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Abstract. Glass-like objects can be seen everywhere in our daily life which are 

very hard for existing methods to segment them. The properties of transparencies 

pose great challenges of detecting them from the chaotic background and the 

vague separation boundaries further impede the acquisition of their exact con-

tours. Moving machines which ignore glasses have great risks of crashing into 

transparent barriers or difficulties in analysing objects reflected in the mirror, 

thus it is of substantial significance to accurately locate glass-like objects and 

completely figure out their contours. In this paper, inspired by the scale integra-

tion strategy and the refinement method, we proposed a brand-new network, 

named as MGNet, which consists of a Fine-Rescaling and Merging module 

(FRM) to improve the ability to extract spatially relationship and a Primary Pre-

diction Guiding module (PPG) to better mine the leftover semantics from the 

fused features. Moreover, we supervise the model with a novel loss function with 

the uncertainty-aware loss to produce high-confidence segmentation maps. Un-

like the existing glass segmentation models that must be trained on different set-

tings with respect to varied datasets, our model are trained under consistent set-

tings and has achieved superior performance on three popular public datasets. 

Keywords: glass segmentation 

1 Introduction 

Glass objects which possess two main characteristics, transparency and specular reflec-

tion, are known to be very hard for segmentation mainly due to two problems. The first 

problem is that these two attributes endow glass with  substantial challenge in visual 

recognition, making it susceptible to blending with the background. The  second prob-

lem is that the presence of indistinct and gradient boundaries further complicate the 

detection and segmentation process. In practices, failure to detect glasses can poten-

tially lead to collisions with their barriers for machines such as robots and autonomous 

vehicles, as well as hindering the tracking of objects. Consequently, new powerful 

methods and models for the detection and segmentation of glasses are badly needed. 

The existing segmentation methods focus on either transparent objects or mirror ob-

jects. For transparent materials, existing methods mainly leverage boundary detection 

for assistance ([6], [26]). Furthermore, some methods have been proposed to detect and 



 

segment glass using new attributes such as spectral polarization [25]. However, it is 

evident that these methods introduce additional computational overhead, and these at-

tributes are not universally present in every glass object. For instance, some mirrors 

have well-defined boundaries, while certain glass exhibits perplexing edges. Addition-

ally, acquiring other attributes, such as spectral polarization information, for each ob-

ject is not always convenient. Actually, transparent objects and mirrors can be classified 

as the same substance, glass. Therefore, combining these two tasks intuitively makes a 

lot of sense and can significantly improve the applicability of the model.  

 

Fig. 1. Visualization of our predicted results. Compared with the ground truths, our segmentation 

maps exhibit fine, complete, and strong discriminative properties, which is mainly contributed 

by our combination of multi-scales and refinement strategies. The predictions of those ambiguous 

regions also gain the help from UAL. 

Considering these two restriction, we intend to combine transparent objects segmen-

tation and mirror segmentation into glass segmentation and rely solely on conventional 

RGB information, similar to the approach taken for other objects. This approach not 

only simplifies the data acquisition and processing but also facilitates a better analysis, 

thereby improving model applicability.  

In this paper, we are dedicated to addressing the problems arising from object inter-

ference within glasses and the challenging segmentation of objects due to the special 

boundaries of glasses in the background. Drawing inspiration from multi-scale input 

strategies and iterative refinement modules, we propose a novel network architecture, 

referred to as MGNet, which includes a Fine-Rescaling and Merging module (FRM) 

and a Primary Prediction Guiding module (PPG). FRM makes slight adjustments to the 

original input image's dimensions, enhancing the spatial relationship among objects 
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within the image and capturing more abstract representations. As the two problems 

mentioned above, the presence of reflected objects in mirrors and items located behind 

transparent glass introduces the likelihood of two distinct groups within an image – one 

representing reality and the other created by the glass. The application of scale-space 

theory, which seeks to comprehensively address natural variations in scales to optimize 

the understanding of image structure offering a promising avenue for discerning the 

spatial relationship between the real world and the glass-induced reflections.  

