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Abstract. During the training of end-to-end detectors, one-to-one label assign-

ments result in an insufficient number of positive samples, impeding the learning 

of discriminative features. Existing methods have employed one-to-many label 

assignments and denoising training strategies to provide additional supervision, 

thereby increasing the number of positive samples or introducing samples with 

noise. However, these additional supervisions perform bidirectional feature fu-

sion with the original end-to-end models, increasing the computational costs of 

the model during inference. In this paper, we propose a Separable Auxiliary 

Training (SAT) for real-time small object detection to achieve auxiliary supervi-

sion without additional inference delay. In SAT, an auxiliary branch supervised 

by a one-to-many label assignment is adopted to assist a deployment branch dur-

ing training. To avoid increasing the inference costs, a one-way feature flow from 

the deployment branch to the auxiliary branch has been designed. The flow en-

sures that the deployment branch can be deployed independently without sacri-

ficing any accuracy. Extensive experiments demonstrate that SAT can provide 

additional supervision to enhance performance without increasing computational 

costs during inference. 

Keywords: Small Object Detection, SAT, Separable Auxiliary Supervision, 

RT-DETR. 

1 Introduction 

Real-time small object detection involves locating and classifying objects with pixel 

sizes smaller than 32×32 in images [1], and the inference speed must reach at least 30 

frames per second (FPS) [2]. The speed requires the number of parameters and calcu-

lation costs. Meanwhile, small objects are difficult to extract effective features due to 

the limited number of pixels, leading to lower precision and accuracy. 

At present, the most popular real-time small object detectors can be divided into two 

categories: CNN-based and Transformer-based. The CNN-based detectors, such as 

YOLO series [3–9], adopt an indirect way to predict objects in the images. The entire 

structure includes many hand-designed components, such as anchor generation, label 

assignments, and non-maximum suppression (NMS) post-processing [10]. The 



 

 

Transformer-based detectors, such as DETR series [2, 10–17], employ one-to-one label 

assignments to supervise the models during training. 

DETRs eliminate manual design components and simplify the object detection pipe-

line. However, their one-to-one label assignments lead to insufficient positive samples 

for small object detection, impeding discriminative feature learning. Co-DETR [12], 

Group DETR [14] and MS-DETR [15] combine one-to-one and one-to-many label as-

signments to conduct additional supervision. DN-DETR [17] utilizes a denoising train-

ing strategy for additional supervision to introduce samples with noise. However, these 

additional supervisions perform bidirectional feature fusion with the original end-to-

end models, increasing the computational costs of the model during the inference stage. 

To solve the above problem, we propose a Separable Auxiliary Training (SAT) for 

real-time small object detection to achieve auxiliary supervision during training and 

separable deployment during inference. In SAT, an auxiliary branch supervised by a 

one-to-many label assignment is adopted to assist with a deployment branch during the 

training stage. The auxiliary branch comprises a backbone network with the same back-

bone as the deployment branch, thereby facilitating the fusion of features at correspond-

ing scales and the provision of auxiliary supervision. To utilize the benefits of auxiliary 

supervision and circum- vent the limitations of the increased computational costs in-

herent to previous approaches, we design a one-way propagation of the feature flow 

from the deployment branch to the auxiliary branch. The flow ensures that the deploy-

ment branch is deployed independently without sacrificing any accuracy. 

In SAT, the one-to-many label assignment is used to provide additional supervision, 

but it also introduces a considerable number of ambiguous labels. According to our 

analysis of the process of label assignments, small objects have less area, leading to 

many targets being detected within the same anchor range. This makes it difficult for 

models to accurately learn about dense small objects. Therefore, we employ an Optimal 

Transport Assignment (OTA) [18] as a label assignment of the auxiliary branch to re-

duce the number of ambiguous labels and enhance the effectiveness of the auxiliary 

branch. 

In summary, our goal is to build an auxiliary supervision method without additional 

inference delay. That is, we seek to employ a one-to-many label assignment to improve 

the performance and develop a one-way propagation of the feature flow for separable 

deployment. Extensive experiments conducted on VisDrone2021 and AI-TOD datasets 

have validated the effectiveness of our proposed approach. Our main contributions are 

as follows: 

─ We propose a Separable Auxiliary Training (SAT) for real-time small object detec-

tion to achieve auxiliary supervision during training and separable deployment dur-

ing inference. SAT utilizes a one-to-many label assignment to achieve additional 

supervision without increasing computational complexity during inference. 

