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Abstract. Encrypted attacks represented by ransomware and APT are becoming 

increasingly complex, posing a huge threat to cyberspace. As a result, encrypted 

attack traffic detection is imperative. Traditional encrypted attack traffic detec-

tion methods face challenges which include feature extraction limitations, dataset 

imbalance, and poor generalization capabilities. To address these issues, this pa-

per proposes EN-Bert, a Transformer-based model with both pre-training and 

fine-tuning phases. In the pre-training stage, the encrypted traffic dataset is first 

processed using Token serialization for traffic shunting, segmentation, and fea-

ture extraction. Then the model is pre-trained on two tasks: Masked Flow Model 

(MFM) and Same-origin Flow Prediction (SFP) to uncover the contextual rela-

tionships between traffic flows. In the fine-tuning stage, this paper addresses the 

imbalance issues through data enhancement. From the model’s perspective, 

weighted cross-entropy loss and K-L divergence are designed in this phase to 

optimize the model’s performance and enhance its generalization ability. In the 

experimental section, with the CIC-IDS-2017 dataset and a self-collected en-

crypted DOS attack traffic dataset, comparative and ablation experiments demon-

strate that EN-Bert model proficiently addresses challenges related to dataset im-

balance and poor model generalization, proving to be an effective and reliable 

approach for encrypted attack traffic detection. 

Keywords: encrypted attack traffic detection, EN-Bert, pre-training phase, data 

enhancement, weighted cross-entropy, K-L divergence. 

1 Introduction 

With the rapid development of Internet technology, network communication security 

has become a major concern for numerous users. The phenomenon of covert attacks 

conducted through various encrypted channels is becoming increasingly severe, with 

encrypted attacks frequently targeting individual users, enterprises, and even industrial 

control systems (ICS). According to the Microsoft Digital Defense Report 2024 [1], an 

average of 600 million cyberattacks are launched against Windows customers daily, 

with DDoS attacks peaking at 4,500 occurrences per day in June 2024. As encrypted 

attack traffic poses growing challenges to traditional security defenses, research on its 

detection has become an urgent necessity. 



Before the widespread use of encrypted communication, Deep Packet Inspection 

(DPI) [2] was once the primary approach for analyzing packet content. However, with 

the extensive deployment of encryption protocols such as SSL and TLS, DPI has suf-

fered a significant decline in detection capability. Meanwhile, encrypted attack traffic 

exhibits new characteristics, including difficult data parsing, complex traffic patterns, 

and highly covert attack behaviors, making traditional rule-based detection methods 

ineffective. In recent years, the application of deep learning and self-supervised learn-

ing in encrypted traffic detection has gained increasing attention. For example, the in-

troduction of Transformer architectures has enhanced contextual understanding in traf-

fic classification [3], while Bert-based traffic detection models have demonstrated the 

effectiveness of Natural Language Processing (NLP) techniques in encrypted traffic 

analysis [4]. 

Against this backdrop, we propose a model named EN-Bert tailored for encrypted 

attack traffic detection. By integrating a self-supervised pre-training phase with a su-

pervised fine-tuning phase, it enhances the model’s capability to detect unknown at-

tacks. Instead of extracting traditional metadata, the model utilizes Token serialization 

to process encrypted traffic and employs a Bigram tokenization approach to enhance 

the understanding of encrypted payloads. Additionally, techniques such as data en-

hancement, weighted cross-entropy, and Kullback-Leibler (KL) divergence loss are in-

troduced to address the dataset imbalance problem and optimize loss computation, 

thereby mitigating accuracy degradation and enhancing the model’s generalization abil-

ity. 

The main contributions of this paper are summarized as follows: (1) We propose 

an integrated framework combining pre-training and fine-tuning, where the model 

learns generic traffic representations in the pre-training phase and achieves accurate 

encrypted attack traffic detection for downstream task in the fine-tuning phase. (2) En-

crypted traffic token serialization is used to process features, replacing the method of 

extracting statistical features from network metadata. It enhances model’s understand-

ing of encrypted payloads. (3) We introduce an innovative data enhancement module 

that effectively tackles the challenge of dataset imbalance through flow concatenation. 

(4) In the fine-tuning phase, we design weighted cross-entropy and K-L divergence loss 

functions to mitigate the performance difference caused by overfitting. It helps the 

model maintain accurate prediction distribution and decisively addresses issues related 

to poor generalization ability. (5) EN-Bert model demonstrates strong overall perfor-

mance, achieving accuracy improvements of 30.2%, 0.5%, and 1.7% compared to other 

intelligent detection models (RNN, MLP, and KNN) on our self-collected encrypted 

DOS attack traffic dataset. 