Furthermore, this strategy significantly enhances model performance by effectively 

handling vague and confusing edges, as outlined in three versions tailored to address 

this challenging detection scenario. And PPG aims to address the challenge caused by 

the second problem of incomplete and low-confidence segmentation posed by the am-

biguous boundaries between the glass-like objects and the background, mining the left-

over semantics from the final features by guiding the segmentation process with the 

primary prediction. Furthermore, to enhance the effectiveness of eliminating the uncer-

tainty regions (low-confidence regions), we utilize the  Uncertainty-Aware Loss (UAL) 

proposed by [28] as an auxiliary loss function.  

Our contributions can be summarized as follows: (i) We propose MGNet, a novel 

glass-like object segmentation model which combines two empirically effective strate-

gies of multi-scales and refinement with a rather strong purpose to address the two 

problems mentioned above. (ii) We propose a Fine-Rescaling and Merging module 

(FRM) to improve the ability of our model to extract spatially relations and a Primary 

Prediction Guiding module (PPG) to better mining the leftover semantics from the 

fused features. (iii) Our methods combines transparent objects and mirror segmentation 

and has been implemented, achieving state-of-the-art performance on two popular 

benchmarks (two different tasks) and superior performance on another instance trans-

parent objects segmentation dataset under the consistent train settings, presenting better 

transferability since existing models must adjust their settings respect to each bench-

mark for only one task. (iv) our model solely rely on RGB-photos and beats those mod-

els with special physical property, showing a great possibility of utilizing RGB-photos 

to excellently segment transparent objects and mirror. 

2 Related Works 

Glass-like Object Segmentation.  Segmenting objects with a glass-like appearance pre-

sents a significantly greater challenge compared to commonly seen objects and this 

heightened difficulty arises primarily from the fact that the inner regions of glass ob-

jects often exhibit a perplexing similarity to their surrounding backgrounds. To address 

this issue, some methods [25] have turned to the utilization of additional multi-modal 

information, such as 4D light-field data, refractive flow maps, thermal imaging and 

spectral polarization. Regrettably, the acquisition of such multi-modal data is relatively 

expensive, thus limiting its broader applicability. Instead, recent contributions from re-

searchers such as ([16], [17], [26], [37]), have led to the creation of large-scale RGB 

image datasets specifically tailored to glass-like objects, promoting this research in the 

community. However, due to the unique characteristics of glass-like objects, 



 

conventional existing semantic segmentation methods ([3], [46]), have failed to deliver 

promising results. Similarly, many cutting-edge approaches in salient object detection 

([28], [29]) have also struggled, as glass objects may not always exhibit salient features. 

Additionally, ([16], [37]) have introduced methods for the segmentation of glass-like 

objects with the aid of boundary cues, leveraging the precise localization afforded by 

boundaries. Unlike the methods mentioned above, our approach only processes the raw 

RGB images with a novel network combining two strategies of multi-scales and refine-

ment without any  boundary computation.   

Scale Space Integration. Scale-space theory typically aims to address natural varia-

tions in scales by achieving an optimal comprehension of image structure, providing an 

exceedingly effective and theoretically sound framework. This concept has found wide-

spread applications in computer vision, including the utilization of image pyramids [1] 

and feature pyramids ~\cite{lin2017feature}. Recent CNN-based methods for Camou-

flaged Object Detection (COD) ([5], [28])  and Salient Object Detection (SOD) ([12], 

[27], [29]) have explored strategies that combine inter-layer features to enhance feature 

representations. These approaches have demonstrated positive impacts on accurate ob-

ject localization and segmentation. However, for the glass segmentation task, the exist-

ing approaches overlook the substantial effect of varying input scales on detecting 

glass-like objects and thus they are often confused by the complex spatial relationships 

in images between objects. In this paper, we apply the mixed-scale integration strategy 

to adjust the attention of our model to the scales it needs most with respect to each pixel 

to significantly improve the ability of our model to figure out the structure of input 

images. Furthermore, we design our network along with the fine-rescale and merging 

module and the hierarchical channel-down decoder which effectively extract and fuse 

the semantics from different scales. 