─ We propose a one-way flow approach from the deployment branch to the auxiliary 

branch to avoid increasing the computational costs during inference. Meanwhile, 

SAT utilizes the OTA as the label assignment of auxiliary branch to reduce the num-

ber of ambiguous labels and enhance the effectiveness of auxiliary branches. 

─ We verify the SAT on VisDrone2021 and AITOD datasets, and the experimental 

results show that the auxiliary branch within SAT can provide additional supervision 
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to enhance the model's accuracy and deploy independently without any compromise 

in performance. 

2 Related Word 

2.1 Real-time Small Object Detection 

Real-time object detection can be classified into two categories according to the differ-

ences in output structures: YOLO series and DETR series. The YOLO series [3–9], 

generate a considerable number of redundant bounding boxes during the inference 

phase. The DETR series [2, 10–17], represent an end-to-end approach to object detec-

tion, which eliminate the hand-designed anchors and NMS components in the tradi-

tional detection pipeline. DETR [10] streamlines detection pipelines and mitigates the 

performance bottleneck caused by NMS. However, it has a large number of parameters 

and high computational complexity, which presents a challenge in achieving real-time 

object detection. RT- DETR [11] has developed an efficient hybrid encoder that effec-

tively processes multi-scale features and has proposed a flexible decoder based on 

DETR that supports adjustment of the inference speed. At present, both of the YOLO 

series and the RT-DETR series are capable of real-time object detection. 

Real-time small object detection is typically based on normal object detection meth-

ods, with the extraction of high-resolution features for detection. TPH-YOLOv5 [19] 

detects small objects in P2 layer to improve the accuracy and precision of the models. 

However, the high solution features result in an increased number of prediction boxes 

and ambiguous labels, which in turn makes it challenging to assign ground-truth labels 

during training. 

2.2 Label Assignment 

Label assignments distinguish the positive and negative attributes of each anchor during 

the training stage. Some anchors may be attributed to multiple ground-truths, resulting 

in ambiguous anchors, introducing harmful gradients. Therefore, adaptive label assign-

ments are proposed to alleviate this phenomenon. ATSS [20] proposes an adaptive sam-

ple selection strategy that adopts mean and standard deviation of IOU values from a set 

of closest anchors for each ground truth as a position threshold. In contrast, OTA [18] 

defines the unit transportation cost between each anchor and ground-truth to decode 

correspondence via Sinkhorn-Knopp iteration. Meanwhile, the method uses the Hun-

garian algorithm to reduce the number of ambiguous labels of one-to-many label as-

signment process. According to our analysis of the label assignments of small object 

detection, the absence of ambiguous labels can effectively improve the small object 

detection performance of the model. In this paper, we adopt OTA as the one-to-many 

label assignment strategy of the auxiliary branch to further improve the performance. 



 

 

2.3 Auxiliary Supervision 

The additional supervision of models is achieved through the utilization of diverse loss 

functions, including collaborative supervision and auxiliary supervision. The coopera-

tive supervision is unable to remove additional modules during the inference phase, due 

to the bidirectional flow of data between the original structure and the additional struc-

ture. Co-DETR [12], Group DETR [14] and MS-DETR [15] integrate one-to-one and 

one-to-many label assignments to achieve an additional supervision model. However, 

these methods are difficult to separate additional modules during inference, resulting in 

a reduction in inference speed. RT-DETRv3 [2] employs a one-to-many separable head 

to provide additional supervision, thus overcoming the issue of insufficient positive 

labels. However, the approach employed by RT-DETRv3 results in a relatively long 

gradient feedback path for auxiliary detection. We found that when the data flow is 

unidirectional, originating in the original network and terminating in the additional 

modules, it is possible to separate these modules without affecting the accuracy and 

precision of the model. Based on the characteristics, we propose a one-way feature flow 

approach to achieve auxiliary supervision without additional inference latency. 

