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Abstract. To address the low detection accuracy of small insect with blurred fea-

tures and complex backgrounds in agricultural scenarios, we propose an im-

proved YOLOv8 (You Only Look Once version 8) model, SEBF-YOLO, to 

tackle the shortcomings of insufficient feature extraction and fusion in the origi-

nal YOLOv8 for small insect detection. Given that small insects with low pixel 

occupancy in spatial domains often suffer from feature loss during extraction, a 

Space-to-Depth(SPD) module is introduced after each convolutional layer in the 

backbone network to enhance the extraction of fine-grained features for small 

targets. For the challenges of complex backgrounds and feature blurriness—

rooted in the model’s inability to distinguish backgrounds and lack of effective 

multi-scale feature fusion—the C2f_EMA module is added after concatenation 

layers in the neck network, establishing bidirectional cross-scale connections and 

adopting a weighted fusion strategy to strengthen critical features of blurred tar-

gets by integrating multi-level features. Subsequently, the BiFormer module is 

introduced after C2f_EMA to leverage dynamic attention mechanisms for 

weighted focusing on fused feature maps, integrating local details and global con-

textual information to suppress background interference and enhance target dis-

crimination in complex scenes. Experimental results on a self-built dataset 

demonstrate that SEBF-YOLO achieves a mean Average Precision (mAP) of 

77.3% at an Intersection over Union (IoU) of 0.5, a 4.1% improvement over the 

original model, providing an effective solution for detecting small insect targets 

in agricultural environments. 
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1 Introduction 

With the rapid growth of the global population and the intensification of climate 

change, agricultural production is facing unprecedented challenges, and pest control 

has become a key issue in ensuring food security and improving agricultural production 

efficiency. In the complex ecological environment of the fields, it is particularly im-

portant to accurately identify and promptly control pests in farmland. Moreover, pest 

control strategies have been continuously evolving with the development of society and 

the progress of science and technology [1]. In the past, traditional manual visual in-

spection methods relied on the visual inspection of experts [2], which had the problems 

 
 



 

 

of low efficiency and high cost, and it was difficult to meet the needs of image blur 

changes and small target detection in the complex field environment. In recent years, 

deep learning has developed rapidly [3], and an increasing number of scientific and 

technical practitioners have begun to pay attention to the application of computers in 

the agricultural field [4], in order to significantly improve the accuracy and efficiency 

of pest detection, and further achieve early warning and precise control. 

However, field insect detection still faces numerous challenges. Firstly, insect tar-

gets are small in size and occupy a low proportion of pixels. Traditional convolutional 

downsampling is prone to causing feature loss, resulting in an increased rate of missed 

detections. Secondly, under natural field conditions, pest images encounter challenges 

such as similarity among species, different scales, pose variations, lighting effects, and 

occlusion [5]. These factors will further reduce the accuracy of insect detection.  
In order to solve the above problems, a target detection model for field insects 

(SEBF-YOLO) based on the YOLOv8s model is proposed. By introducing the SPD 

module to reconstruct the convolutional layer, the detection accuracy for small targets 

is improved; the BiFormer module is introduced to improve the network structure, en-

hancing the image detection ability in complex environments; the C2f layer is modified 

to C2f_EMA, which not only improves the efficiency of the model but also further 

enhances the detection ability for small targets. 

The main contributions of this study are as follows: 

Proposed Detection Model. A target detection model (SEBF - YOLO) for field insects 

is proposed, which is based on the YOLOv8s model. To address the problems that the 

original model struggles to solve, improvement plans are designed from two aspects: 

feature extraction and feature fusion. 

 Feature extraction optimization. The SPD module is introduced after each convolu-

tional layer to solve the problem of small - target feature loss caused by traditional 

convolutional downsampling, thereby retaining more detailed features of insects. 

Feature fusion enhancement. The C2f layer after the feature concatenation layer in the 

head network is replaced with the C2f_EMA layer to solve the lack of a multi - scale 

fusion mechanism in the original module. The representational ability of blurred insect 

features is enhanced through a cross - space fusion mechanism. The BiFormer module 

is introduced after the EMA module, which dynamically focuses on the insect target 

area. Through local - global feature interaction, it solves the problem that the original 

model fails to effectively suppress the interference of complex background noise. 