Iterative Refinement. The iterative refinement aims to optimize the secondary struc-

ture and elaborate details through repeating the final or nearly final process of feature 

extraction supervised by the results predicted in the last step. Recently, this strategy has 

been widely utilized on few-shot learning  [44] and camouflaged object detection as 

well [13]. Jia et al. propose an attention-based iterative refinement module in [13], 

which samples the target area iteratively to improve the ability of the model to detect 

the objects in small scales. Unlike the models mentioned above, our proposed iterative 

refinement module intends to make our model segment objects in a coarse way firstly 

and then guide the primary predicted results with the final features to fully mine the 

semantics left in the processed final features. Therefore our model is able to detect the 

severely glass-like objects and generates final prediction which is more structured and 

regular.    

3 Methodology 

In this section, we first elaborate on the overall architecture of the proposed MGNet, 

and then present the details of each module. 
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3.1 Overall Architecture 

The overall architecture of the proposed MGNet is illustrated in Fig.2. Inspired by the 

rescaling strategy and the rechecking strategy of human beings, we better and advance 

those strategies for getting performance promotion in glass-like object segmentation. 

By consolidating information from various scales, we can effectively uncover  

 

Fig. 2. The overall framework of MGNet. The fine-rescaling and merging module (FRM) is 

adopted to integrate full-channel features of different levels extracted by a shared encoder to mine 

the critical clues from different scales. The hierarchical channel-down decoder (HCDD) further 

enhances the feature discrimination by constructing a multi-path structure inside the features 

while reducing the channel of features. Then, a coarse probability map is generated and sent to 

the primary prediction guiding module (PPG) to complete the coarse-to-fine process for mining 

leftover semantics and uncertainty elimination. After refinement, a final probability map of the 

camouflaged object on the input image can be obtained. The times of guiding can be adjusted 

according to practical needs. 

subtle but valuable cues in complex situations, ultimately aiding in the process of glass-

like objects segmentation, thus we finely adjust the scales of input image (height and 

weight), i.e., 0.7x, 1.0x, 1.2x, which conform to our ideas of multi-scales input. The 

images of different scales share a feature encoder to extract different levels of features 

and the feature encoder we use in this paper is the pre-trained ResNeXt101. The fea-

tures of different scales are organized based on their respective channels, and these 

groups are then directed to the Fine-Rescaling and Merging module (FRM), which is 

based on the attention-aware filtering mechanism to integrate features that contain rich 

scale-specific information. The module will generate attention to different scales which 

fits the picture being detected and significantly improve the model's ability to capture 

crucial and informative semantic cues for detecting challenging, glass-like objects. Af-

ter that, the fused multi-level features are gradually integrated through Hierarchical 

Channel-Down decoder (HCDD)  in a top-down manner to enhance the mixed-scale 

feature representation while their channel is reduced accordingly to be able to mix with 

others hierarchically. It further expands the receptive field ranges and integrates infor-

mation from the semantic level to the local level. At the end of the integration process, 

a coarse logits map can be obtained. To eliminate the uncertainty in the coarse logits 

map and further mine the leftover information of structures and local details of the final 

fused features, we employ the primary prediction guiding module to process the feature 

generated by the last module (HCDD) with the primary logits map. After the refine-

ment, the final segmentation map is generated by the subsequent logits map through a 

convolutional layer and it is supervised by the ground truth. The loss function is 



 

composed of the binary cross entropy (BCE) loss and an uncertainty-aware loss (UAL) 

to enable the model to eliminate the uncertain regions and produce a structured, regular 

and accurate prediction. 

3.2 Feature Encoder 

We first extract deep features through a shared encoder and group them by their chan-

nels. For fully implementing our idea of finely adjusting scales to promote spatially 

relationship input,  

the three scales are intuitively set to 0.7x, 1.0x, 1.2x of the height and weight. The 

feature encoder is constituted by the commonly-used ResNeXt101 where the structure 

after “layer4” is removed. For more details, there will be five groups of features after 

the feature encoder, whose channels are  2048, 1024, 512, 256 and 64, respectively and 

whose heights and width are 1/32, 1/16, 1/8, 1/4, 1/2 of the original input size, respec-

tively. Next, these groups of features are fed successively to the fine-rescaling and 

merging module (FRM) and the hierarchical channel-down decoder (HCDD) for sub-

sequent processing.   