3 Methodology 

3.1 Overview 

As illustrated in Fig. 1, the architecture of SAT consists of a deployment branch and an 

auxiliary branch. Both of the branches are worked in different stages. During the train-

ing stage, identical inputs and labels are assigned to the deployment branch and auxil-

iary branch. They independently calculate and propagate the loss after a weighted sum. 

During the inference stage, the deployment branch is retained solely for the purpose of 

accelerating the inference speed. 

 

Fig. 1. Overview of Auxiliary Training Framework. The framework consists of a deployment 

branch and an auxiliary branch. Both of the blue and yellow paths are executed during training, 

and the blue paths are only executed during inference. 

3.2 Separable Auxiliary Training 

Deployment Branch. The deployment branch comprises a backbone, a feature fusion 

neck, and an end-to-end head, as illustrated in Fig. 2. The backbone may be selected 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

from the existing feature extraction networks, including CSPNet [21], YOLO series, 

and other networks based on transformers, to extract multi-scale features from the input 

images. The present study employed backbones derived from YOLOv5 [3], YOLOv8 

[6] and YOLO11 [9]. The feature fusion neck is responsible for multi-scale feature fu-

sion, utilizing a Path Aggregation Network [22] structure that performs both top-down 

and bottom-up feature fusion. The end-to-end head adopts the decoder of RT-DETR to 

predict the bounding box of objects directly without post-processing. 

 

Fig. 2. Details of Auxiliary Training Framework. The solid line modules and the dotted line 

modules belong to the deployment branch and the auxiliary branch, respectively. 

Auxiliary Branch. As illustrated in Fig. 2, the auxiliary branch comprises an auxiliary 

network (AuxNet) and a one-to-many detection head. The AuxNet receives multi-scale 

features {S3, S4, S5} from the backbone and generates corresponding scale outputs, 

which consist of CBLinear [7], stem layer, and stage layer modules. The CBLinear is 

employed to split and upsample the multi-scale features, which are then concatenated 

in the subsequent step. The stem layer and the stage layers are identical to the backbone 

of the deployment branch, and used to extract image features at different scales. The 

detection head of the auxiliary branch is supervised by the same labels as the deploy-

ment branch, while the labels are matched by one-to-many label assignments for loss 

calculation. In this study, an anchor-based detection head is employed to verify the 

effectiveness of SAT. 

Loss Function. In SAT, the deployment branch and the auxiliary branch employs an 

end-to-end detection head and an anchor-based detection head, respectively. Because 

of the disparate output structures, both of branches use different loss functions for cal-

culation. The loss function of deployment branch, based on RT-DETR [11], introduces 

IoU-aware query selection based on Hungarian algorithm during training to deal with 

inconsistent distribution of classification score and location confidence. In auxiliary 

branch, the anchor-based loss function is adapted to simplify the migration of other 

anchor-based methods. We can formulate the loss of SAT as follows: 

 ℒS𝐴𝑇 = 𝛽1ℒdep𝑙𝑜𝑦 + 𝛽2ℒa𝑢𝑥, (1) 



 

 

where ℒS𝐴𝑇 , ℒdep𝑙𝑜𝑦, and ℒa𝑢𝑥 are the loss of SAT, the deployment branch, and the 

auxiliary branch, respectively. The ℒS𝐴𝑇  is the weighted sum of the losses, and the set-

ting of 𝛽 is set to 1.0. 

The ℒdep𝑙𝑜𝑦 consists of the loss of box and classification, and its hyperparameters of 

followed by RT-DETR. The loss of the deployment branch is calculated as follows: 

 ℒdep𝑙𝑜𝑦 = ℒb𝑜𝑥 + ℒc𝑙𝑎𝑠𝑠, (2) 

where the ℒb𝑜𝑥 is calculated by GIOU [23],, and ℒc𝑙𝑎𝑠𝑠 is calculated by the BCEloss. 

The calculation of ℒ𝒶𝓊𝓍 is same as the detection head we used in auxiliary branch, 

involves three components [3]: loss of location, IoU, and classification. We can formu-

late the loss of the auxiliary branch as follows: 

 ℒau𝑥 = 𝜆𝑙𝑜𝑐ℒl𝑜𝑐 + 𝜆𝑜𝑏𝑗ℒo𝑏𝑗 + 𝜆𝑐𝑙𝑠ℒc𝑙𝑠 (3) 

where the coefficients λloc, λobj, and λcls are hyperparameters that determine the relative 

importance of each component in the overall loss calculation. The ℒb𝑜x is calculated by 

CIoU [24], ℒ𝑜𝑏𝑗 and ℒc𝑙𝑠 are calculated by the BCEloss. 