Dataset construction. A labeled dataset containing five common types of farmland in-

sects (ants, aphids, corn borers, ladybugs, and spiders) is constructed, covering complex 

backgrounds such as lighting variations and occlusion. 
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Section arrangement. Section 2 elaborates on the research progress of target detection 

models, agricultural insect detection methods, and attention mechanisms. Section 3 ex-

pounds on the original model and the improvement methods for it. Section 4 introduces 

the situation of the self-built dataset and the evaluation indicators. Section 5 presents 

the experimental results and analysis, including the comparison with the original model, 

the comparison with the latest different target detection models, ablation experiments, 

and visualization results. Section 6 summarizes the effectiveness of the model and pro-

poses future research directions. 

2  Related Work 

2.1 Target Detection Models 

In the field of target detection, the mainstream detection models are mainly divided into 

two categories: two-stage models and one-stage models. The R-CNN series [6] belongs 

to the classic two-stage algorithms. It generates candidate boxes through a region pro-

posal network. Although it has high detection accuracy, its computational complexity 

limits its real-time performance. On the other hand, algorithms such as SSD [7] and the 

YOLO series [8] represent the development of one-stage algorithms. They directly pre-

dict the target positions through end-to-end regression, achieving a balance between 

speed and accuracy. The YOLO series has been continuously iterated and optimized, 

but in complex field scenarios, it still faces the problems of missed detections of small 

targets and false detections caused by blurred images. 

2.2 Agricultural Insect Detection 

With the development of intelligent information technology and deep learning, the re-

search on the recognition of crop insects using Convolutional Neural Network (CNN) 

and YOLO algorithm has been continuously deepened [9]. For example, Zheng Guo et 

al. [10] proposed introducing convolutional block attention and feature pyramid into 

the YOLOv7 algorithm to solve the problem that it is difficult to recognize small-sized 

harmful rice insects. Gao Jiajun et al. [11] proposed an image segmentation method 

integrating Swin Transformer to address the problem of difficult recognition and seg-

mentation of multi-larval individual images in complex scenarios. Aiming at the prob-

lems of low detection efficiency and poor reliability of cotton diseases and pests, Zhang 

et al. [12] proposed an algorithm based on the YOLOX network model, which improves 

the detection accuracy of cotton diseases and pests by introducing an efficient attention 

mechanism (ECA) and the hard-Swish activation function. Jiao et al. [13] used a de-

formable residual network to extract the features of pests and adopted a global context-

aware module to obtain the regions of interest of pests, achieving good results. How-

ever, due to certain difficulties in data collection, the limited types of insects studied, 

and factors such as blurred images and low pixel values of small targets when both 

large and small targets are present, for some insects, there are certain challenges in both 

classification and detection [14]. 



 

 

2.3 Attention Mechanism 

The attention mechanism enhances the robustness of the model by focusing on key 

feature regions. Traditional methods such as SE (Squeeze-and-Excitation) [15] and 

ECA (Efficient Channel Attention) [16] optimize the feature response through channel 

weighting, but they lack dynamic adjustment in the spatial dimension. BiFormer pro-

poses a dynamic sparse attention mechanism, which captures long-range dependencies 

through local window calculation. While reducing the computational load, it improves 

the target detection performance in complex backgrounds. In this study, by combining 

the EMA and BiFormer modules, the collaborative optimization of multi-scale and 

sparse attention is achieved for the first time in insect detection. 

3 The YOLOv8 Algorithm and Its Improvements 

3.1 Network Model 

YOLOv8 is a one-stage object detection model. Based on the depth and width of the 

network, it offers five models of different sizes: n, s, m, l, and x. The model size in-

creases sequentially, and so does the detection accuracy [17]. Among these five models, 

YOLOv8s is well-known for its simplicity, high accuracy, and low resource consump-

tion, making it highly suitable as a base model for insect detection tasks. The main 

structure of YOLOv8s consists of an input end (Input), a backbone network (Back-

bone), a neck network (Neck), and a head network (Head) [18]. Compared with previ-

ous versions of YOLO, YOLOv8 introduces a new C2f module, a new loss function, 

and improves the feature fusion architecture to enhance object detection accuracy while 

achieving further lightweight design. 

However, there will still be problems such as insufficient feature extraction ability 

for small-target insects and inefficient multi-scale fusion caused by blurred features. 