 

Fig. 3. Illustration of the full scale merging module (FRM). 

3.3 Fine-Rescaling and Merging Module (FRM) 

While nearly every object in a given image maintains a consistent spatial relationship 

with other objects, which remains unchanged when the image is rescaled, integrating 

features from different scales can greatly highlight this relationship and improve the 

scale robustness of our model to help address the first problem mentioned above. For 

the second problem, the identification of edges, crucial for detecting concealed objects, 

can be significantly affected by rescaling, particularly in the case of low resolution and 

high levels of image noise in the test pictures. This impact becomes particularly evident 

when dealing with confusing glass-like objects and those with indistinct edges. To ad-

dress this problem, we introduce the Fine-Rescaling and Merging module (FRM). 

The attention-based FRM aims to weight and combine scale-specific information, as 

shown in Fig.3. Following [28], the scale merging module is composed of several units 

and layers which implement filtering and aggregation to self-adaptivedly highlight the 
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expression of different scales. The original scales (1.0x) is resized to 0.7 and 1,2 times 

of the lengths to generate relatively even input scales. After that, there are three groups 

of features belonging to 0.7x, 1.0x, and 1.2x, respectively. For fi
1.2

, we further extract 

features by two stacked “Conv-BN-ReLU” layers with different receptive fields and 

then use a mixed addition of ``max-pooling" and ``average-pooling" to down-sample 

it, which helps to conserve the meaningful and various responses for glass-like objects 

in high-resolution features. For fi
0.7

, we further extract features by two stacked “Conv-

BN-ReLU” layers with the same receptive fields and up-sample it by bi-linear interpo-

lation. For fi
1.0

, it goes through a “Conv-BN-ReLU” layers. And these features are then 

fed into an attention generator stacked by three “Conv-BN-ReLU” layers and one con-

volutional layer.  

A three-channel feature map is calculated through these layers and after a softmax 

activation layer, the attention map Ak (k ∈ {0.7, 1.0, 1.2}) corresponding to each scale 

can be obtained and used as respective weights for the final integration. The process is 

formulated as: 

 
Where ζ1 indicates the stacked “Conv-BN-ReLU” layers and the down-sample 

structure, ζ2  is the stacked “Conv-BN-ReLU” layers, ζ3 represents the stacked 

“Conv-BN-ReLU” layers and bi-linear interpolation, ξ denotes the stacked “Conv-

BN-ReLU” layers in the attention generator, θis the parameters of these layers, and [] 

indicates input features are processed after the concatenation operation. 

 

 

 

Fig. 4. Illustration of the hierarchical channel-down unit (HCDU). 



 

3.4 Hierarchical Channel-Down Decoder (HCDD) 

As multi-scales contain consistent compositions and accordant structures, after 

\textbf{FRM} integrates the multi-scale features into the original scale, the spatial and 

semantic relationships are highlighted in the feature representations. Similar to most 

cases, different channels also contain differentiated semantics. Thus, it is essential to 

mine valuable clues contained in different channels. Motivated by [28], we introduce 

Hierarchical Channel-Down Units (HCDUs) to interact and reorganise the critical in-

formation in different channels in a pyramid way, which strengthen features from 

coarse-grained group-wise iteration to fine-grained channel-wise modulation in the de-

coder, as shown in Fig.4. The input fi of HCDUi is the fused feature f6-i from FRM and 

the input fi-1 is the output of HCDUi-1. We first reduce the channel of fi by a stacked 

3x3 “Conv-BN-ReLU” layer, up-sample fi  by the direct bi-linear interpolation and add 

the two features as f: 

where δ represents the stacked “Conv-BN-ReLU" layer. 