3.3 Label Assignment for SOD 

 

Fig. 3. An illustration of ambiguous anchor points in object detection. Yellow dots show some 

of the ambiguous anchors in two sample images. The large object (left) is due to large area, 

resulting in overlap. And the small objects (right) are assigned to the same anchor due to its small 

area. 

A one-to-many label assignment is employed for the purpose of supervising the auxil-

iary branch. The label assignment distinguishes positive and negative attributes of each 

anchor during the training process. In some cases, an anchor may be assigned to multi-

ple ground truths, which can result in ambiguous anchors. These anchors can introduce 

detrimental gradients relative to other ground structures. 

It should be noted that all scales of objects have ambiguous anchors, but the reasons 

for their occurrence are different, as shown in Fig. 3. The presence of large objects is 

attributable to their extensive surface area, which results in multiple objects overlapping 

within the same region. This phenomenon gives rise to ambiguous anchor points within 
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the overlapping regions. The situation with small objects is characterized by their lim-

ited surface area, which leads to multiple objects appearing within the same anchor 

range. This situation that small objects cover very few anchors, and ambiguous anchors 

account for a large proportion makes it difficult for models to learn dense small objects. 

To alleviate the problem of ambiguous anchors, the one-to-many label assignment 

with groups, OTA [18], is used to supervise the auxiliary branch. It should be noted 

that OTA has the potential to enhance the precision of anchor-based detectors for small 

objects. Furthermore, this approach is only employed during the training phase, which 

can improve the accuracy but does not impact the inference speed when deploying 

models. 

4 Experiment 

4.1 Experimental Settings 

Dataset and Evaluation Measures. We conduct experiments on the VisDrone2021 

[25] and AITOD datasets. All models are verified on the test-dev set. We standard mAP, 

Precision, Recall [3], and COCO style average precision (AP) [1] are used. The AP of 

small, medium and large objects are also reported, particularly to understand the per-

formance of our method for small object detection. 

Implementation Details. The ultralytics toolkit [9] is used to implement our SAT. The 

backbones used in our study are YOLOv5 [3], YOLOv8 [6] and YOLO11 [9]. During 

the training phase, to maintain consistency among all of models, pre-trained models are 

not loaded. We train the proposed model on VisDrone2021 trainset for 300 epochs, and 

use AdamW optimizer [26]. The learning rates of backbone follow RT-DETR [11]. The 

coefficients 𝛽1, 𝛽2, 𝜆𝑙𝑜𝑐 , 𝜆𝑜𝑏𝑗, and 𝜆𝑐𝑙𝑠 of the loss functions are set to 1.0, 1.0, 0.05, 1.0, 

and 0.625, respectively. During the evaluation phase, confidence and IoU is set to 0.001 

and 0.6, respectively. 

4.2 Main Results 

In this section, the evaluation method of AP is adopted to facilitate comparison with 

other small object detectors. For real-time detection, the scale of models is set to S, and 

input size is set to 640×640. 

VisDrone. The results are summarized in Table 1, our proposed SAT achieves the best 

results 35.9% AP compared with other real-time methods, including CNN-based and 

DETR-like methods. The SAT based on YOLOv8 achieves the optimal performance, 

surpassing the corresponding real-time detectors with one-to-one label assignments by 

1.4%, 1.5%, and 0.7% in terms of AP50, AP75, and APL. 



 

 

Table 1. Comparison of real-time small object detectors on VisDrone. 