Aiming at the above problems, an insect detection algorithm named SEBF-YOLO 

based on YOLOv8s is proposed. The improvement is carried out from two aspects: 

optimization of feature extraction and enhancement of feature fusion. The SEBF-

YOLO network model is shown in Figure 1.  

 

Fig. 1. Structural Diagram of the SEBF-YOLO Model 
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3.2 Feature extraction optimization 

SPD module. In the field of image detection, the YOLO network itself often has low 

detection accuracy when dealing with low - resolution images or small targets. This is 

because during the sampling process, it is easy to lose edge features and reduce the 

texture information of small - target insects. For example, after four downsampling op-

erations in the backbone network of YOLOv8, the resolution of the input image de-

creases from 640×640 to 20×20, and the pixel information of small targets decays sig-

nificantly. We considers using the SPD convolution module to optimize the feature 

extraction ability. The SPD module can retain all information when downsampling the 

feature maps, thus avoiding the problem of fine - grained information loss caused by 

traditional convolution and pooling operations.  

In the improvement of the YOLOv8 model, the SPD module is chosen to be inserted 

after the Conv convolutional layer in sequence. The purpose of this is to use the output 

feature map of the previous convolutional layer as the input of the SPD layer. After 

transformation, it is then convolved through the subsequent Conv layer, and the number 

of channels in the output feature map remains unchanged. This insertion method can 

reduce the spatial dimension without losing information. Compared with traditional 

convolution operations, it performs better in retaining information within the channels. 

Therefore, it can significantly improve the model's ability to extract features of small 

targets. 

The SPD module is composed of a space-to-depth layer and a non-strided convolu-

tional layer [19]. During the downsampling process of the feature map, the SPD layer 

rescales the original image and retains all the information in the channel dimension, 

thereby reducing the loss of detailed information and enhancing the ability to learn less 

prominent features. 

Specifically, for a given feature map X, downsampling is carried out according to 

the scaling factor. For example, when the scaling factor is 2, 4 sub-feature maps will be 

generated, and the shape of each sub-map is (S/2,S/2,C), and the size of X is reduced 

by a factor of two. Then, these 4 sub-feature maps are concatenated along the channel 

dimension to form a new intermediate feature map (S/2,S/2,4C). After the SPD layer 

completes the feature transformation, through a non-strided convolutional layer 

with D filters (where D is less than 4C), the intermediate feature map is transformed 

into (S/2,S/2,D). Among them, for the input feature map
S S CX   , when the scaling 

factor is 2, the space-to-depth transformation formula is as shown in Formula 1: 

 
,

/ 2 /2 4

0,0 1,0 0,1 1,1

[ :: , :: ]

( , , , )

i j

S S C

f X i scale j scale

X concat f f f f R  

=

 = 
  (1) 

As shown in Formula 1, the original feature map is sampled with a stride of S (scale) 

to generate four sub-feature maps. Then, all spatial information is retained through di-

mensional concatenation, avoiding the loss of information during downsampling, as 

shown in part (a) of Figure 2. 

And the formula of the subsequent non-strided convolutional layer is as shown in 

Formula 2: 



 

 

 
/2 /2 , 4S S D

Y W X b

Y R D C 

=  +

 
  (2) 

As shown in Formula 2, through a common convolution with a stride of 1, the number 

of channels is compressed from 4C to D, reducing redundant features while retaining 

key information. The weight matrix W dynamically adjusts the channel weights during 

the training process, suppressing noise and enhancing features related to the target. This 

operation achieves efficient feature recombination and dimensionality reduction while 

maintaining the spatial resolution. 

 

Fig. 2. The Downsampling Process of the SPD Module 

3.3 Feature fusion enhancement 

C2f_EMA module. In the original C2f layer, the fixed weight allocation struggles to 

adapt to the multi - scale characteristics of insects. Meanwhile, it is difficult to solve 

the problem of low detection accuracy caused by feature blurring. To address the above 

issues, C2f_EMA combined with efficient multi - scale attention is introduced after the 

splicing layer in the head network. By embedding the efficient multi - scale attention 

into the cross - stage connection, dynamic weight allocation and cross - spatial feature 

interaction are achieved. The structural diagram of the C2f_EMA module is shown in 

Figure 3.  
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Fig. 3. The Structural Diagram of EMA 

The EMA [20] module avoids more sequential processing through parallel sub - struc-

tures, reducing the network depth while retaining information in each channel and low-

ering the computational cost.  