To succinctly describe our unit, we define the stacked “Concatenation-Conv-BN-

ReLU-Split” layers as CCBRS. The CCBRS processing the concatenation of the input 

two features is composed of a 3x3 convolutional layer, a batch normalization layer, a 

ReLU layer and a split layer breaking the feature into three or two chunks along the 

channel dimension. First, we expand the channels of f six times by a 1x1 “Conv-BN-

ReLU” layer and split f into six chunks along the channel dimension 

(k1,k2,k3,k4,k5,k6) shown in Fig.4. Then the six features are successively processed in 

pair-wise groups through CCBRS and the unit processes the first and the last feature 

additionally by CCBRS without concatenation. The feature interaction is like a pyra-

mid, as depicted in Fig.4. Every group will generate two or three sub-features, the unit 

concatenates the last sub-feature in every sub-features group as the weighted feature, 

denoted by tensor M. The feature then goes through an average-pooling layer, a ReLU 

layer between two 1*1 convolutional layers and an activation layer to generate the 

weight feature map. Afterwards, the unit concatenates the first sub-feature in every sub-

feature group, denoted by tensor T and multiple the tensor T by the weight feature map. 

The final output feature can be obtained after a 3*3 convolutional layer, a batch nor-

malization layer and a ReLU layer. The whole process can be formulated as: 

where ReLU, N, C represent the activation layer, the normalization layer and the con-

volutional layer, respectively and Ψ denotes the weight generator layer. 

The Hierarchical Channel-down Decoder (HCDD) contains five HCDUs. A single-

channel logits map can be obtained after we integrate the five fused features with 

HCDUs and process the integrated features by a 1x1 convolutional layer. A coarse con-

fidence map $P$ that somewhat highlights the glass-like objects can be then generated 

by a sigmoid function, as shown in Fig.2. 
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Fig. 5. Illustration of the primary prediction guiding module (PPG). 

3.5 Primary Prediction Guiding Module (PPG) 

As it is obvious that the initial prediction is an important reference and contains  valu-

able clues about the rough position of the objects, we want our model to be able to guide 

further predictions with the original results.  Thus, we introduce the primary prediction 

guiding module (PPG) to refine our prediction for detecting the severely confusing 

glass (mirror or glass baffle) and eliminating the uncertain regions in our  segmentation 

map mainly due to vague boundaries, which is similar to the behaviour of human beings 

of checking more to confirm the structure and the edge to help address the second prob-

lem. 

Specifically, as shown in Fig.5. The input feature of the iterative refinement module 

is the output feature of the HCDD. The final generated logits map can be represented 

as: 

 
M represents the output of the module, t is the number of times and x is the output 

of the HCDD, which is unchanged during the refinement process. The function F can 

be described as follow : in the first residual block, the feature x concatenates with the 

logits map predicted in the last refinement process, and goes through the two 3x3 con-

volutional and ReLU layers (the first one has 33 filters and the second one has 32 filters) 

and is added with the original input feature. Output feature is denoted by k1. For the 

other two residual blocks, they are composed of two 3x3 convolutional and ReLU lay-

ers with 32 filters (the processed k1 is denoted by k2) and k2 is added with the original 

input feature k1 (output feature is denoted by k3). After that, we apply the Atrous Spa-

tial Pyramid Pooling module (ASPP) proposed in Deeplab V3 [2] to capture multi-scale 

information containing in k3. The module ASPP consists of four parallel branches that 

include three 3 × 3 convolutions with atrous rates of 6, 12, and 18, respectively and a 1 

× 1 convolution. The 1 × 1 convolution is operated on the image-level feature which is 

achieved by global average pooling. The output features from 4 branches are concate-

nated and fused by another 1 × 1 convolution with 128 filters. The final single-channel 

logits map can be obtained after another 1x1 convolutional layer with 32 filters. This 



 

primary prediction guiding module implements a rather coarse-grained to fine-grained 

process, to preserve the critical semantic clues and further detect the targeted regions. 

3.6 Loss Functions 

The binary cross entropy loss (BCE) which is widely used in image segmentation tasks 

is adopted as a part of our loss function and its mathematical form is: 

     
where gi.j∈{0,1} and pi,j ∈[0,1] denote the ground truth and the predicted value 

at position (i,j), respectively. 

