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Abstract. The environmental perception of unmanned ground vehicles (UGVs) 

directly impacts decisions like path planning and obstacle avoidance, with vehi-

cle detection being critical for autonomous driving. LiDAR provides high-preci-

sion point clouds but suffers from sparse density and self-occlusion, often result-

ing in incomplete vehicle point clouds that hinder detection performance. To ad-

dress this, we propose Argus, a multiview registration and completion model that 

fuses multi-frame point clouds of surrounding vehicles. Argus achieves multi-

view fusion through a self-attention-based cumulative registration module and a 

coarse-to-fine residual completion module, refining vehicle point clouds using 

grid residual layers and a multilayer perceptron. Compared to single-view point 

clouds, Argus produces denser and more complete vehicle shapes, serving as an 

independent plug-in to enhance detection methods. Experiments on the KITTI 

dataset show that Argus improves downstream vehicle detection performance. 

Keywords: LiDAR Point Cloud Fusion, Multiple Accumulating Registration 

Strategy, Coarse to Fine Complete, Vehicle Detection. 

1 Introduction 

Accurate visual perception is essential for unmanned ground vehicles (UGVs) to inter-

act effectively with their environment. UGVs rely on visual sensors like cameras and 

LiDAR to gather crucial data for scene understanding and subsequent driving decisions. 

LiDAR, widely adopted for its long sensing range and precise distance detection [1], 

often produces sparse and incomplete point clouds due to inherent limitations such as 

self-occlusion. This compromises UGVs’ capabilities in scene analysis, vehicle detec-

tion, and downstream tasks. Since vehicle detection is critical for tasks like path plan-

ning and obstacle avoidance [2], improving the completeness of vehicle point clouds 

has become a key focus of research. 



 

 

 

Fig. 1. Overview of the proposed framework. (a) The LiDAR point cloud and RGB image cap-

tured by UGV in the KITTI dataset. (b) Data collection platform of KITTI dataset. (c) The over-

view of the Argus with the input of single view point clouds, and the output as fusion results of 

multiple view registration and completion. (d) Vehicle detection on fusion results of multiview 

point clouds by the proposed model. 

Point clouds captured by unmanned ground vehicles (UGVs) come from a series of 

moving perspectives [3], making the completion of moving vehicles a more significant 

challenge compared to static objects [4]. To improve completeness, researchers com-

monly use ICP and its variants to align and fuse multi-frame LiDAR point clouds from 

sequential views [5]. Most existing point cloud completion models focus on single-

view data, overlooking the need for multiview completion across diverse perspectives. 

While some models explore correlations between multiview point clouds, most are de-

signed for single-frame data and rarely address continuous frames or transformations 

between consecutive moving views [6][7]. As a result, multiview point cloud fusion 

from consecutive frames captured during autonomous driving remains an important yet 

underexplored challenge [8].  

Deep learning models for point cloud completion can be broadly categorized into 

three main types: point convolution-based models, multi-view completion-based mod-

els, and generative adversarial network (GAN)-based models [9], such as PCN [10], 

the 3D capsule model [11], 3DGAN [12], and PFNet [13]. Existing training datasets 

for these models, such as ModelNet [14], ShapeNet [15], and MVP [16], primarily con-

sist of synthetic data from irregular views, making them unsuitable for multiview com-

pletion tasks in consecutive moving perspectives.  Meanwhile, multiview completion 

networks perform well on synthetic dense point cloud datasets [17], they struggle to 

address the challenges of consecutive moving views in UGVs and often show limited 
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performance on real-world data. This is because point clouds captured by real sensors 

are typically much sparser than synthetic data, and inherent challenges such as sparse 

density and self-occlusion [4] continue to hinder object completion performance.  

Overall, this issue is further complicated by self-occlusion [18], incomplete sur-

faces[19], and the lack of ground truth data during training [18], leading to the wide-

spread use of synthetic datasets for training completion models [20]. In response to 

these challenges, this paper proposes Argus, a fusion model for multiview point clouds 

captured from moving perspectives. The Argus model consists of two key modules: a 

multi-view cumulative registration module and a coarse-to-fine completion module. 