2 EN-Bert Overall Structure 

The encrypted attack traffic detection framework based on EN-Bert model consists of 

two stages. The first stage is the pre-training phase, which includes traffic Token seri-

alization and model pre-training. This phase aims to learn general traffic representations 

from large-scale encrypted traffic while capturing contextual relationships between 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

different data flows and identifying fundamental attack patterns. The second stage is 

the fine-tuning phase, which involves data enhancement and model fine-tuning. By re-

fining the pre-trained model, this phase transfers traffic representation, association, and 

recognition capabilities to downstream detection task, enabling accurate detection of 

encrypted traffic. The overall structure is shown in Fig. 1. 
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Fig. 1. EN-Bert overall framework 

2.1 Pre-training phase 

The first component of EN-Bert overall structure is the pre-training phase, which 

strengthens the model’s ability to understand encrypted traffic and differentiate traffic 

patterns linked to various attack types. In this phase, large-scale encrypted traffic data 

are transformed through tokenization, converted into vectors and subsequently fed into 

the Bert model. The model is then pre-trained on two tasks: Masked Flow Model 

(MFM) and Same-Origin Flow Prediction (SFP). By learning from extensive encrypted 

attack traffic, the model captures contextual relationships between different data flows, 

laying a foundation for precise detection in the fine-tuning phase. 

Encrypted traffic Token serialization. Since the Bert model cannot directly process 

network data in PCAP format, a tokenization approach is used to segment encrypted 

traffic. It converts encrypted traffic into vectors and divides them into sequences. The 

framework is illustrated in Fig. 2. 
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Fig. 2. Encrypted traffic Token serialization 

Firstly, load the flow and return the list of packets it contains. Each packet is then con-

verted to hexadecimal format. Every four hexadecimal digits are grouped together to 

form a Token. Then Special Tokens are inserted into the sequence. The [CLS] tokens 

are placed at the beginning of each flow. If the concatenated Tokens are shorter than 

the required minimum length, the [PAD] tokens will be added at the end. As for the 

[SEP] tokens, they are used to separate two subsequences. 

As the Bert model processes only numeric data and cannot directly interpret text 

or byte streams, so converting each character Token into a numeric representation is 

necessary. Each Token is encoded, forming a sequence of numeric Tokens with values 



ranging from 0 to 65535, based on the vocabulary size (|V| = 65536). For example, 

“451d” is encoded as 1234. Finally based on the [SEP] token, every sequence gonna be 

split into two subsequences, sub-Flow A and sub-Flow B, in preparation for the Same-

Origin Flow Prediction task in the pre-training phase. The module’s final output is nu-

meric sequences of Tokens, such as [1234, 6239, 9012, 1001]. 

Model pre-training. Different types of encrypted traffic exhibit distinct characteristics. 

Exploring the contextual relationships between Tokens within each flow, as well as the 

interactions between different flows, helps identify distinct attack types. Inspired by 

natural language features, the Bert model adopts Masked Language Model (MLM) and 

Next Sentence Prediction (NSP) as pretraining tasks [5]. In the context of this paper, 

considering the flow features of Tokens sequences, the pretraining tasks are adjusted to 

Masked Flow Model (MFM) and Same-origin Flow Prediction (SFP), which can en-

hance the model’s understanding of various Tokens sequences. For example, in the case 

of a DDoS encrypted attack, the traffic typically presents a sharp increase within a short 

period, displaying a “continuous” fixed pattern. At this time the Masked Flow Model 

can help identify logical relationships between flows, while the Same-origin Flow Pre-

diction model strengthens the understanding of the attack’s internal logic. The overall 

process is illustrated in Fig. 3. 
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Fig. 3. The pre-training phase of the model 

Token vectorization. Before model pre-training, all Tokens sequences need to be con-

verted into fixed-dimensional vectors. This process involves three levels of embedding: 

Token Embedding, Position Embedding, and Segment Embedding. 

Token Embedding utilizes both word embedding and character embedding to con-

vert each Token into a 768-dimensional vector representation. This forms the founda-

tion of EN-Bert model pretraining, enabling the model to better understand each fun-

damental unit. Position Embedding provides the model with the position information 

of each Token in the flow, resolving the limitation of the transformer architecture, 

which does not naturally account for the order of sequences. By assigning a position-

related vector to each Token, Position Embedding resolves this problem. Segment Em-

bedding is primarily designed for the Same-origin Flow Prediction task. Each Token is 

assigned a different embedding vector depending on the subsequence it belongs to. 
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However, based on the binary classification of subsequences, the vector values can only 

exist in two possible forms. Each embedding level generates a 768-dimensional fixed-

length vector for the Token. The final model input is the sum of these vectors. 
These three Token embedding levels collectively process fundamental Token data, 

Token position information and sub-sequence classification, providing strong support 

for subsequent model training. 