To eliminate the uncertainties of the segmentation map in the iterative refinement 

module and generate high-confidence results, we use an auxiliary loss function of the 

BCE, i.e., the uncertainty-aware loss (UAL) proposed in [28]. In the final probability 

map of the camouflaged object, the pixel value range is [0,1], where 0 means the pixel 

belongs to the background, and 1 means it belongs to the camouflaged object. There-

fore, the closer the predicted value is to 0.5, the more uncertain the determination about 

the property of the pixel is. The UAL maximizes at x = 0.5 and minimizes at x = 0 or x 

= 1 to optimize the ambiguity of the prediction. the UAL is formulated as  

 
So the final loss function is as follows: 

 
where λ ranged from zero to one is the balance coefficient which utilizes an in-

creasing cosine strategy. 

4 Experimental Results 

4.1 Experimental Settings 

Datasets.  We evaluate the proposed method on three widely used glass and mirror 

datasets i.e., Trans10k[37], GSD [16] and PMD [17]. Trans10k is a large-scale trans-

parent object segmentation dataset, consisting of 10,428 images with three categories: 

things, stuff and background. Images are divided into 5,000, 1,000 and 4,428 images 

for training, validation and test, respectively. GSD is a medium-scale glass segmenta-

tion dataset containing 4,098 glass images, covering a diversity of indoor and outdoor 

scenes. All the data are randomly split into a training set with 3,285 images and a test 

set with 813 images. PMD is another large-scale mirror dataset containing 5,096 train-

ing images and 571 test images. It has a variety of real-world images that cover diverse 

scenes and common objects, making it much closer to practical applications. 
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Unlike existing methods, we trained our model with respect to each dataset under 

consistent settings, while the existing glass segmentation models must be trained on 

different settings with respect to varied datasets. 

Evaluation Criteria. We apply the following evaluation metrics to assess the perfor-

mance of our model: mean Intersection over Union (mIoU), Mean Absolute Error 

(mAE), and mean Balance Error Rate (mBER). The mIoU is commonly employed to 

determine the ratio of true positive predictions. The mBER offers a more inclusive as-

sessment of error rates, accounting for sample imbalance and mAE measures the abso-

lute prediction error of the segmentation map. 

Implementation Details. The proposed MGNet is implemented with PyTorch. The en-

coder is initialized with the parameters of pre-trained ResNeXt101 and the remaining 

parts are randomly initialized. And SGD with momentum 0.9 and weight decay 0.0005 

is chosen as the optimizer. The learning rate is initialized to 0.08 and follows a linear 

warmup and linear decay strategy. The entire model is trained for 32 epochs with a 

batch size of 12 in an end-to-end manner on an NVIDIA Tesla V100-SXM2-32GB 

GPU. During training and inference, the input scale is 384 × 384. Random flipping and 

rotating are employed to augment the training data. 

Table 1. Quantitative comparison with 11 SOTA methods on GSD benchmark dataset. 

          

Table 2. Quantitative comparison with 8 SOTA methods on PMD benchmark dataset. 

             



 

Table 3. Quantitative test of our model MGNet on Trans10k benchmark dataset. 

                   

4.2 Comparisons with State-of-the-art 

To demonstrate the effectiveness of the proposed method, we compare it with several 

state-of-the-art glass-like object segmentation models, including mirror detection and 

transparent object detection. All the predictions of baselines are either provided by the 

authors or generated by open source models retrained. 

Quantitative Comparison. Tab.1 summarizes the quantitative results of our proposed 

method against 10 baselines on the challenging glass surface benchmark dataset under 

three evaluation metrics.  Tab.2 presents the quantitative results of our proposed  

method against 8 counterparts on the demanding mirror benchmark dataset under two 

evaluation metrics. We can see that our model has outperformed all the state-of-the-art 

baselines both in IoU and MAE and has comparable performance in BER.  

Qualitative Evaluation. Our method also achieves excellent qualitative results which 

are exhibited in the Figure 1. 