The registration module uses an accumulation strategy to compute rigid transformations 

between frames, while the completion module fills in missing parts of detected vehicle 

point clouds, producing dense and complete shapes. To improve vehicle detection in 

real-world autonomous driving scenarios, the Argus model enhances the quality of 

point clouds through these modules. A new training dataset, tailored for multiview point 

cloud fusion tasks, is also introduced, and the model is validated using the KITTI da-

taset [21]. By integrating Argus with existing vehicle detection methods, vehicle point 

cloud quality is significantly improved, leading to better detection performance. The 

main contributions of this paper are summarized as follows: 

1. This paper proposes a two-stage fusion model as Argus to achieve the registration 

and completion of multi-frame point clouds, aimed at enhancing vehicle detection per-

formance during UGV movement. 

2. This paper designs a multi-view cumulative registration module to perform rigid 

registration of local multiple frames through a cumulative registration strategy. 

3. The coarse-to-fine residual completion module employed in this paper facilitates 

the completion of registration results, thereby improving vehicle detection performance 

on the KITTI dataset. 

2 Problem Modeling 

2.1 Multi-view splitting 

We model the fusion task of vehicle point clouds captured by continuous moving views 

from UGVs as the registration and completion stages. Due to the lack of the complete 

point clouds (ground truth) captured from real scenes, we simulate vehicle point cloud 

sequences in Euclidean space as X={xi, ..., xj, ..., xk}, j ∈[i, k] from multiple moving 

virtual views P. The sequence xj is generated as a part from the original point cloud 

𝒳 ∈ RN×3. The virtual viewpoint 𝑝𝑗 ∈ 𝑅𝟛 is a coordinate of the sensor center moving 

along a predetermined trajectory. From each view-point 𝑝𝑗, original points 𝒳 divided 

into seen point 𝑥𝑗 ∈ 𝑅𝑛𝑗×𝟛  and unseen point 𝑦𝑗 ∈ 𝑅𝑚𝑗×𝟛  as 𝒳 = {𝑥𝑗 ∪ 𝑦𝑗}, 𝑁 = 𝑛𝑗 +

𝑚𝑗 caused by self-occlusion. Inspired by previous work [18], we define the generation 

of point clouds 𝑥𝑗 and virtual view-point 𝑝𝑗 through an injective mapping 𝑜𝑗(⋅), where 

𝑜𝑗: 𝒳 → 𝑥𝑗 map 𝑁 full points to 𝑛𝑗 occluding points.  

 



 

 

The mapping 𝑜𝑗 is mainly divided into three steps: first, transform point clouds 𝒳 from 

3D world reference into the reference frame of view-point 𝑝𝑗; second, compute the seen 

or unseen points by viewpoint 𝑝𝑗according to self-occlusion; third, inverse transform 

point clouds 𝑥𝑗 into world reference. When computing the seen or unseen parts in the 

second step, we simulate the generation method of LiDAR point clouds perceived from 

the real world. When a laser beam is emitted from the laser transmitter, reflection occurs 

when the laser beam encounters an opaque object surface. The receiver calculates the 

distance based on the reflected time to generate LiDAR point clouds. Thus, we consider 

viewpoints as the virtual laser emission center and simulate the self-occlusion to gen-

erate vehicle point clouds (visible 𝑥𝑗). For partial surfaces that cannot be sensed by the 

laser due to the self-occlusion problem, we treat them as invisible points 𝑦𝑗and remove 

them from original point clouds 𝒳. A sample for fusion model training is defined as 

input 𝑋 = {𝑥𝑗|𝑗 = 𝑖, … , 𝑘} and target ground truth𝒳. 

 

2.2 Problem definition 

To improve the quality of incomplete point clouds sensed from multiple consecutive 

frames, this paper designs the fusion target into two modules as registration and com-

pletion. The first module is to register 𝑘 − 𝑖 views of incomplete point clouds 𝑥𝑗 into 

the reference 𝑥𝑘 based on their transformation 𝑇𝑗𝑘. Then, using the union operation ∪ 

to concatenate transformed point clouds and adopting function δ to merge and refine 

point clouds as 𝑍. The Θ is defined as the parameters of neural networks in the complete 

module. Finally, predict complete results 𝒳̂ based on incomplete point clouds 𝑍 by us-

ing the compete module Θ. 