Masked Flow Model pre-training. Before the Masked Flow Model task, Token se-

quences have been processed by selecting 15% of all Tokens as masking targets. 

Among them, 80% are replaced with [MASK], 10% are substituted with random To-

kens and the remaining 10% keep unchanged. During the pre-training process, the 

model predicts the masked positions and determines which word in the vocabulary has 

been replaced by [MASK]. This enhances model’s understanding of encrypted features 

within each flow. The loss function for this task is defined as follows: 

 ( )( )MFM

1

log P | ;
n

i i

i

L MASK token X 
=

= − =  (1) 

where  represents the parameters of EN-Bert model; X denotes the input Token se-

quence after three levels of embedding; 
itoken is the true value at the 

thi  masked posi-

tion; 
iMASK  is the predicted value at the 

thi  masked position.  

Same-origin Flow Prediction pre-training. In the Same-origin Flow Prediction task, the 

model treats each flow as a combination of two subsequences, sub-Flow A and sub-

Flow B. To help the model better learn relationships between subsequences, the dataset 

is prepared before training, consisting of two categories with an equal 50% distribution. 

Category 1 represents cases where sub-Flow A and sub-Flow B originate from the same 

flow, labeled as SameOrigin. Category 2 represents cases where sub-Flow A and sub-

Flow B come from different flows, labeled as NotSameOrigin. During pre-training pro-

cess, the model is trained and evaluated on this dataset to determine whether the subse-

quences belong to the same flow. This enhances the model’s understanding of internal 

data relationships within flows. The loss function for this task is given below: 

 ( )( )SFP

1

log P | ;
k

j j

j

L SAME origin Y 
=

= − =  (2) 

where  represents the parameters of EN-Bert model; Y denotes the dataset sampled 

before training; jorigin refers to the true label of the 
thj test sample; jSAME represents 

the predicted label of the 
thj test sample.

 
Since the Masked Flow Model task involves a larger number of predictions, it gen-

erates a higher loss. On the other hand, the Same-Origin Flow Prediction task is a binary 

classification problem with fewer predictions, resulting in a lower loss. So different 

weights must be assigned to the losses of these two tasks. In this paper, the loss of the 

MFM task is scaled down by a factor of 10 before being summed with the loss of the 

SFP task to compute the final loss. This adjustment prevents poor training results 

caused by loss imbalance. The overall loss function is defined as follows: 



 
MFM SFPLoss L L= +  (3) 

where 
MFML represents the loss of the Masked Flow Model pre-training task; 

SFPL rep-

resents the loss of the Same-origin Flow Prediction pre-training task. 

Once the loss function is calculated, the model undergoes backpropagation. Dur-

ing this process, the model computes the gradients for each layer’s parameters based 

on the loss. After the gradients are calculated, the optimizer updates the parameters 

according to the predefined learning rate. Steps outlined above make up a single train-

ing iteration. After each round of training, the model evaluates its performance by cal-

culating accuracy on the validation dataset. This helps assess model’s effectiveness. 

2.2  Fine-tuning phase 

The second phase is the fine-tuning stage, aimed at achieving precise detection of en-

crypted attack traffic. Built upon the pre-training phase, it refines both the input dataset 

and the training process through data enhancement and loss optimization, enhancing 

the model’s performance on the target task. 

Data enhancement. Within the proposed framework, the processed Token sequences 

extracted from collected PCAP packets serve as the model’s input. Analysis of these 

sequences reveals a significant class imbalance in the dataset, resulting from differences 

in attack characteristics and traffic data collection. This imbalance affects the model’s 

accuracy in recognizing both minority-class samples and overall samples while also 

limiting its generalization ability beyond the training set [6]. 

Considering the unique characteristics of traffic data, we propose a data enhance-

ment method based on data concatenation, specifically designed for processing input 

Token sequences. For minority-class data, half of an adjacent data flow is concatenated 

to form a new data flow, which is then merged with the original dataset to create a 

balanced dataset, as illustrated in Fig. 4. This approach maintains the semantic relation-

ships between adjacent Tokens and reduces the bias introduced by traditional slicing. It 

also helps prevent potential issues in later tokenization. 

Original dataset
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Fig. 4. Data enhancement module 

After this section, the class distribution is essentially balanced and the dataset is reor-

ganized into two lists: labels and data, enabling easier processing in the next stages. 

The dataset is then split into three subsets following an 8:1:1 ratio: fine-tuning training 
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set, test set and validation set. The fine-tuning training set is used to train the model by 

learning the mapping between input data (text_a) and output labels (label). The test set 

assesses the final model performance including its generalization ability, while the val-

idation set is utilized for hyperparameter tuning and performance evaluation. 