In addition, the module also employs global average pooling to encode the global 

information output from each branch and performs a linear transformation using the 

Softmax function. Then, it uses matrix dot - product operations to multiply the results 

of parallel processing, generating a spatial attention map. Finally, the two sets of output 

features are mapped and added together, and the output with the same size as the input 

is obtained through the Sigmoid function and multiplication operations. 

During the operation process of EMA: 
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Formula 3 represents the features after pooling in the horizontal and vertical directions, 

with dimensions of [B, C, H] and [B, C, W] respectively. Position - sensitive channel 

feature vectors are generated through one - dimensional global average pooling along 

the width (W) and height (H) directions. Here, B represents the batch size, and C rep-

resents the number of channels in the feature map. 

 1 1( ( ( , )))h w

channelA Conv Concat z z =   (4) 

Formula 4 is for the generation of channel attention, which is achieved through convo-

lution and aggregation after horizontal and vertical pooling. Among them, channelA  is 

the channel attention weight, with the dimension of [B, C, H, W].   represents the 



 

 

Sigmoid activation function, which normalizes the weight to the range of [0, 1]. 
channelA  

generates the channel attention weight through 1×1 convolution and the Sigmoid acti-

vation, which is used to dynamically enhance the key channels. 

 
3 3 3 3( )iF Conv X =   (5) 

Formula 5 is the Conv convolution of the right branch in Figure 3 (the 3×3 branch). It 

extracts local multi-scale features through 3×3 depthwise separable convolution, ex-

panding the receptive field to capture the details of small targets. 
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Formula 6 performs global average pooling on the channel attention and multi-scale 

features to generate a global context vector. 
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Formula 7 generates a cross - spatial attention map through bidirectional matrix multi-

plication and Softmax normalization to dynamically fuse channel and spatial infor-

mation. •  represents transpose, and  represents matrix multiplication. 

The EMA module achieves information aggregation across multiple spatial dimen-

sions through a cross-space learning mechanism. At the same time, it encodes cross-

channel correlations and preserves the details of the spatial structure. This design dy-

namically assigns feature weights based on the input content. By incurring lightweight 

computational costs, it enhances the model's ability to focus on key regions, thereby 

significantly improving the positioning accuracy and generalization performance for 

small-sized insect targets. It demonstrates unique advantages in fine-grained detection 

tasks under complex backgrounds.  

BiFormer module. In reality, photographing insects is often restricted by equipment 

and weather conditions. The rapid movement of insects and lighting issues can lead to 

the loss of texture details. At the same time, noise such as complex backgrounds may 

be misdetected as small targets. To address the above problems, the BiFormer module 

is introduced after the EMA module. After fusing multi-scale features, it suppresses 

background noise through dynamically focusing on regions. 

The Bi-Level Routing Attention (BRA) [21] of the BiFormer module can identify 

the contextual features in images through dynamic sparse computation and region-level 

semantic filtering, thus improving the detection performance of small targets. The 

structural diagram of the BiFormer is shown in Figure 4(b), which is composed of an 
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overlapping patch module and N connected BiFormer Block modules. The structural 

diagram of the BiFormer Block module is shown in Figure 4(a), which is composed of 

depthwise separable convolution, layer normalization, the bi-level routing attention 

mechanism, and the multi-layer perception mechanism through residual operations. 

 

Fig. 4. Structural Diagram of BiFormer Block and BiFormer 

The BiFormer Block module can more effectively enhance the perception ability in 

complex backgrounds and blurred situations of insects through the BRA bi-level rout-

ing attention mechanism. The principle is shown in Figure 5. The experimental process 

mainly includes the following three steps: 

Region Partitioning and Projection. Given the input feature map 
H W CX  R , the im-

age is first divided into S×S regions. For example, the yellow shaded image blocks in 

Figure 5 are the divided region blocks, and each region occupies 
2

HW

S  spatial positions 

(Tokens). 

 
2

2

Patchify( )

HW
S C

SX X
 

= R•
  (8) 

The query vector Q, key K, and value tensor V are obtained through linear projection. 

 , ,q k vQ X W K X W V X W= = =晻 ?
  (9) 



 

 

Among them, , ,q k vW W W represents the projection weights of the query, key, and 

value respectively. 

