus, we 

consider that identifying the geological layer of an image and incorporating layer-wise 

prior knowledge into the model can effectively enhance classification accuracy. It is 
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important to clarify that the estimated layers here do not contain lithological infor-

mation. Instead, we group images from the same geological layer mainly to collect the 

cuttings proportion for each layer. 

In this paper, we propose a novel framework leveraging prior knowledge within im-

ages for multi-label drill cuttings classification. Unlike conventional end-to-end models 

that primarily rely on visual features, our approach incorporates geological layer infor-

mation and label co-occurrence patterns to refine feature learning and improve classi-

fication performance. Specifically, we first estimate the geological layer of each image 

and construct a proportion vector to represent the distribution of various lithologies 

within that layer. This vector is initialized as zero and iteratively updated during train-

ing by mapping the visual embeddings of images to their corresponding layers and ac-

cumulating the proportion annotations. In other words, our approach is similar to bio-

logical sampling, where we infer the cuttings proportions of different layers based on 

images obtained during drilling. As a prior, the proportion vector guides the alignment 

between visual and semantic features, resulting in more precise visual representations. 

Furthermore, we develop a global co-occurrence matrix to capture label correlations 

among different lithologies. By integrating both visual representations and the co-oc-

currence matrix into a graph convolutional network, our model explores the interactions 

among visual features corresponding to different labels, leading to more robust label 

predictions. 

The key contributions of this paper are as follows: 

─ We propose a layer-aware proportion-guided fusion module that incorporates geo-

logical priors to guide the alignment of multiple modalities. 

─ We introduce a global co-occurrence matrix to model label dependencies and im-

prove prediction robustness through interactions among visual representations. 

─ Extensive experimental results demonstrate that our method achieves state-of-the-

art performance in multi-label drill cuttings classification. 

2 Previous Work 

Multi-label image classification methods for natural images have reached a high level 

of maturity. Early approaches leveraged problem transformation techniques, breaking 

down multi-label image classification into multiple single-label classification tasks [9]. 

Some methods  [10, 11] employ convolutional neural networks to extract visual features 

and treat MLIC as a series of binary classification problems.  

Transformer-based models have also emerged, such as Q2L [14], which utilizes a 

transformer decoder to facilitate interactions between labels and image features. C-Tran 

[8] introduces a transformer framework to model the complex dependencies between 

visual features and labels. TDRG [20] proposes a transformer-based dual relation learn-

ing framework that constructs structural and semantic relation graphs to enhance multi-

label image recognition.  



 

 

Graph-based approaches have also been investigated for MLIC. SSGRL [7] en-

hances classification by leveraging semantic decoupling and graph-based semantic in-

teractions. GKGNet [23], the first fully graph convolutional model for MLIC, dynami-

cally constructs graphs to efficiently capture semantic and spatial relationships.  

Some methods integrate multi-modal information to enhance classification accu-

racy. TSFormer [6] employs a two-stream transformer framework with cross-modal 

interactions between visual and semantic features through a multi-shot attention mech-

anism. Moreover, the M3TR [22] integrates visual and linguistic modalities through 

semantic cross-attention and linguistic-guided enhancement to improve multi-label im-

age recognition. Other methods [12, 15, 18] focus on modeling the relationships be-

tween image regions or labels to further improve multi-label classification perfor-

mance.  

Although existing methods effectively leverage deep learning architectures for 

MLIC, they often overlook the geological priors and co-occurrence relationships inher-

ent in drill cuttings images. Our approach addresses this gap by explicitly incorporating 

geological layer information and global label dependencies, resulting in more accurate 

classifications. 

 

Fig. 2. Overall framework of our approach. 

3 Methodology 

Our framework consists of four main components: the feature extraction module, layer-

aware proportion-guided fusion module, graph-based co-occurrence learning module, 

and prediction module. As illustrated in Fig. 2, we first encode the input drill cuttings 

image to extract visual feature maps, while semantic labels are processed to generate 

semantic embeddings. The two modalities are then fed into the layer-aware proportion-

guided fusion module, where they undergo cross-modal fusion guided by layer-wise 

cuttings proportion to obtain visual representations. Next, the graph-based co-occur-

rence learning module leverages a global co-occurrence matrix to model label depend-

encies, which then guides interactions among visual representations via a graph convo-

lutional network. Finally, the refined label-specific visual representations are fed into a 

set of binary classifiers to determine the presence of each label in the image. The fol-

lowing sections provide a detailed introduction to four components of our framework. 
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3.1 Feature extraction module 

Visual feature extraction. Since each image in our dataset is densely populated with 

various cuttings, we employ Vision Transformer (ViT) [17] to capture global relation-

ships and extract more discriminative visual features. Given a drill cuttings image 𝐼, we 

divide it into m non-overlapping 2D patches, which serve as the input to the encoder. 