Model fine-tuning. The model structure in the fine-tuning phase is essentially the same 

as in the pre-training phase, with the main difference being the change in the task ob-

jectives between two stages. The pre-training phase focuses on the Masked Flow Model 

and Same-origin Flow Prediction tasks, whereas the fine-tuning phase targets precise 

detection of encrypted attack traffic with model results applied in practical scenarios. 

In this module, the model must not only achieve the downstream task but also maximize 

detection accuracy and enhance the model’s generalization ability. However, issues 

such as dataset imbalance and poor generalization often arise in practice. We overcome 

these issues by proposing a method that combines weighted cross-entropy with K-L 

divergence to replace the negative log-likelihood loss, guiding the model’s fine-tuning 

process to overcome dataset imbalance and improve generalization. 

Weighted cross-entropy. It’s an improvement over the traditional cross-entropy loss 

function, adjusting the importance of different classes by assigning weights to each 

class. When using the weighted cross-entropy loss function, a weight can be assigned 

to each class, typically represented as a 1D tensor. During the calculation of the loss 

function, the loss for each sample is adjusted according to the weight of its respective 

class, thus achieving weighted handling of different classes. Aurelio et al. [7] applied a 

similar approach when addressing the concern of imbalanced datasets in neural net-

works. The specific formula for calculating the weighted cross-entropy loss in this study 

is as follows: 

 ( )WCE

1

1
log

N

i i

i

L w p
N =

= −   (4) 

where ( )log ip represents the initial loss of each sample; 
iw is the weight assigned to 

the category of each sample; N denotes the total number of samples.  

We use weighted cross-entropy to replace the negative log-likelihood loss and 

combines soft labels for loss calculation to alleviate the majority-class overfitting prob-

lem caused by dataset imbalance. The weighted method allows the model to prioritize 

features from minority-class data during training, reducing overfitting on majority clas-

ses. It also helps avoid large accuracy discrepancies between classes and improves over-

all model performance. Huang et al. [8] also applied the concept of weighted cross-

entropy in practical applications, specially in diabetic retinopathy detection. 

K-L divergence. K-L divergence is commonly used to measure the distance between 

two probability distribution functions. In the EN-Bert model training, K-L divergence 

is applied to quantify the relationship between the model’s soft target distribution (the 

probability distribution of target classes) and the model’s predicted probabilities distri-

bution. By detecting the change in K-L divergence, the model’s predicted distribution 

Q(X) is guided to approach the tangible distribution P(X), thereby improving the accu-

racy of malicious attack detection. Kim et al. [9] explored the differences between K-L 

divergence and MSE loss in knowledge distillation and sequential distillation, showing 

that K-L divergence contributes to improving model performance in both areas. Specif-

ically in sequential distillation, using K-L divergence with a smaller temperature 



parameter significantly helps reduce the impact of label noise, enhancing the model’s 

generalization ability. Therefore, we incorporate K-L divergence into the loss calcula-

tion during the fine-tuning, guiding the model to align its predictions with actual distri-

bution, thus improving accuracy. 

This module combines the weighted cross-entropy and the K-L divergence as the 

model loss. By calculating gradients through backpropagation, the model’s parameters 

are updated in each iteration, gradually reducing the value of the loss function. The total 

loss calculation formula is presented below: 

 
WCELoss L KL= +  (5) 

where 
WCEL  represents the model loss processed by weighted cross-entropy module; 

KL denotes the K-L divergence. 

The model saved after fine-tuning can be used for detecting encrypted attack traf-

fic in real-world scenarios. Additionally, it is tested by an unlabeled test dataset. Ana-

lyzing the prediction results from the unlabeled data using the fine-tuned model allows 

the model to perform effectively in actual use cases. 

3 Experiments 

To evaluate the performance of EN-Bert in encrypted attack traffic detection, two ex-

perimental datasets are selected. One is the CIC-IDS-2017 public dataset, and the other 

is a self-collected encrypted DOS attack traffic dataset. For the first part, the perfor-

mance of the EN-Bert model is compared with other intelligent detection models to 

demonstrate its overall capability. Then ablation experiments are conducted on the three 

innovative modules in the EN-Bert model architecture: data enhancement, weighted 

cross-entropy and K-L divergence to assess the modular performance. For the last sec-

tion, the role of each module is summarized and compared. 

3.1 Dataset 

The first experimental dataset consists of four types of encrypted attack traffic gener-

ated through the use of SlowHTTPTest, which performs slow HTTP Denial-Of-Service 

(DoS) attacks. These attacks exploit slow data transmission or request handling to con-

sume excessive server resources, leading to service denial or performance degradation. 