 𝒳̂ ≡ Θ(𝑍) = Θ (𝛿({𝑇𝑖𝑘𝑥𝑖 ∪ … 𝑇𝑗𝑘𝑥𝑗 … ∪ 𝑥𝑘})) (1) 

The homogeneous transformation 𝑇𝑗𝑘 ∈ 𝑅𝟜×𝟜  between point clouds 𝑥𝑗  and 𝑥𝑘 , 

where the 𝑇𝑗𝑘 contains rotation matrix 𝑅𝑗𝑘 ∈ 𝑅𝟛×𝟛 and translation vector 𝑡𝑗𝑘 ∈ 𝑅3. The 

training target of our model is defined as Eq. (2), including registration result 𝑇, regis-

tration module θ, and complete module Θ for fusion point clouds into 𝑋̂. The frame-

work's target is minimizing the loss 𝐽 among predicted fusion point clouds 𝒳̂ and the 

ground truth 𝒳. 

 𝑇, 𝜃, Θ = arg  𝑚𝑖𝑛𝑇𝑗𝑘 ∈ 𝒯,𝑗∈[𝑖,𝑘]𝐽(𝒳̂, 𝒳) (2) 

3 Framework design 

The framework of our proposed Argus network is designed as Fig. 2, which contains 

two modules multi-view cumulative registration and coarse-to-fine completion. The in-

put of the Argus is occlusion sequence as 𝑋 = {𝑥𝑖 , … 𝑥𝑗 , … 𝑥𝑘} as 𝑋 ∈ 𝑅(𝑘−𝑖)×𝑛𝑗×𝟛. The 

predicted outputs of the registration module are the 𝑘 − 𝑖 transformation matrices 𝑇𝑗𝑘 

and the merged point clouds 𝑍. The predicted output and ground truth of the complete 

module is 𝒳̂ and 𝒳. 
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Fig. 2. Framework of the Argus for multiple frames of point cloud registration and completion. 

3.1 Registration Module 

Feature extraction. To achieve the registration among adjacent frames 𝑥𝑗 to 𝑥𝑘, the 6-

DoF rigid transformation matrix 𝑇𝑗𝑘 is computed using registration module [22]. First, 

we adopt the weight-shared PointNet as a feature encoder to extract the global features 

of each view of vehicle point clouds. After fusing the global features of point clouds 𝑥𝑗 

and 𝑥𝑘, we use an MLP to compute the initial transformation 𝑇𝑗𝑘
0 . Through using the 

𝑇𝑗𝑘
0 , we transform the vehicle point clouds 𝑥𝑗into 𝑥𝑗(𝑇𝑗𝑘

0 ). Next, we use self- and cross-

attention in RNet to extract pointwise features 𝑓𝑗 and 𝑓𝑘 of 𝑥𝑗(𝑇𝑗𝑘
0 ) and 𝑥𝑘. Using the 

above extracted features𝑓𝑗and 𝑓𝑘 of two frames 𝑗 and 𝑘, we compute the similarity ma-

trix 𝑆𝑗𝑘 as 𝑆𝑗𝑘 = 𝑓𝑗 ⋅ 𝑓𝑘
𝑇 . To filter the corresponding point pairs with low similarity, we 

adopt the relaxation constraints of the similarity matrix as ∑ 𝑐𝑙𝑚

𝑛𝑗

𝑙=1 ≤ 1  and 

∑ 𝑐𝑙𝑚
𝑛𝑘
𝑚=1 ≤ 1, where the 𝑐𝑙𝑚 ∈ [0,1] [22]. The top-𝑛𝑘̅̅ ̅ correspondences are obtained 

as 𝐶𝑗𝑘 = {(𝐶𝑗,𝑘
𝑗

, 𝐶𝑘,𝑗
𝑘 )} from the similarity matrix 𝑆𝑗𝑘. According to the correspondences 

𝐶𝑗𝑘, RNet employ a weighted SVD algorithm to directly compute the transformation 

between frames at once, where not use the random sample consensus (RANSAC) 

method to avoid time-consuming multiple iterations. The transformation matrix 𝑇𝑗𝑘 be-

tween the frames 𝑗 and 𝑘 are computed. 