Table 4. Quantitative comparison between the complete model (MGNet) and ablative models on 

two benchmark datasets (GSD and PMD). And B,  F,  H,  P and U denote backbone, FRM, 

HCDD, PPG and UAL, respectively. “+” means addition of the module. The results of our com-

plete model (MGNet) are bolded. 

 

4.3 Ablation Studies 

To validate the effectiveness of the proposed modules in our model, we have also per-

formed the following ablation studies on these benchmarks. 

Effectiveness of FRM. Integrating multiple scales of input pictures has been found 

useful for understanding the complex spatial relationship of the glass-like objects with 

other objects. The FRM also enables our model to adjust attention to different scales 

with respect to each pixel. To confirm its effectiveness, we delete the module from 

MGNet, preserving other modules without any modification, train it under the same 
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settings and test it on two datasets (GSD and PMD), with the results shown in Table 4. 

It can be easily seen that the model has made great progress on all the metrics after 

incorporating the FRM to integrate the critical semantics of different input scales. 

Effectiveness of PPG. Unlike existing iterative refinement strategies, our refinement 

strategy aims to implement a coarse-to-fine segmentation process and capture the struc-

ture and edge of the glass-like objects with the primary prediction, which is also the 

process of eliminating the uncertainty in the segmentation map. Our model first gener-

ates a coarse logits map which slightly highlights the glass-like objects but still pre-

serves the most critical semantic clues and leaves many uncertain regions mainly due 

to the vague boundaries. To confirm its effectiveness of improving the performance of 

our model, we uninstall the primary prediction guiding module (PPG) from MGNet. It 

can be seen in Table 4 that with PPG, the model has obvious performance boost of the 

weighted mIoU, MAE and BER on the two datasets (GSD and PMD). The results 

demonstrate convincingly that our model successfully implement the idea of refinement 

with the primary prediction to get more accurate and complete answers. Then, based on 

this coarse logits map, the segmentation map are refined and becomes more and more 

regionally distinct.  

Table 5. Quantitative comparison of the performance between models with different refining 

times. 

        
Furthermore, Table 5 shows the change of the performance of our model on the GSD 

and PMD dataset with the variation of the refinement times from 0 to 3. And it can be 

observed that although our model is trained on the setting of once refinement, the test 

performance still improves when the refinement runs increase. The results demonstrate 

convincingly that our model successfully implements our idea of guiding to get more 

accurate and complete predictions. 

Uncertainty-aware Loss. In the final probability map of the glass-like objects, the 

pixel value range is [0,1], where 0 means the pixel belongs to the background, and 1 

represents it belongs to the camouflaged object. The closer the predicted value is to 0.5, 

the more uncertain the determination about the property of the pixel is. Also with the 

purpose of enabling our model to eliminate the uncertainty during refining, the UAL 

should maximize at x = 0.5 and minimize at x = 0 or x = 1 to optimize the ambiguity of 

the prediction. To confirm its effectiveness, we delete the UAL from our model, and 

train with the same settings. The results in Table 4 indicate that the performance of our 

model is generally enhanced after adding the UAL to the loss function, justifying its 



 

efficacy. Furthermore, for another transparent object instances dataset Trans10k, Table 

3 demonstrates the quantitative results of our proposed MGNet with all modules in-

stalled, showing that our model can achieve good performance on this dataset. Different 

from model comparison, the evaluation on this dataset is to test the model's capability 

to detect the presence of glass-like objects. Specifically, all ground truth annotations 

are binary, with areas containing glass-like objects marked in white and the background 

marked in black. 

5 Conclusion 

In this paper, we address the challenging problem of glass-like object segmentation 

with the proposed MGNet, which contains three novel modules of the fine-rescaling 

and merging (FRM) for integrating multi-scales features, the hierarchical channel-

down decoder (HCDD) for further mining valuable clues contained in different chan-

nels, and the primary prediction guiding module (PPG) for refining more overall struc-

tures and detailed information. Extensive experiments show that our model can achieve 

superior performance on Trans10k, GSD and PMD datasets with respect to state-of-

the-art counterparts. And the future work will explore more advanced techniques for 

extracting more nuanced and richer features for better segmentation. 
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