This dataset includes four attack types: Slow Read, Slow Body, Slow Header and Slow-

loris. The specific distribution is presented in Table 1. 

Table 1. Encrypted DOS Attack Traffic Dataset 

Encrypted DOS Attack Traffic Dataset #Flow #Packet 

Slow Read 2233 44642 

Slow Body 1216 24318 

Slow Header 1140 22795 

Slowloris 1544 30862 

All 6133 122617 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

The second experimental dataset was released by Canadian Institute for Cyberse-

curity (CIC). It was collected over five days, from July 3 to July 7, 2017, and includes 

both normal and various attack traffic. The dataset consists of 16 categories: one for 

normal traffic and 15 for attack traffic. The data is stored in PCAP format, with the 

specific distribution presented in Table 2. 

Table 2. CIC-IDS-2017 Dataset  

CIC-IDS-2017 Dataset #Flow #Packet 

Dos_Slowhttptest 83 4150 

DDos_LOIT 764 38200 

Heartbleed_Port_444 521 26050 

Infiltration-Cool_disk-MAC 520 26000 

Web_Attack-Sql-Injection 1298 64900 

FTP_Patator 2921 146050 

Benigh 6805 340250 

Dos_slowloris 492 24600 

SSH_Patator 974 48700 

Web_Attack-Brute_Force 1577 78850 

Botnet_ARES 3206 160300 

Dos_GoldenEye 2838 141900 

Web_Attack-XSS 582 29100 

Dos_Hulk 1114 55700 

Infiltration-Dropbox_download_Win_Vista 288 14400 

Infiltration-Dropbox_download_Meta_exploit_Win_Vista 462 23100 

All 24445 1222250 

3.2 Experimental Evaluation Methods 

Ji, Lee and others [10] summarized commonly used performance evaluation metrics for 

AI-based encrypted traffic anomaly detection techniques in their review. Among these 

metrics, Recall and F1-score are the most frequently used. To assess the model perfor-

mance more accurately, we choose three evaluation metrics—Precision, Recall and F1-

score—to evaluate each category. Additionally, Accuracy is used to assess the overall 

model performance. 

The formula for calculating Precision is as follows: 

 
TP

Precision
TP FP

=
+

 (6) 

The formula for calculating Recall is as follows: 

 
TP

Recall
TP FN

=
+

 (7) 

The formula for calculating F1-score is as follows: 

 
2

1
Precision Recall

F
Precision Recall

 
=

+
 (8) 



The formula for calculating Accuracy is as follows: 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
 (9) 

where TP (True Positive) represents the number of correctly predicted positive sam-

ples; TN (True Negative) represents the number of correctly predicted negative sam-

ples; FP (False Positive) represents the number of negative samples incorrectly pre-

dicted as positive; FN (False Negative) represents the number of positive samples in-

correctly predicted as negative. 

3.3 Experimental Results 

Comparison of EN-Bert with other intelligent detection models. This module eval-

uates the overall performance of EN-Bert model by comparing its accuracy with other 

models under the same target task. At present, artificial intelligence widely employs 

various machine learning and deep learning models. Among machine learning algo-

rithms, Random Forest [11] and XGBoost [12] are the most commonly used. In deep 

learning algorithms, CNN [13] (such as 1-D CNN and 2-D CNN) and other algorithms 

are frequently utilized. In this section, three representative artificial intelligence mod-

els—RNN, MLP, and KNN—are selected for experimentation. According to the ex-

perimental results, Fig. 5 shows that EN-Bert achieves over 99% accuracy for each 

category in the encrypted DoS attack traffic dataset, with an accuracy difference of no 

more than 0.5% between categories. The overall accuracy reaches 99.35%, slightly out-

performing MLP and KNN while showing a significant improvement over RNN. These 

results demonstrate the model’s strong detection capability and generalization in en-

crypted attack traffic detection. 

 
Fig. 5. Comparison of EN-Bert with other intelligent detection models 

Comparison of data enhancement effect. To evaluate the effect of data enhancement 

module on model performance, this section examines EN-Bert with data enhancement 

applied and compares it to EN-Bert-D, which excludes this module. The accuracy 
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differences between these two models across both datasets are presented in Table 3 and 

Table 4. 

For the encrypted DOS attack traffic dataset, a comparison between columns 2 

and 5 in Table 3 shows that the precision of the Slow Read, Slow Body and Slow 

Header categories exceeds that of EN-Bert-D by an average of 2%. This result indicates 

that the data enhancement module enriches the distribution of training samples, ena-

bling the model to better learn distinct category features and thereby improving accu-

racy in identifying positive samples. The recall improvement is reflected in columns 3 

and 6 of Table 3, where EN-Bert outperforms EN-Bert-D across all categories.  