Cumulative registration. After computing the transformation matrix 𝑇𝑗𝑘 between the 

frames 𝑗 and 𝑘 , the point clouds 𝑥𝑗  and 𝑥𝑘  are registered into the same reference 

through using RNet. Due to the vehicle point clouds are obtained by successive views 

in autonomous driving, the transformation matrix 𝑇𝑗𝑘 is defined as the 𝑘 − 𝑗 + 1 trans-

formation matrix from 𝑇𝑗(𝑗+1)  to 𝑇(𝑘−1)𝑘  as shown in Eq.3. Besides, the 𝑇𝑗(𝑗+2)  also 

could be defined as the product of transformation 𝑇𝑗(𝑗+1) and 𝑇(𝑗+1)(𝑗+2). According to 



 

 

the above principle, the registration of point cloud 𝑋𝑗 enables be transformed into frame 

k through correction by modifying the 𝑇𝑗𝑘. The transformed k-j frames of vehicle point 

clouds are defined as 𝑍 ∈ 𝑅(𝑘−𝑗)×𝑁𝑗𝑘×𝟛, where𝑁𝑗𝑘 = 𝑛𝑗 + ⋯ + 𝑛𝑘. As the output of the 

registration module, the 𝑍 is the input of the next completion module.  

 𝑇jk = 𝑇j(j+1)𝑇(j+1)(j+2). . . 𝑇(k−2)(k−1)𝑇(k−1)k = 𝑇j(j+1)𝑇(j+1)(j+2). . . 𝑇(k−2)k =

𝑇j(j+1)𝑇(j+1)k  (3) 

3.2 Complete Module 

Coarse completion. After merging multiple frames of point clouds 𝑍, the point number 

𝑁𝑗𝑘 is a relatively large number so we first adopt a uniform down-sampling method to 

remove redundant points inspired by [2]. Next, the unstructured point clouds are con-

verted into regular 3D grids 𝑈 = {𝑢𝑎|𝑎 ∈ ℝ^3} in the coarse stage. In order to make 

3DCNN gridding layers differentiable on vertex 𝑢_𝑎, we defined a neighboring area 

𝒩(𝑢𝑎) = {𝑢𝑞|𝑞 ∈ ℝ^3} of grid 𝑢𝑎. The weight 𝑤𝑎 of grid 𝑢𝑎is initialized as the mean 

of its neighborhood grid weight 𝑤(𝑢𝑎, 𝑧) by using the neighboring points z allocated in 

the neighboring grid 𝑢𝑞 as shown in Eq. 4, where the function ψ is the interpolation 

function, the |𝒩(𝑢𝑎)| is the number of neighboring points in 𝒩(𝑢𝑎). 

 𝑤𝑎 = ∑
𝑤(𝑢𝑎,𝑧)

|𝒩(𝑢𝑎)|𝑧∈𝒩(𝑢𝑎) = ∑
𝜓(𝑧)

|𝒩(𝑢𝑎)|𝑧∈𝒩(𝑢𝑎)  (4) 

After calculating the weight w, the 3DCNN layers in the coarse complete stage utilize 

a skip connection to bridge 4 groups of 3D convolution layers and 4 groups of 3D de-

convolution layers with 2 groups of fully connected layers. The complete shapes are 

converted from grids into coarse point clouds 𝑍𝑐by using an inverse gridding step as 

Eq.5, where the point 𝑧𝑐  is defined as the weighted combination of weight 𝑤𝑞  and 

neighboring vertex 𝑢𝑞.  

 𝑧𝑐 = ∑ 𝑤𝑞𝑢𝑞∈𝒩(𝑢𝑎) 𝑢𝑞/ ∑ 𝑤𝑞𝑢𝑞∈𝒩(𝑢𝑎)  (5) 

Fine completion. After obtaining the complete results of coarse point clouds 𝑍𝑐  from 

the coarse stage, all features in 3D grids are aggregated as 𝑓𝑐 . Using the grid features 

𝑓𝑐, the 4-layer MLPs are designed to complete point clouds with more details, which 

means the MLPs tend to fit the residual offsets of coordinates between coarse complete 

point clouds and the ground truth. After obtaining the predicted registration matrix T 

and fine completion point clouds 𝒳̂, the weight and parameters of the proposed Argus 

model are optimized by back forward the loss between that of predicted and ground 

truth. 