Regional-level Routing. By constructing a directed graph, we can find out the regions 

that each given region should participate in. Calculate the regional relevance matrix and 

perform Top-k screening. 

 
( )

( )

A Q K

I TopkInex A

=

=

晻 ?

晻

•

  (10) 

Among them, ,Q K
晻

 is the average value of the regional query and key vectors. A•  

is the adjacency matrix of the correlations between regions obtained from the average 

value. 
2S kI N

•

 represents the index matrix generated by the top k relevant regions 

that each region focuses on. 

Token-level Attention.  

 ( , ), ( , )g gK gather K I V gather V I= =晻
  (11) 

 
( )

( , , ) max( )
g

g g gQ K
Attention Q K V soft V

C
=

•

  (12) 

 ( , , ) ( , , ) ( )g gBRA Q K V Attention Q K V DWConv V= +   (13) 

The Gather operation in Formula 11 is to aggregate the key and value vectors of the 

selected k regional blocks. Formula 12 calculates the attention weights between spatial 

positions in the selected regions to focus on details (such as insect limbs). In Formula 

13, DWconv represents depthwise separable convolution. Depthwise separable convo-

lution compensates for the local feature information that might be lost in sparse atten-

tion. Finally, the attention mechanism and depthwise separable convolution are added 

together to obtain the final bi - level routing attention. 

 

Fig. 5. Structural Diagram of the BRA Module 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

4 Experimental Data and Settings 

4.1 Experimental Environment and Data Sources 

This study is based on the Windows 10 system, which is equipped with an NVIDIA 

GeForce RTX 4060 Ti GPU and an Intel i5 - 12490F CPU. It is implemented using the 

Python 3.9 programming language on the CUDA 11.3 and PyTorch 1.10.0 deep learn-

ing frameworks. The size of the input images is 640×640. The number of training iter-

ations is 100, the initial learning rate is 0.01, the SGD algorithm is used as the optimizer, 

the weight decay is set to 0.0005, the momentum factor is 0.937, and the Batch Size is 

16. 

In the experiment, an insect dataset was used, which combined the data collected 

through on - site shooting at the base of the Sichuan Academy of Agricultural Sciences 

and publicly available datasets on the Internet. Image data was collected at different 

times and in different environments. After data augmentation, there were approximately 

13,200 images, including those of ants, ladybugs, corn borers, aphids, and spiders. The 

dataset was randomly divided into a training set, a validation set, and a test set at a ratio 

of 8:1:1. 

 

Fig. 6. Dataset pictures. Among them, a is an ant, b is a ladybug, c is a corn borer, d is an aphid, 

and e is a spider. Here, relatively clear pictures are selected to make the dataset pictures visible. 

4.2 Evaluation Indicators 

In this study, the following indicators are used to evaluate the performance of the 

model: Precision, Recall, Average Precision (AP), and Mean Average Precision (mAP). 

The calculation methods of these indicators are as follows: 
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In Formula 14, TP represents the number of positive samples that are correctly pre-

dicted, and FP represents the number of negative samples that are incorrectly predicted 

as positive. In Formula 15, FN represents the number of positive samples that are in-

correctly predicted as negative. Formula 16 represents the average precision at different 

recall levels. In Formula 17, C represents the total number of categories, and mAP is 

the average of the average precisions of all categories. 

When calculating mAP, different IoU thresholds are taken into account, including 

mAP0.5 and mAP0.5:0.95. mAP0.5 is the mAP calculated at an IoU threshold of 0.5, while 

mAP0.5:0.95 is the average of the mAP values calculated at IoU thresholds ranging from 

0.5 to 0.95. These metrics offer an evaluation of the model's performance at different 

IoU thresholds. 

5  Experimental Results and Analysis 

5.1 Comparison between the model before and after improvement 

The improved model was compared with the original YOLOv8s model in terms of pre-

cision, recall, mAP0.5, and mAP0.5:0.95. According to the data in Table 1, the SEBF - 

YOLO model outperforms YOLOv8s in multiple aspects: the precision is increased by 

7%, the recall is improved by 2.4%, and mAP0.5 is significantly increased by 4.1%. 

There is also a slight improvement in mAP0.5:0.95 compared with the original model. In 

conclusion, the SEBF - YOLO model has better performance. 