Model AP50 AP75 APS APM APL Params(M) GFLOPs(G) 

YOLOv5s [3] 26.0 12.5 6.0 20.2 30.4 7 15.8 

YOLOv6s [4] 29.9 17.7 7.6 26.4 37.5 18.51 45.18 

YOLOv7s [5] 24.3 11.5 6.0 18.8 26.7 6.03 13.1 

YOLOv8s [6] 30.2 16.9 7.4 26.4 37.2 11.1 28.5 

YOLOv9s [7] 31.5 18.0 7.8 28.2 41.4 7.17 26.7 

YOLOv10s [8] 31.2 17.6 8.0 27.1 43.1 8.04 24.5 

YOLO11s [9] 31.5 17.9 7.8 27.7 39.6 9.4 21.3 

RT-DETR(R18) [11] 32.5 18.6 9.9 27.6 35.3 19.9 57.0 

RT-DETRv3(R18) [2] 28.3 15.5 8.2 22.7 29.7 20.0 60.0 

RT-DETR(YOLOv5) 31.5 17.1 9.7 25.6 32.5 10.9 22.7 

RT-DETR(YOLOv8) 32.6 18.1 10.2 26.9 33.0 13.0 27.3 

RT-DETR(YOLO11) 32.1 17.6 10.0 26.0 38.0 12.4 25.1 

SAT(YOLOv5s) 32.6 18.3 10.3 27.1 33.4 10.9(15.1) 22.7(33.4) 

SAT(YOLOv8s) 33.6 19.1 10.3 28.3 30.4 13.0(18.3) 27.3(41.6) 

SAT(YOLO11s) 33.0 18.5 10.2 27.3 35.2 12.4(18.3) 25.1(39.8) 

YOLOv5s-P2 [3] 29.3 14.1 7.5 22.8 33.1 7.18 18.7 

TPH-YOLOv5s-P2 [19] 33.3 17.1 9.4 26.3 35.8 - - 

YOLOv7s-P2 [5] 30.5 15.9 8.8 24.1 31.2 6.46 21.0 

YOLOv8s-P2 [6] 30.3 16.1 8.2 25.3 35.7 10.6 36.7 

YOLOv10s-P2 [8] 34.1 19.0 10.1 28.1 36.0 8.2 36.6 

YOLO11-P2 [9] 35.5 19.8 10.5 29.7 37.0 9.7 31.7 

RT-DETR(YOLOv5-P2) 34.3 19.7 11.4 28.4 31.8 11.2 39.9 

RT-DETR(YOLOv8-P2) 34.5 19.6 11.3 28.5 36.8 13.1 44.7 

RT-DETR(YOLO11-P2) 34.8 19.9 11.9 28.8 36.5 12.6 42.9 

SAT(YOLOv5s-P2) 34.9 20.1 11.8 28.8 37.3 11.2(15.4) 39.9(51.3) 

SAT(YOLOv8s-P2) 35.9 21.1 12.0 29.9 41.7 13.1(19.2) 44.7(65.0) 

SAT(YOLO11s-P2) 35.3 20.7 11.5 29.8 37.8 12.6(18.7) 42.9(59.7) 

The optimal, second-best, and third-best results are represented using three different colors, re-

spectively: , , and . The values in parentheses and outside parentheses represent the 

parameters and GFLOPs during training and deployment, respectively. 

Benefiting from the one-way data flow we designed, SAT and RT-DETR share the 

same FLOPs and the number of parameters during the inference phase. The results 

demonstrate that SAT can provide auxiliary supervision, thereby enhancing the perfor-

mance of the model without raising computational costs during inference. And the en-

hancement is not contingent on the choice of backbone. 

AI-TOD. We also conduct experiments on the AI-TOD dataset to demonstrate the ef-

fectiveness of our proposed SAT. Table 2 shows our results on the AI-TOD test split. 

We compare the performance of our SAT with other methods. The SAT achieves the 

best result 47.6% mAP50 compared with other real-time methods, including CNN-based 

and DETR-like methods. SAT surpasses the RT-DETR with the same FLOPs and the 

number of parameters by 1.7%, 1.2%, and 1.0% in terms of mAP50, mAP75, mAP50-95. 
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Table 2. Comparison of real-time small object detectors on AI-TOD. 