3.3 Loss Function 

We define the loss function of the proposed Argus model into four terms, including 

registration loss of multiview point clouds 𝐿𝑟𝑒𝑔, merge loss of point distance among 
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multiview point cloud 𝐿𝑝𝑑, the complete loss of generated grid in the coarse stage 𝐿𝑔𝑟𝑖𝑑, 

and the complete loss of generate point clouds in the fine stage 𝐿𝐶𝐷. The registration 

loss 𝐿𝑟𝑒𝑔 is defined as the summation of multiple views' transformation differences be-

tween predicted and ground truth of rotation matrix 𝑅𝑗𝑘, 𝑅𝑗𝑘̂ and translate vector 𝑡𝑗𝑘, 

𝑡𝑗𝑘̂ as shown in Eq. 6.  

 𝐿𝑟𝑒𝑔 = ∑ |𝑅𝑗𝑘
𝑇̂ 𝑅𝑗𝑘 − 𝐼3|𝐹

2𝑘−1
𝑗=𝑖 + |𝑡𝑗𝑘̂ − 𝑡𝑗𝑘|2

2 (6) 

The merge loss 𝐿𝑝𝑑 is computed by the summation of the difference of point distance 

among k frames in Eq. 7.  

 𝐿𝑝𝑑 = ∑𝑘−1
𝑗=𝑖 |(𝑅𝑗𝑘̂𝑋𝑗 + 𝑡𝑗𝑘̂) − (𝑅𝑗𝑘𝑋𝑗 + 𝑡𝑗𝑘)|2

2 (7) 

The grid loss 𝐿𝑔𝑟𝑖𝑑 is defined as the grid difference in the coarse completion stage in 

Eq. 8, where the 𝑈 and 𝑈̂ are predicted grid and ground truth. 

 𝐿𝑔𝑟𝑖𝑑  =
1

D
 ∑||𝑈 −  𝑈̂ || (8) 

The 𝐿𝐶𝐷 term utilizes the Chamfer distance to estimate the fine complete loss be-

tween predicted and ground truth point clouds 𝒳 and  𝒳̂ in Eq. (9). 

 𝐿𝐶𝐷(𝒳, 𝒳̂) =
1

|𝒳|
∑ min

𝑥∈𝒳̂
||𝑥 − 𝑥̂||

2
𝑥∈𝒳 +

1

|𝒳̂|
∑ min

𝑥∈𝒳
||𝑥 − 𝑥̂||

2

𝑥∈𝒳̂  (9) 

4 Experiments 

4.1 Datasets 

Training stage. The proposed Argus model is trained using point cloud samples gen-

erated from synthetic vehicle objects in the ShapeNet dataset [14][23], where vehicle 

objects, stored as CAD models, consist of dense points and triangular surfaces. To sim-

ulate the characteristics of LiDAR point clouds, including sparse density and self-oc-

clusion, sparse and partially visible point clouds are extracted from virtual observation 

points, as detailed in Fig. 3. We select car objects (CAD model) from the ShapeNet 

dataset to generate the multiview point cloud for the Argus training, where point clouds 

are simulated from continuous frames with different views (e.g. view 1 and view 2). 

The seen (black) or unseen (grey) parts of point clouds sensed from view 1 or 2 are also 

different, which is similar to the vehicle perceived by LiDAR sensors during driving. 

Besides, we downsample the point cloud from CAD models to make their density as 

close as possible to that collected from LiDAR sensors. Due to the training target of 

Argus being to restore the vehicle shape from partial point clouds, the vehicle point 

clouds from CAD models do own the complete shape that satisfies our requirement. 

Each vehicle object is observed from six different viewpoints, resulting in six groups 

of point clouds per object as training samples. The transformation matrices between 

these six groups are provided as the ground truth for the registration module, while the 



 

 

complete point cloud of the vehicle object, including unseen regions, serves as the 

ground truth for the overall framework. 

Testing stage. This study evaluates the fusion performance of vehicle point clouds us-

ing object detection data from the KITTI dataset [21]. Since KITTI lacks ground truth 

labels specifically for vehicle registration and completion, the performance of vehicle 

detection is used to quantitatively analyze the fusion results of multiview point clouds. 