Table 3. Comparison of data enhancement effect (Encrypted DOS Attack Traffic Dataset) 

Encrypted DOS At-
tack Traffic Dataset 

EN-Bert-D EN-Bert 

  Precision    Recall   F1-score Precision Recall F1-score 

Slow Read 0.991 0.996 0.993 1.000 1.000 1.000 

Slow Body 0.968 0.984 0.976 1.000 0.990 0.995 

Slow Header 0.982 0.965 0.973 1.000 0.995 0.997 

Slowloris 0.993 0.987 0.990 0.985 1.000 0.993 

Overall Accuracy：0.9853 Accuracy：0.9962 

For the CIC-IDS-2017 dataset, Table 4 demonstrates that compared to EN-Bert-D, EN-

Bert improves precision for 75% of categories, with an average increase of approxi-

mately 22%. Recall improves significantly in 87.5% of the categories, confirming en-

hanced accuracy and recognition capability for positive samples. In terms of F1-score, 

the Dos_Slowhttptest and Heartbleed_Port_444 categories show improvements of over 

65%, further validating the substantial performance advances achieved through data 

enhancement. As indicated in the last row of Table 4, the overall accuracy of EN-Bert 

reaches 72.42%, reflecting an 11% increase compared to EN-Bert-D. This result 

strongly supports the module’s effectiveness in improving both generalization and clas-

sification performance. 

Table 4. Comparison of data enhancement effect (CIC-IDS-2017 Dataset) 

CIC-IDS-2017 Dataset 
EN-Bert-D EN-Bert 

Precision Recall F1-score Precision Recall F1-score 

Dos_Slowhttptest 0.000 0.000 0.000 0.741 0.628 0.680 

DDos_LOIT 0.529 0.351 0.422 0.904 0.868 0.886 

Heartbleed_Port_444 0.562 0.173 0.265 0.996 1.000 0.998 

Infiltration-Cool_disk-MAC 0.905 0.365 0.521 0.673 0.544 0.602 

Web_Attack-Sql-Injection 0.573 0.515 0.543 0.801 0.740 0.769 

FTP_Patator 0.447 0.548 0.492 0.817 0.624 0.707 

Benigh 0.667 0.449 0.537 0.462 0.624 0.531 

Dos_slowloris 0.653 0.828 0.730 0.763 0.668 0.712 

SSH_Patator 0.531 0.351 0.422 0.649 0.688 0.668 

Web_Attack-Brute_Force 0.643 0.573 0.606 0.673 0.756 0.712 

Botnet_ARES 0.734 0.706 0.720 0.740 0.684 0.711 

Dos_GoldenEye 0.477 0.472 0.474 0.684 0.812 0.742 

Web_Attack-XSS 0.805 0.569 0.667 0.529 0.648 0.583 

Dos_Hulk 0.759 0.536 0.628 0.902 0.956 0.928 

Infiltration-Dropbox_download_Win_Vista 0.778 0.483 0.596 0.614 0.636 0.625 

InfiltrationDropbox_download_Meta_eploit_Win_Vista 0.741 0.435 0.548 0.840 0.712 0.771 

Overall Accuracy：0.6136 Accuracy：0.7242 



Comparison of weighted cross-entropy effect. This section compares the perfor-

mance of EN-Bert with weighted cross-entropy loss to that of EN-Bert-W, which ex-

cludes this module. The accuracy differences between these two models across two 

datasets are shown in Table 5 and Table 6. 

In the encrypted DOS attack traffic dataset, as seen in columns 2 and 5 of Table 5, 

the precision of low Body and Slow Header categories shows a significant increase, 

while the precision for the Slowloris category remains unchanged. This indicates that 

the weighted cross-entropy module effectively adjusts the class weights, improving the 

model’s ability to learn from minority-class data and leading to more accurate detection 

of positive classes. However, the effect of the weighted cross-entropy module on ma-

jority-class categories is less pronounced. Since the module is mainly designed to opti-

mize for class imbalance, the improvements in recall and F1-score are limited for cate-

gories with relatively balanced distributions. By observing columns 3 and 6 of Table 5, 

it is evident that EN-Bert outperforms EN-Bert-W in recall values for the Slow Body 

and Slow Header categories. The overall F1-score distribution is consistent with recall 

improvements, as shown in the final columns of both models in the table. 