The Positional embeddings are incorporated after the patch embedding layer to enhance 

the input sequence. Finally the ViT encoder with 𝐿 layers processes this sequence via 

self-attention mechanisms, generating the visual features 𝑉 ∈ 𝑅ℎ×𝑤×𝑑. Here, ℎ and 𝑤 

denote the spatial dimensions of the feature map, while 𝑑 represents the fixed dimen-

sionality of the transformer’s embedding space.  

Semantic feature extraction. For a candidate label set, a pretrained language model 

BERT [19] is employed to generate the semantic embeddings, resulting in a set of rep-

resentations 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}, where 𝑡𝑖 ∈ 𝑅𝑑, 𝑛 represents the number of labels, and 

𝑑 is the dimension of the label embeddings. 

3.2 Layer-Aware Proportion-Guided Fusion Module 

To capture relationships between cuttings and labels more effectively, we introduce a 

Layer-Aware Proportion-Guided Fusion Module. This module fuses visual features 𝑉 

and semantic embeddings 𝑇 while integrating prior proportion knowledge into the at-

tention mechanism. In this section, we first construct the layer-wise proportion vectors, 

followed by a detailed explanation of our cross-modal attention network. 

 

𝑠 𝑙𝑖𝑚𝑒𝑡𝑜𝑛𝑒 =  2 
𝑠 𝑚𝑢𝑑𝑠𝑡𝑜𝑛𝑒 =  2 

𝑠 𝑠𝑎𝑛𝑑𝑡𝑜𝑛𝑒 =  1 

𝑠 𝑠𝑎𝑛𝑑𝑠𝑡𝑜𝑛𝑒 =  2 

𝑠 𝑚𝑢𝑑𝑠𝑡𝑜𝑛𝑒 =  1 

𝑠 𝑠ℎ𝑎𝑙𝑒 =  1 

Fig. 3. Example images of drill cuttings with proportion annotations. 

Proportions Initialization. Our drill cuttings dataset differs significantly from natural 

images, each image contains cuttings filling every corner of the image, with varying 



 

 

proportions of different lithologies. In most images, only one lithology dominates, 

while others are scattered sparsely throughout. Therefore, considering the nature of drill 

cuttings, we introduce a new attribute state s in the annotation of each object within the 

image. The state 𝑠 is set to 2 if the image contains only one lithology and to 0 if the 

lithology is absent. If multiple lithologies are present, the dominant one is assigned 𝑠 =
 2, and the others are labeled with 𝑠 =  1, as shown in Fig. 3. Thus, we can simplify 

the drill cuttings proportion states of each image with the vector 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑛}, 

where 𝑠𝑖 ∈ {0,1,2} for 𝑖 ∈ {0, 1, … , 𝑛 − 1}. 

Layer Detection. The dominant lithology varies across layers and covers the majority 

of the image, resulting in layer-level distinct image features. Therefore, following [5], 

we employ a softmax classifier, leveraging contextual image features to identify the 

geological layer of the input image 𝐼. It’s important to clarify that the geological layer 

dection of input images here is purely clustering-based, without any lithology labels. 