The vehicle detection task in the KITTI dataset includes 7,481 frames in the training 

set and 7,518 frames in the testing set. However, as the testing set lacks explicit ground 

truth, which is only accessible via server submission for vehicle detection tasks, we 

follow the approach in [24] that uses 2,240 frames for evaluating the performance of 

vehicle detection, based on which we build the testing dataset of vehicle fusion task 

with 2,401 vehicle objects in Section 4.2 to 4.4. To enhance the diversity of the testing 

samples, frames from different sequences are selected wherever possible. Additionally, 

the first 50 frames contain 31 vehicle objects to verify the effectiveness of individual 

components in the Ablation study in Section 4.5. 

 

Fig. 3. Simulation of point clouds from multiview are generated based on vehicle objects from 

the ShapeNet dataset (CAD model). Black points mean the seen part, and the gray points mean 

the unseen parts. 

4.2 Compare algorithm 

To evaluate the fusion performance of our proposed Argus model, we compare its re-

sults with several popular point cloud completion algorithms, including 3DCapsule 

[11], PCN [10], PFNet [13], GRNet [2], and PoinTr [25]. The comparison results are 

presented in Table 1, where we use three indicators—minimal matching distance 

(MMD), fidelity distance (FD), and consistency—to assess the completion perfor-

mance. MMD is computed as the Chamfer Distance (CD) between the predicted output 

point clouds and the most similar vehicle point clouds in ShapeNet. FD is defined as 

the average distance between each point in the input and its nearest neighbor in the 

predicted output. Consistency measures the average CD between the predicted outputs 

of point clouds for the same vehicle instance across multiple views. As shown in Table 

1, Argus achieves lower values for MMD, FD, and consistency compared to other mod-

els, indicating superior performance. In particular, the significantly improved MMD 

and consistency metrics highlight the effectiveness of Argus. A lower MMD indicates 
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that the completed shapes are more accurate and closely resemble general vehicle in-

stances, while better consistency reflects the robustness and uniformity of Argus’s com-

pletion results across multiple views. 

Table 1. Comparison results of our proposed Argus and other popular complete algorithms. 

Methods MMD (103) FD (103) Consistency 

(10-3) 

3DCapsule 2.962 3.508 1.951 

PCN 1.366 2.235 1.557 

PFNet 1.016 1.137 0.792 

GRNet 0.568 0.836 0.313 

PointTR 0.526 0.000 0.683 

Ours(Argus) 0.506 0.802 0.280 

4.3 Detection results 

To quantitatively evaluate the vehicle detection performance in driving scenes, we an-

alyze the experimental results on the KITTI dataset using three indicators: mean inter 

over union (mIoU), mean average orientation similarity (mAOS), and mean average 

precision (mAP) at two IoU thresholds, 0.5 and 0.75. The mIoU is calculated as the IoU 

of bounding boxes in Euclidean space between predicted outputs and ground truth. A 

higher mIoU indicates a larger overlap region, reflecting better vehicle detection per-

formance. The mAOS measures the similarity between the predicted vehicle orientation 

and the ground truth, with higher values indicating more accurate orientation predic-

tions. The mAP at an IoU threshold of 0.5 is the mean value of the average precision, 

computed for detection samples with an IoU greater than 0.5. These metrics compre-

hensively evaluate the detection accuracy and orientation precision of the proposed ap-

proach, providing a robust assessment of its performance in real-world driving scenes. 

 

Fig. 4. Comparison experimental results of vehicle detection visualization by PointPillar and 

combination of PointPillar and Argus models on KITTI dataset. The bounding box with red and 

green are the detection of predicted and ground truth, respectively. The mIoU is computed as the 

average value of the predicted vehicle objects in the current single frame; for instance, the mIoU 

is computed as the average of the three detected vehicles in the second column. 

Using the popular vehicle detection method PointPillar [26], we compare the detec-

tion performance of PointPillar alone and the combination of PointPillar and Argus 



 

 

(PointPillar+Argus), as shown in Table 2. The results indicate significant improve-

ments in detection performance when incorporating the Argus model. Notably, the 

mIoU improves substantially from 0.7722 to 0.8917, attributed to Argus enhancing the 

completeness of vehicle point clouds, which benefits the prediction of 3D bounding 

boxes in detection tasks. Additionally, the mAP values at both IoU thresholds (0.5 and 

0.75) show approximately a 10% improvement with Argus, further confirming its pos-

itive impact on vehicle detection. Moreover, Fig. 4 provides a visual comparison of 

vehicle detection results between PointPillar alone and PointPillar combined with Ar-

gus. The visualization clearly demonstrates that detection performance is significantly 

enhanced when the Argus model is integrated. These findings validate the effectiveness 

of Argus in supporting and improving vehicle detection tasks. 