Table 1. Comparison of Performance Before and After Improvement 

 

At the same time, the detections of various types of insects by the models before and 

after the improvement were also compared, as shown in Figure 7. 
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Fig. 7. Bar chart of the comparison of various categories before and after the improvement 

As can be seen from the table and the comparison chart, compared with the original 

model, the SEBF-YOLO model has improved in all aspects. In the detection of various 

types of insects, both ants and aphids are densely populated and small targets. Mean-

while, SPDconv combines the dynamic attention of BiFormer while avoiding the loss 

of details (such as the details of antennae) in traditional downsampling, suppressing the 

complex background noise, and directly improving the performance of object detection. 

For the corn borer, ladybug, and spider, they are not overly dense in space and often 

exist as single targets in the image. However, there may be problems of image blurri-

ness. The EMA fuses multi-scale features to enhance the robustness. Combined with 

the retention of details and the suppression of complex backgrounds, the positioning 

accuracy of the targets has been improved, which verifies the effectiveness of the model 

improvement.   

5.2 Comparison Experiment of Different Models 

To further verify the performance of the SEBF-YOLO model, it was compared with 

mainstream object detection models such as Faster-Rcnn, YOLOv3, YOLOv5, 

YOLOv8, YOLOv11, LSKnet, and Hyper-YOLO models. The detection results of each 

model are shown in Table 2. The precision and recall rate of the SEBF-YOLO model 

are significantly higher than those of other models. Compared with the Faster-Rcnn, 

YOLOv3, YOLOv5, YOLOv8, YOLOv11, LSKnet, and Hyper-YOLO models, the 

mAP0.5 of the SEBF-YOLO model has increased by 12.1, 5.1, 2.8, 4.1, 1.7, 2.8, and 4.1 

percentage points respectively. And the mAP0.5:0.95 also performs better than other mod-

els. Overall, it performs significantly better than other models. 



 

 

Table 2. Comparison Results of Different Models 

 

Through research and comparison with other models, it can be found that as a two-stage 

model, Faster-Rcnn filters out high-frequency details through its region proposal mech-

anism, resulting in weak feature capture ability for small targets. It is unable to effec-

tively capture targets such as aphids and ants. For YOLOv3 and YOLOv5, the tradi-

tional downsampling method leads to the loss of small target features, and the neck 

network only supports the feature fusion of adjacent layers, which is unable to compen-

sate for the blurred and broken features, so the results are not ideal. YOLOv8 will not 

be discussed for now, as it will be analyzed in detail in the subsequent ablation experi-

ments. Regarding YOLOv11, although it is optimized through spatial-channel decou-

pling, it lacks a dynamic attention mechanism, resulting in a high false positive rate in 

complex background situations. As for the LSKnet network designed for small targets, 

it relies more on large kernel convolutions to enhance dependencies and uses a large 

receptive field to associate surrounding information for detecting small targets. How-

ever, it is more suitable for general small target detection, and the similarity between 

insects and the environment leads to an increased false positive rate. The Hyper-YOLO 

model introduces hypergraph computing to model high-order feature relationships, but 

it has poor adaptability to blurred targets. In contrast, the SEBF-YOLO model takes 

into account the problems of small targets and blurred targets in complex backgrounds 

and achieves better results.   

5.3 Ablation Experiment 

Based on the YOLOv8s as the baseline model, the network structure has been im-

proved. To verify the effectiveness of each improved module, an ablation experiment 

was conducted and compared with the original YOLOv8s model. The experimental re-

sults are shown in Table 3. 
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Table 3. Results of the Ablation Experiment 

 

According to Table 3, different modules have distinct impacts on the model's perfor-

mance. Incorporating the SPDconv module into the backbone network increases the 

model's precision by 6.7 percentage points, while decreasing the recall rate by 2.6 per-

centage points, mAP0.5 by 0.2 percentage points, and mAP0.5:0.95 by 0.1 percentage 

points. SPDconv retains more details through spatial-to-depth transformation, reducing 

small object misdetections and enhancing precision. However, the added background 

noise makes the model more conservative in positioning, raising the missed detection 

rate and lowering recall and average precision. When using BiFormer alone, the mod-

el's precision rises by 4.3 percentage points, the recall rate decreases by 3 percentage 

points, mAP0.5 increases by 0.4 percentage points, and mAP0.5:0.95 increases by 0.3 per-

centage points. By dynamically selecting the focused region in complex backgrounds, 