The layers are simply designated as 𝐿𝑎𝑦𝑒𝑟1, 𝐿𝑎𝑦𝑒𝑟2, etc. We first apply global aver-

age pooling to the visual features extracted from the last block of the ViT: 

 𝑉̅ =
1

𝑚
∑ 𝑉𝑖

𝑚
𝑖=1  (1) 

where m refers to the number of non-overlapping 2D patches. Given a set of 𝐶 layers, 

we use a linear mapping to compute the score of cth layer 𝑓𝑐 as follows: 

 𝑓𝑐 = 𝑊𝑐
𝑇𝑉̅ (2) 

where 𝑊𝑐 ∈ 𝑅𝑑  is a learnable parameter vector. Based on the computed probability dis-

tribution, the input image 𝐼 is assigned to the geological layer 𝑔 with the highest prob-

ability, formulated as: 

 𝑔 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐∈{0,1,…,𝐶−1}

𝑒𝑥𝑝(𝑓𝑐)

∑ 𝑒𝑥𝑝(𝑓𝑗)𝐶−1
𝑗=0

 (3) 

Proportions calculation. The cuttings proportion of each geological layer is obtained 

by aggregating the proportion state vectors of input images from the same layer, as 

shown in Fig. 4. The accumulated cuttings composition for geological layer 𝑔 is repre-

sented as: 

 𝑃𝑔 = 𝑃𝑔 + 𝑆𝑖 (4) 

where 𝑃𝑔 is iteratively updated as more images are processed, and 𝑆𝑖 represents the pro-

portion state vector of image 𝑖 belonging to geological layer 𝑔. 

To ensure effective guidance for the subsequent cross-modal fusion, we normalize 

𝑃𝑔 to obtain the final proportion distribution 𝑃𝑔̂ as follows: 

 𝑃𝑔̂ =
𝑃𝑔

√∑ 𝑝𝑖
2𝑛−1

𝑖=0

 (5) 
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where 𝑝𝑖  represents the element of vector 𝑃𝑔. Then the proportion vectors 𝑃̂ ∈ 𝑅1×𝑛 for 

all layers will be computed and sent for guiding subsequent cross-modal fusion.  

 

Fig. 4. Proportion calculation of each layer. 

Cross Modal Attention Network(CMAN). In this work, we modify [6] to design our 

cross modal attention network. At the 𝑙-th layer, visual features from the corresponding 

ViT block ℱ𝒱
ℓ ∈ 𝑅𝑚×𝑑  and semantic embeddings ℱ𝒯

ℓ−1 ∈ 𝑅𝑛×𝑑  are fused via multi-

head self-attention, generating an updated visual representation ℱ𝒯
ℓ. Specifically, we 

use semantic embeddings as the query while visual features as the key and value: 

 𝒬𝒯
ℓ = ℱ𝒯

ℓ−1𝑊𝑄 (6) 

 𝒦𝒱
ℓ = ℱ𝒱

ℓ𝑊𝐾  (7) 

 𝒱𝒱
ℓ = ℱ𝒱

ℓ𝑊𝑉  (8) 

where𝑊𝑄 ∈ 𝑅𝑑×𝑑, 𝑊𝐾 ∈ 𝑅𝑑×𝑑, and𝑊𝑉 ∈ 𝑅𝑑×𝑑 are parameter matrices to be learned.  

Then, we modify the computation of traditional alignment matrix by introducing the 

drill cuttings proportion vectors. To prevent the attention values from becoming too 

small after the proportion vector is multiplied with 𝒬𝒯
ℓ  and 𝒦𝒱

ℓ, resulting in the loss of 

important information, we first add a bias to all elements of the vector, ensuring numer-

ical stability during subsequent normalization, preventing division errors: 

 𝑃̂ = 𝑃̂ + 𝜀 (9) 

Next, we reshaped the layer-wise proportion vector by expanding its dimensions and 

repeating its values to match 𝒬𝒯
ℓ  and 𝒦𝒱

ℓ. Finally, we incorporate the new layer-wise 

proportion vector 𝑃′̂ into the calculation of the attention matrix: 

 ℱ𝒜
ℓ = softmax (

𝒬𝒯
ℓ (𝒦𝒱

ℓ)
𝑇

⊙𝑃′̂

√𝑑
) (10) 



 

 

The attention matrix ℱ𝒜
ℓ ∈ 𝑅𝑛×𝑚 captures the correlations between labels and image 

patches. We then apply a residual connection to refine the semantic representation at 

the 𝑖-th layer, formulated as:  

 ℱ𝒯
ℓ = ℱ𝒯

ℓ−1 + ℱ𝒜
ℓ 𝒱𝒱

ℓ (11) 

In this way, after passing through L layers of fusion and interaction, we obtain the 

final-layer visual representation ℱ𝒯 that integrates all visual information, which is then 

used for subsequent semantic interactions. 