Table 5. Comparison of weighted cross-entropy effect (Encrypted DOS Attack Traffic Dataset) 

Encrypted DOS At-
tack Traffic Dataset 

EN-Bert-W EN-Bert 

  Precision    Recall   F1-score Precision Recall F1-score 

Slow Read 0.991 0.996 0.993 0.978 0.996 0.987 

Slow Body 0.968 0.984 0.976 1.000 0.992 0.996 

Slow Header 0.982 0.965 0.973 1.000 0.991 0.996 

Slowloris 0.993 0.987 0.990 0.993 0.981 0.987 

Overall Accuracy：0.9853 Accuracy：0.9902 

Table 6. Comparison of weighted cross-entropy effect (CIC-IDS-2017 Dataset) 

CIC-IDS-2017 Dataset 
EN-Bert-W EN-Bert 

Precision Recall F1-score Precision Recall F1-score 

Dos_Slowhttptest 0.000 0.000 0.000 0.111 0.111 0.111 

DDos_LOIT 0.529 0.351 0.422 0.851 0.818 0.834 

Heartbleed_Port_444 0.562 0.173 0.265 0.389 0.404 0.396 

Infiltration-Cool_disk-MAC 0.905 0.365 0.521 0.667 0.615 0.640 

Web_Attack-Sql-Injection 0.573 0.515 0.543 0.639 0.531 0.580 

FTP_Patator 0.447 0.548 0.492 0.728 0.623 0.672 

Benigh 0.667 0.449 0.537 0.699 0.757 0.727 

Dos_slowloris 0.653 0.828 0.730 0.385 0.204 0.267 

SSH_Patator 0.531 0.351 0.422 0.522 0.612 0.563 

Web_Attack-Brute_Force 0.643 0.573 0.606 0.605 0.643 0.623 

Botnet_ARES 0.734 0.706 0.720 0.707 0.656 0.681 

Dos_GoldenEye 0.477 0.472 0.474 0.686 0.806 0.741 

Web_Attack-XSS 0.805 0.569 0.667 0.417 0.431 0.424 

Dos_Hulk 0.759 0.536 0.628 0.907 0.883 0.895 

Infiltration-Dropbox_download_Win_Vista 0.778 0.483 0.596 0.682 0.517 0.588 

InfiltrationDropbox_download_Meta_eploit_Win_Vista 0.741 0.435 0.548 0.714 0.543 0.617 

Overall Accuracy：0.6136 Accuracy：0.6776 

The model performance comparison on the CIC-IDS-2017 dataset is shown in Table 6. 

37.5% of the categories in EN-Bert show higher accuracy than the corresponding cate-

gories in the EN-Bert-W model, with an average improvement of around 19%. This 

indicates that EN-Bert has optimized classification accuracy for certain categories. 
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Regarding recall, except for the categories Dos_slowloris, Botnet_ARES, and Web_At-

tack-XSS, recall rates for the remaining categories have increased. In terms of overall 

accuracy, EN-Bert achieves a 6.4% improvement. Compared to the previous dataset, 

the increase in overall accuracy is more significant, possibly due to the more severe 

class imbalance in the CIC-IDS-2017 dataset. The weighted cross-entropy module has 

had a more pronounced effect on improving the model’s performance on this dataset.  

Comparison of K-L divergence loss effect. To evaluate the improvement brought by 

the inclusion of K-L divergence, this section compares the performance of EN-Bert 

with K-L divergence to that of EN-Bert-K, which excludes this module. The accuracy 

differences between EN-Bert and EN-Bert-K on two datasets are shown in Table 7 and 

Table 8. 

In the encrypted DOS attack traffic dataset, as shown in columns 2 and 5 of Table 

7, the accuracy of all categories detected by EN-Bert model is higher than that of EN-

Bert-K, with each category achieving an accuracy rate of over 99%. This demonstrates 

the model’s high accuracy in identifying positive classes. As shown in columns 3-4 and 

5-6 of Table 7, EN-Bert outperforms EN-Bert-K in both recall and F1-score, indicating 

improvements in the model’s ability to identify positive classes as well as its overall 

precision and completeness. In terms of overall accuracy, the last row of the table shows 

that EN-Bert achieves an accuracy rate of 99.67%, which is 1.14% higher than EN-

Bert-K. 

Table 7. Comparison of K-L divergence loss effect (Encrypted DOS Attack Traffic Dataset) 

Encrypted DOS At-
tack Traffic Dataset 

EN-Bert-K EN-Bert 

  Precision    Recall   F1-score Precision Recall F1-score 

Slow Read 0.991 0.996 0.993 1.000 0.996 0.998 

Slow Body 0.968 0.984 0.976 0.992 1.000 0.996 

Slow Header 0.982 0.965 0.973 1.000 0.991 0.996 

Slowloris 0.993 0.987 0.990 0.994 1.000 0.997 

Overall Accuracy：0.9853 Accuracy：0.9967 

Table 8. Comparison of K-L divergence loss effect (CIC-IDS-2017 Dataset) 