BiFormer suppresses interference and improves precision. But its limited target screen-

ing in blurry images causes missed detections and a lower recall rate. Still, the attention 

mechanism enhances positioning, thus improving mAP0.5. When introducing EMA 

alone, precision decreases by 0.5 percentage points, the recall rate increases by 2.3 per-

centage points, mAP0.5 increases by 0.5 percentage points, and mAP0.5:0.95 decreases by 

0.9 percentage points. Cross-scale feature fusion by EMA addresses insufficient feature 

extraction in blurry images, enhancing small target detection, reducing missed detec-

tions, and increasing recall and mAP0.5. Yet, its weak ability to suppress false detections 

in complex backgrounds leads to a slight precision drop. When both SPDconv and 

EMA are introduced simultaneously, precision increases by 4.7 percentage points, the 

recall rate increases by 1.1 percentage points, mAP0.5 increases by 0.9 percentage 

points, and mAP0.5:0.95 decreases by 1.7 percentage points. They complement each other 

in detail retention and multi-scale feature fusion. However, the retained details with 

background noise result in insufficient robustness in complex situations, reducing po-

sitioning ability at high thresholds and decreasing mAP0.5:0.95. When BiFormer is added 

on the basis of using both SPDconv and EMA, compared to the original model, preci-

sion increases by 7 percentage points, the recall rate increases by 2.4 percentage points, 

mAP0.5 increases by 4.1 percentage points, and mAP0.5:0.95 increases by 0.8 percentage 

points. BiFormer suppresses the background noise from SPDconv, and EMA compen-

sates for blurry targets BiFormer might miss. The three modules complement each other 

well, outperforming the original model in all indicators.  



 

 

5.4 Visualization Results and Analysis 

In order to verify the performance of the improved YOLOv8s model, both the original 

model and the improved model were tested on the test dataset. Some of the detection 

results are shown in Figure 7. The experiments indicate that when the YOLOv8s model 

identifies insect images in complex backgrounds, there are cases of false detections. 

There are also issues of missed detections when recognizing some insects. This is be-

cause the backbone network of YOLOv8s restricts its global context awareness ability, 

and the downsampling process of traditional strided convolutions leads to the loss of 

fine-grained features. In situations where the images are blurry, the proportion of target 

pixels is low, and the background is complex, missed detections and false detections 

often occur. 

The improved YOLOv8 model has introduced the SPDconv convolution and the Bi-

Former bidirectional Transformer module. While addressing the issue of detail loss 

during convolutional downsampling, it suppresses the interference from complex back-

grounds. Additionally, the EMA module is embedded, which can fuse feature infor-

mation across multiple scales and solve the problem of blurry images. The detection 

results have verified the effectiveness of the SEBF-YOLO model. 

 

Fig. 8. Detection result graph (After comparing with the original model, it is found that the false 

positives and false negatives caused by the small target problem and blurring problem in complex 

backgrounds, which were difficult to solve in the original model, can be better detected in the 

existing model.) 

6 Conclusion 

Aiming at the problems of low detection accuracy, false detection, and missed detection 

caused by blurred insect images and low pixel proportion in complex backgrounds, an 

improved insect detection method based on YOLOv8s is proposed. Through research 

and experiments on field insect images, the following conclusions are drawn: By intro-

ducing the SPD, BiFormer and EMA during the feature fusion process after feature 

extraction improvement in the YOLOv8 model, the model's ability to focus on and ex-

tract important features is enhanced. While solving the problems, the detection accu-

racy of the model is improved.  
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To verify the advantages of the improved SEB - YOLO model, comparative experi-

ments are conducted between the improved model, the original YOLOv8s model, and 

recent object detection models such as YOLOv5, YOLOv11, LSKnet, and Hyper-

YOLO. The results show that the improved YOLOv8 model performs excellently in 

terms of detection accuracy, recall rate, and average precision at different IoU thresh-

olds.  

Although the improved model has made progress in the detection of small objects, 

there are still issues of missed detections for extremely dense insect images. Future 

work will focus on optimizing multi-object detection for dense insect images to meet 

the practical needs of insect detection. 
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