Semantic interaction module. After integrating layer-level prior knowledge to guide 

feature fusion, we identified an issue. In layer dominated by lithology A, lithology B 

occupies a small proportion, and vice versa in layer dominated by lithology B. Despite 

the low correlation indicated by the layer-wise proportions, the overall label co-occur-

rence probability between these two lithologies remains high. Therefore, focusing 

solely on the layer-level proportion while ignoring the overall label co-occurrence may 

result in the loss of valuable prior information.  

In this module, we introduce a global co-occurrence matrix to further explore the 

interaction between label representations. We represent the multi-labels of an image 

using the vector 𝑣 = [𝑣0, 𝑣1, … , 𝑣𝑛−1]𝑇, where 𝑣𝑖 = 1 indicates that label 𝑡𝑖 exists, and 

𝑣𝑖 = 0 otherwise. The overall dependency matrix 𝑀 ∈ 𝑅𝑛×𝑛 is computed as the sum of 

the outer products of the label vectors across all images. This matrix is symmetric, 

where 𝑀𝑖𝑖 represents the total occurrences of label 𝑡𝑖, and 𝑀𝑖𝑗 records the number of 

times labels 𝑡𝑖 and 𝑡𝑗 co-occur in the dataset.We normalize each row by dividing its 

elements by the corresponding diagonal value, ensuring that the diagonal elements be-

come 1, while off-diagonal elements represent the conditional co-occurrence probabil-

ity: 

 𝑀𝑖𝑗
′ =

𝑀𝑖𝑗

𝑀𝑖𝑖
 (12) 

Next, the visual representations of labels interact with each other in the multi-layer 

graph convolution network under the guidance of the global label co-occurrence prob-

ability matrix as follows: 

 ℋ𝒯
(ℓ+1)

= ReLU(𝑀′ℋ𝒯
(ℓ)

𝑊(𝑙) + 𝑏(𝑙)) (13) 

where ℋ𝒯
(ℓ)

∈ 𝑅𝑛×𝑑 serves as the input to the (𝑙 + 1)-th layer of the network, and ini-

tialized as ℋ𝒯
(0)

= ℱ𝒯 , 𝑊(𝑙) ∈ 𝑅𝑑×𝑑′
is the learnable weight matrix and 𝑏(𝑙) ∈ 𝑅𝑑′

 is 

the bias term. Finally, the updated visual representations ℋ𝒯 are obtained, where each 

representation integrates both its intrinsic label characteristics and contextual infor-

mation from other labels. 

Prediction module. The ground truth labels of an image I are represented as 𝑣 ∈ 𝑅𝑛, 

where 𝑣𝑖 = 1 indicates indicates the presence of label 𝑡𝑖, and 𝑣𝑖 = 0 otherwise. With 
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the output ℋ𝒯 from the Semantic interaction module, we compute the predicted prob-

ability vector p = [p0, p1, … , pn−1]T for image I using a set of binary classifiers: 

 p = σ(f(ℋ𝒯 ⊙ WC)) (14) 

where 𝑊𝐶 ∈ 𝑅𝑛×𝑑 is a learnable matrix, with each row serving as the weight vector of 

a binary classifier. ⊙ denotes the element-wise multiplication and f(⋅) performs row-

wise summation. The sigmoid function σ(⋅) converts values into probabilities.  

The model is trained using the binary cross-entropy loss, defined as: 

 ℒ = − ∑ [𝑣𝑖 𝑙𝑜𝑔 𝑝𝑖 + (1 − 𝑣𝑖) 𝑙𝑜𝑔(1 − 𝑝𝑖)]𝑛−1
𝑖=0  (15) 

4 Experiments 

4.1 Datasets 

Our dataset consists of 3,984 RGB multi-label images of drill cuttings, collected from 

a development well on the southern flank of the Zhongao Top Structure in Weiyuan, 

Sichuan Basin, with samples taken from depths ranging from 20m to 2,825m under-

ground. Each image has a resolution of 448×448 pixels and has been professionally 

annotated. 