Table 2. Comparison results of our proposed Argus and other popular complete algorithms. 

Methods PointPillar PointPillar+Argus 

mIoU 0.7722 0.8917 

mAOS 0.8876 0.9141 

mAP(IoU threshold=0.5) 0.7416 0.8534 

mAP(IoU threshold=0.75) 0.6687 0.7638 

4.4 Multiview analysis 

We evaluate the optimal number of views for the cumulative registration module in 

Argus, as illustrated in Fig. 5. The quantitative results in Fig. 5 (left) indicate that fusing 

point clouds from three views achieves superior vehicle detection performance com-

pared to using a single view, two views, or more than three views, regardless of whether 

the registration is performed using ICP or Argus. This improvement occurs because 

point clouds fused from fewer than three views lack sufficient information for effective 

vehicle detection, while merging more than three views introduces excessive redundant 

points and requires estimating a larger number of transformation matrices, which in-

creases the likelihood of registration errors. Fig. 5 (right) presents visualization results 

for different view numbers obtained from the cumulative registration module. It is ev-

ident that point clouds fused from three views are significantly denser and more com-

plete. The next subsection further compares the detection performance achieved by the 

cumulative registration module and ICP. 
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Fig. 5. Registration results of different view numbers based on baseline ICP and our proposed 

Argus model. our proposed multi-view cumulative registration module from multi-view vehicle 

point clouds. 

4.5 Ablation study 

To verify the effectiveness of each module of Argus, we design an ablation study to 

estimate the performance of vehicle detection in Table 3. The experimental results are 

computed on the first 50 consecutive frames in the validation set of the KITTI datasets. 

We estimate the modules' effectiveness of Argus, including the single view (SV), reg-

istration module set as ICP method as vanilla baseline (ICP), our proposed multiview 

cumulative registration module (MVR), and coarse-to-fine completion module (C2FC). 

Besides, the effectiveness is evaluated by the mIoU and mAP with the IoU threshold 

equal to 0.5. It is obvious that using both the designed MVR and C2FC are the most 

efficient modules for the detection performance. Especially after adding the C2FC mod-

ules, both mIoU and mAP are significantly increased around 0.05 and 0.07 respectively. 

Table 3. Ablation study of our proposed Argus method. 

No. SV ICP MVR C2FC mIoU mAP 

1 √    0.7706 0.7499 

2  √   0.7956 0.7546 

3   √  0.8003 0.7588 

4 √   √ 0.8541 0.8127 

5  √  √ 0.8905 0.8611 

6   √ √ 0.9023 0.8777 

4.6 Missing detection case 

Missed detection cases sometimes occur in the results produced by PointPillar. Argus 

has the potential to mitigate these issues as illustrated in Fig. 6. By fusing vehicle point 



 

 

clouds from previous frames, Argus focuses on regions near the vehicle detection to 

increase the likelihood of successfully detecting the vehicle. 

 

Fig. 6. Missing Detection Case. The bounding box with red and green are the detection of pre-

dicted and ground truth, respectively. 

5 Conclusion 

This paper proposes Argus to fusion point clouds from multiple views, enhancing ve-

hicle detection efficiency during autonomous driving. The training dataset is extracted 

from vehicle objects in the ShapeNet dataset, based on which sparse point clouds are 

simulated in the virtual perspectives to generate training samples. By leveraging the 

proposed multi-view cumulative registration and coarse-to-fine completion modules, 

vehicle detection performance on the KITTI dataset is significantly improved. Addi-

tionally, this paper compares the proposed approach with current popular completion 

models, which verify superior completion results on front, side, and rear perspectives. 

Furthermore, the proposed multi-view cumulative registration module shows better 

comparison results than the classical alignment baseline ICP algorithm under our pro-

posed multi-view cumulative strategy. Finally, this method enables improving the sit-

uation of the missed detection problem by fusing multi-view point clouds from multiple 

perspectives. In the future, we plan to extend the proposed model to additional applica-

tions, such as environmental perception for mobile robots to enhance their performance. 
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