Model mAP50 mAP75 mAP50-95 

YOLOv8 [6] 32.5 11.6 14.9 

QueryDet [27] 29.3 7.9 12.2 

Deformable-DETR [13] 30.5 8.8 10.13 

DAB-DETR [28] 30.84 9.87 10.86 

RT-DETR(Resnet18) 41.73 - 17.97 

RT-DETR(YOLO11) 29.9 17.7 7.6 

SAT(YOLO11) 35.3 20.7 11.5 

4.3 Ablation 

In this paper, we analyzed the improvement of OTA on small objects accuracy, and 

proposed SAT to migrate OTA to end-to-end detectors. Meanwhile, we also increase 

the number of query sets and add additional supervision layers to improve the perfor-

mance of SAT. In this section, we conducted many ablation experiments to verify the 

correctness of our analysis and the effectiveness of the proposed methods. 

OTA For Small Object Detection. To verify the correctness of our analysis about the 

OTA, we perform ablation studies, and the experimental results are shown in Table 3. 

We choose the previous version of object detector YOLOv5 as our baselines, and the 

resolution of the input image is 640×640. The experimental results show that the model 

with OTA increased by 1.5% in mAP50, and the model with P2 layer increased by 3.5% 

in mAP50. The OTA is one of the label assignment strategies that only applies to the 

loss calculation stage and does not increase the number of parameters and computa-

tional complexity. These results demonstrate that the reduction of ambiguous labels can 

enhance the performance of the model in the small object detection. 

Table 3. Ablation study of OTA for small object detection. 

OTA P2 mAP50 mAP50-95 Precision Recall 

  27.7 14.6 40.4 30.8 

✓  29.2(+1.5) 15.8(+1.2) 50.1 31.3 

 ✓ 31.0(+3.3) 16.4(+1.8) 42.5 33.2 

✓ ✓ 34.5(+6.8) 18.6(+4.0) 44.5 37.5 

Speratable Auxiliary Training. To verify the effectiveness of SAT and avoid the in-

fluence of the same backbone, we conduct the same experiment on YOLOv5, YOLOv8 

and YOLO11. Meanwhile, we also add the P2 layer to the above model for comparison. 

As presented in Table 4, the SAT with three backbones achieve 34.5%, 35.6% and 

34.8% mAP50, increasing 1.1%, 1.0% and 0.9%, respectively. When we add the P2 

layer to these models, the SAT also improves the mAP50 of the three backbones by 

0.6%, 1.3% and 0.6%, respectively. It can be seen that the performance of SAT is not 

constrained by the backbone. 



 

 

Table 4. Comparison of different models for small object detection. 

Backbone SAT P2 mAP50 mAP50-95 Precision Recall 

YOLOv5 [3] 

  33.4 18.8 52.3 34.6 

✓  34.5(+1.1) 19.7(+0.9) 53.0 36.0 

 ✓ 36.2 21.0 55.2 37.1 

✓ ✓ 36.8(+0.6) 21.3(+0.3) 53.9 38.4 

YOLOv8 [3] 

  34.6 19.7 52.9 36.3 

✓  35.6(+1.0) 20.6(+0.9) 53.8 36.7 

 ✓ 36.5 21.0 53.8 37.7 

✓ ✓ 37.8(+1.3) 22.2(+1.2) 54.7 39.3 

YOLO11 [3] 

  33.9 19.2 52.7 35.9 

✓  34.8(+0.9) 19.9(+0.7) 53.6 36.7 

 ✓ 36.7 21.3 54.5 38.3 

✓ ✓ 37.3(+0.6) 21.9(+0.6) 55.0 38.6 

5 Conclusion 

In this paper, we propose a Separable Auxiliary Training (SAT) for real-time small 

object detection to achieve auxiliary supervision during training and separable deploy-

ment during inference. To utilize one-to-many label assignments to supervise the end-

to-end detector without increasing computational complexity during inference, a one-

way propagation of the feature flow from the deployment branch to the auxiliary branch 

is proposed. Meanwhile, we analyze the process of label assignments and employ OTA 

to reduce the number of ambiguous labels. The SAT was verified on VisDrone2021 

and AI-TOD, and the experimental results demonstrate that the SAT can provide addi-

tional supervision to enhance the model's accuracy and deploy the deployment branch 

independently without any compromise in performance. SAT has explored the potential 

of one-to-many label assignments based on CNNs to facilitate the supervision of the 

end-to-end detectors. In the future, we will investigate the possibility of transferring the 

other CNN-based improvement strategies to supervise different architectural models. 
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