The dataset comprises four lithology labels: mudstone, sandstone, shale, and lime-

stone, where each image is labeled with one to three lithologies. We define four geo-

logical layers, with each layer dominated by one of the four lithologies. The distribution 

of dominant lithologies are as follows: limestone accounts for 31%, mudstone for 42%, 

sandstone for 11%, and shale for 16%.  Sandstone and mudstone are dominant at shal-

lower depths, while shale and limestone are more prevalent above 1,000 meters. 

4.2 Implementation Details 

We leverage ViT-B16, pretrained on ImageNet21k, to extract visual features, while 

BERT, pretrained on Wikipedia data, is used to obtain textual embeddings. The feature 

dimension 𝑑 is set to 768, and the graph convolutional network consists of five layers. 

The model is optimized using AdamW with 𝛽1 = 0.9, 𝛽2 = 0.999, and a batch size of 

16. The initial learning rate is set to 1e−5 and decays by a factor of 10 when the loss 

stabilizes. To enhance training robustness, we apply random horizontal flipping and 

random resized cropping as data augmentation techniques. All experiments are con-

ducted on a server equipped with two NVIDIA 4090 GPUs. 



 

 

4.3 Comparison with State-of-the-Art Methods 

We split the annotated dataset into training, validation, and test sets with a ratio of  70%, 

10%, and 20%, respectively. The models selected for comparison included MCAR [16], 

TDRG [20], TSFormer [6], MLD-TResNetL-AAM [15], MSRN [13], IDA [21], and 

M3TR [22]. These methods represent state-of-the-art multi-label classification ap-

proaches on public datasets in recent years and can be replicated on our dataset due to 

their compatible data formats. The experimental results are presented in Table 1 and 

Table 2, with the best scores highlighted in bold. 

Table 1. Experiments results on the drill cuttings dataset in terms of class-wise precision (AP 

in %) and mean average precision (mAP in %)  

Method Limestone Mudstone Sandstone Shale mAP 

MCAR [16] 99.8 98.4 94.1 90.9 95.8 

TDRG [20] 99.9 99.3 94.7 91.1 96.3 

TSFormer [6] 99.9 98.7 93.8 94.5 96.7 

MLD-TResNetL-AAM [15] 99.5 97.3 96.3 94.8 96.9 

MSRN [13] 100 98.9 96.6 94.7 97.5 

IDA [21] 99.3 98.4 95.3 94.9 96.9 

M3TR [22] 100 99.0 97.7 96.1 98.2 

Ours 100 99.5 98.0 97.9 98.8 

To evaluate model performance, we first calculate the average precision for each of 

the four lithologies, along with the mean average precision (mAP) across all categories. 

As shown in the Table 1, our framework achieves the best overall performance, signif-

icantly surpassing all previous state-of-the-art methods in terms of mean average pre-

cision (mAP), with a score of 98.8%. Notably, it outperforms the second-highest scores 

by 0.3% and 1.8% in distinguishing sandstone and shale classification, two of the most 

challenging lithologies, as they often appear as minor components in images where 

other lithologies are dominant. Moreover, our framework achieves 100% precision for 

limestone classification, ensuring accurate recognition of limestone formations during 

drilling operations. 

Table 2. Experiments results on the drill cuttings dataset in terms of precision, recall and F1 

scores (in %) 

Method CP CR CF1 OP OR OF1 

MCAR [16] 90.7 86.2 88.4 91.9 86.5 89.1 

TDRG [20] 95.6 82.8 88.7 93.2 85.1 88.9 

TSFormer [6] 89.4 92.1 90.7 88.6 93.6 91.0 

MLD-TResNetL-AAM [15] 93.6 96.0 93.3 90.5 94.7 92.6 

MSRN [13] 91.8 96.0 93.8 91.7 96.7 94.1 

IDA [21] 93.3 93.9 93.6 93.6 94.4 94.0 

M3TR [22] 95.0 93.3 94.1 94.9 93.8 94.3 

Ours 96.8 94.2 95.5 96.3 95.1 95.7 
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To further assess model effectiveness, we calculated the precision, recall, and F1-

measure for each method. As shown in Table 2, our approach achieves the highest 

scores across all key evaluation metrics, including CF1 and OF1, and outperforms all 

other methods in most remaining metrics. However, we observed that the recall values 

were slightly lower than precision. This could be attributed to the imbalanced sample 

distribution, where shale and sandstone are underrepresented compared to mudstone 

and limestone. Additionally, the morphological complexity of these lithologies may 

further impact the recall performance. 