CIC-IDS-2017 Dataset 
EN-Bert-K EN-Bert 

Precision Recall F1-score Precision Recall F1-score 

Dos_Slowhttptest 0.000 0.000 0.000 0.250 0.111 0.154 

DDos_LOIT 0.529 0.351 0.422 0.903 0.844 0.872 

Heartbleed_Port_444 0.562 0.173 0.265 0.415 0.327 0.366 

Infiltration-Cool_disk-MAC 0.905 0.365 0.521 0.861 0.596 0.705 

Web_Attack-Sql-Injection 0.573 0.515 0.543 0.773 0.577 0.661 

FTP_Patator 0.447 0.548 0.492 0.724 0.630 0.674 

Benigh 0.667 0.449 0.537 0.629 0.797 0.703 

Dos_slowloris 0.653 0.828 0.730 0.571 0.163 0.254 

SSH_Patator 0.531 0.351 0.422 0.772 0.622 0.689 

Web_Attack-Brute_Force 0.643 0.573 0.606 0.624 0.688 0.655 

Botnet_ARES 0.734 0.706 0.720 0.755 0.653 0.700 

Dos_GoldenEye 0.477 0.472 0.474 0.689 0.782 0.733 

Web_Attack-XSS 0.805 0.569 0.667 0.451 0.397 0.422 

Dos_Hulk 0.759 0.536 0.628 0.970 0.883 0.925 

Infiltration-Dropbox_download_Win_Vista 0.778 0.483 0.596 0.586 0.586 0.586 

InfiltrationDropbox_download_Meta_eploit_Win_Vista 0.741 0.435 0.548 0.750 0.522 0.615 

Overall Accuracy：0.6136 Accuracy：0.6894 



In the CIC-IDS-2017 dataset, as shown in Table 8, 43.75% of the categories have higher 

precision than EN-Bert-K, while 37.5% of the categories show similar precision to EN-

Bert-K. With respect to recall, the DDos_LOIT category shows a significant improve-

ment, while the Dos_slowloris category experiences a decline. The F1-score follows a 

similar trend as the recall rates. As for overall accuracy, EN-Bert model achieves 

68.94%, a 7.4% improvement over EN-Bert-K. The experimental results effectively 

demonstrate that K-L divergence enhances the model’s generalization ability, allowing 

further optimization of detection performance on complex datasets. 

Comparison of the performance analysis of each module. The effectiveness of dif-

ferent modules in improving model performance varies. In the encrypted DOS attack 

traffic dataset, the K-L divergence module shows the most significant improvement, 

making detection more stable across all four categories and resulting in notable perfor-

mance enhancement. In contrast, in the CIC-IDS-2017 dataset, data enhancement con-

tributes the most to performance improvement due to the more severe imbalance of 

dataset. By increasing the number of minority-class samples, the data enhancement 

module significantly relieves the low accuracy issue caused by imbalance, refining the 

model’s performance. In summary, each module plays a distinct role in enhancing the 

EN-Bert model. They contribute to the overall success of EN-Bert in encrypted attack 

traffic detection. 

4 Conclusion 

This paper reviews and analyzes existing academic literature on related topics, summa-

rizing the key challenges and difficulties in encrypted attack traffic detection. We pro-

pose a new model architecture and processing flow, offering novel methods to address 

tough issues. In particular, data enhancement addresses the problem of imbalanced da-

taset, boosting the model’s performance. The use of weighted cross-entropy and K-L 

divergence plays a significant role in optimizing the loss function during the fine-tuning 

phase, helping the model overcome performance issues and improve generalization. 

Through extensive experimental validation, EN-Bert model has shown promising re-

sults in encrypted attack traffic detection. Despite the model’s achieving progress in 

detection performance, there are still areas for further optimization in response to the 

evolving trends in the current era: 

(1) Recently, Deepseek has gained tremendous popularity worldwide due to its 

superior performance and domestically designed architecture. The computational and 

storage requirements of large AI models have also sparked significant research and dis-

cussion. Although EN-Bert pre-trained model obtained in this paper is not as large as 

models like Deepseek or ChatGPT, the model deployment challenges arising from the 

huge number of parameters also pose difficulties for developers. If the model can be 

lightweighted, both the overall computation speed and storage requirements can be op-

timized.  

(2) For encrypted attack traffic, traditional feature extraction methods are not ap-

plicable due to the high likelihood of being unable to decrypt the traffic. In addition to 

the encrypted token serialization method used in this paper, Poh G. S. and others [14] 

proposed techniques that support regular expression matching and complex rule 
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detection. Combining deep learning and reinforcement learning can also provide detec-

tion capabilities equivalent to those of plaintext traffic analysis.  
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