4.4 Ablation Study 

In this section, we conduct ablation experiments to evaluate the impact of key points in 

our model and the number of layers in the graph convolutional network on prediction 

probabilities. 

We first examine the effectiveness of the proportion vector in layer-aware propor-

tion-guided fusion module and the graph-based co-occurrence learning (GCM) module. 

As shown in Table 3, adding the proportion guidance (PG) and GCM individually to 

the baseline increases the mAP from 96.7 to 98.2 and 98.3, respectively. When both 

modules are incorporated, the mAP further improves to 98.8. These significant gains 

clearly demonstrates the crucial role of geological prior knowledge in extracting accu-

rate features and enhancing classification performance. 

Table 3. The effect of key contributions on the performance of our framework (mAP in %) 

Method mAP(%) 

Baseline 96.7 

Baseline + PG 98.2 

Baseline + GCM 98.3 

Baseline + PG + GCM (Ours) 98.8 

 



 

 

 
(a)                                                                (b)  

Fig. 5. The effect of GCN layers on the performance of our framework. (a) mAP (%) with and 

without proportion guidance. (b) AP (%) of different lithologies at different GCN layers under 

whole framework. 

We also explored the impact of the number of layers in the graph convolutional net-

work (GCN) within the GCM module on mAP. Fig. 5 (a) illustrates the overall mAP 

values across different GCN layers. Regardless of the presence of the proportion guid-

ance, the mAP reaches its peak when 𝐿′ = 5, achieving 98.3% and 98.8% for the cases 

without and with proportion guidance, respectively. In the case with only GCM, the 

mAP also achieves 98.3% when 𝐿′ = 1. 

Fig. 5 (b) presents the prediction accuracy of each lithology at different GCN layers 

under our complete framework. Limestone is consistently predicted with 100% accu-

racy across all layers. This suggests that limestone has distinctive visual characteristics 

that make it easier to classify, in contrast to shale and sandstone, which exhibit more 

intra-class variability. Shale and mudstone achieve their highest accuracy when 𝐿′ = 1  

and 𝐿′ = 5, reaching 97.9% and 99.5%, respectively. Sandstone achieves its peak ac-

curacy of 98.0% when 𝐿′ = 5. Considering both classification accuracy and computa-

tional efficiency, we set the number of GCN layers to 5 in our final experimental setup. 

4.5 Visualization 

In this section, we first visualize the distribution of dominant lithology across different 

layers. As shown in Fig. 6, the horizontal axis represents different lithologies, while the 

vertical axis indicates the number of images where a specific lithology serves as the 

dominant lithology. The results show that the true dominant lithology varies across the 

four layers, which aligns with our expectations. Due to the mixed distribution of rock 

fragments, some images may have a different lithology appearing as dominant. How-

ever, in each layer, the true dominant lithology consistently appears in more than 50% 

of the images, significantly outnumbering other lithologies. This confirms the distinct 

lithological variations across geological layers in our dataset, and suggests that the Soft-

max classifier effectively identifies the geological layer of a given image, providing a 

solid foundation for collecting layer-wise cuttings proportions. 
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Fig. 6. Histogram of dominant lithology distribution of each layers. 

Subsequently, we utilize cross-attention maps to evaluate the model's classification 

performance across the four labels. Due to the overlapping nature of rock fragments in 

our dataset, the CAM heatmaps may not always capture entire fragments. Nevertheless, 

as shown in Fig. 7, the model successfully attends to the key regions associated with 

each lithology, demonstrating its effectiveness in precise classification. 

 

Fig. 7. Cross-attention maps for all labels. 

5 Conclusion 

We introduce a geological layer-aware cross-modal learning framework for multi-label 

drill cuttings classification, which effectively integrates geological priors to enhance 

feature learning. By leveraging local layer-wise information and global label co-occur-

rence patterns, our approach significantly improves classification accuracy, achieving 

a new state-of-the-art mAP of 98.8%. The experimental results demonstrate its superi-

ority over conventional methods. Furthermore, our approach highlights the importance 



 

 

of incorporating domain-specific knowledge in image classification, providing valuable 

insights for applications in geological analysis and other specialized scientific fields. 
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