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Abstract. Smart contract security constitutes the foundational cornerstone for 

ensuring the trusted operational integrity of blockchain ecosystems. In recent 

years, multi-task learning (MTL) architectures have been widely adopted in smart 

contract vulnerability detection, owing to their context-aware optimization and 

superior generalization capabilities compared to single-task learning (STL) 

frameworks. However, MTL-based approaches for smart contract vulnerability 

detection face two persistent challenges: (1) the negative transfer phenomenon, 

the mitigation of negative transfer via adaptive loss weighting remains underex-

plored in existing research. (2) performance degradation caused by the homoge-

neous contribution assumption where undifferentiated contract representations 

impair expert layer learning efficacy. To overcome these limitations, we propose 

a novel detection framework incorporating adaptive loss weight and entropy-

based feature enhancement. Our dual-weighting mechanism introduces: (1) dy-

namic loss coefficients that automatically balance task-specific optimization ob-

jectives based on evolving learning complexity and task significance, and (2) en-

tropy-aware attention weights that prioritize high-information contract features 

during expert network training. Comprehensive evaluations on real-world smart 

contract datasets demonstrate the framework's superior detection performance 

compared to three adaptive weighting baselines. Experimental results reveal sig-

nificant improvements in F1-score across multiple vulnerability types, validating 

the effectiveness of our approach in mitigating negative transfer while maintain-

ing robust concurrent detection capabilities. 

Keywords: Smart Contract, Vulnerability Detection, Adaptive Loss Weight, 

Entropy Weight. 

1 Introduction 

As a mature paradigm in blockchain-based decentralized architectures, smart contracts 

have become a focal point for academic research and industrial adoption, catalyzing 

methodological advancements in automated trust management [1,2,3,4,5,6]. However, 

this immutability of the code and the high value involved make smart contracts a prime 



target for cyberattacks [7]. When a vulnerability in smart contract code is identified, it 

will bring huge economic losses to the blockchain platform. “DAO” attack caused $60 

million in economic losses to the blockchain platform in 2016 [8]. These ongoing se-

curity incidents highlight the urgent need in blockchain technology to enhance contract 

vulnerability assessment frameworks. 

To date, numerous automated analysis frameworks have emerged to identify se-

curity weaknesses in contracts. Fuzz testing [9], dynamic analysis [10,11] and symbolic 

execution [12,13,14,15] are commonly used detection methods, which identify smart 

contract vulnerabilities through predefined rules. However, the multitude of vulnera-

bility types may lead to predefined patterns that do not cover all potential vulnerability 

types. Consequently, these methods can produce false positives or false negatives, af-

fecting their effectiveness in accurately detecting vulnerabilities [16]. Therefore, re-

searchers have recognized the need to explore alternative approaches to reduce costs 

and enhance the vulnerability detection performance. Recently, deep learning-based 

approaches for static code analysis have shown promise. 

Deep learning employs neural networks to automatically learn vulnerability pat-

tern features from data [17,18,19,20]. Among them, compared with the single-task 

learning model [19,21,22,23,24,25], models based on multi-task learning are capable 

of concurrently detecting multiple types of vulnerabilities and possess excellent scala-

bility [20,26,27,28]. However, existing models still face some challenges. (1) Treating 

the contribution of each smart contract to the expert layer equally causes the learning 

performance of the expert layer to decrease. (2) Negative transfer phenomenon de-

grades the model's generalization and overall performance. The adaptive loss weight 

method can mitigate the negative transfer. Existing work has shown that adaptive loss 

weight methods are effective in the text image field [29,30,31,32,33,34,35], but the 

differences between text image data and smart contract data and the characteristics of 

smart contract data make it difficult for the adaptive loss weight algorithm to be uni-

versal between the two. The impact of adaptive loss weights on vulnerability detection 

remains underexplored in existing research. Existing works support this conclusion 

[20,26,27,28]. 

To overcome these problems, we propose a model based on adaptive loss weight 

and entropy weight. First, information entropy is used to quantify the inherent 

knowledge of each smart contract, enabling discriminative weighting of their contribu-

tions to the expert layer. Then, we develop an adaptive loss weight algorithm to balance 

the diverse tasks in multitask learning, thereby effectively mitigating negative transfer. 

This study advances the field through three principal innovations: 

• We propose a novel entropy-weighted contribution allocation framework for hierar-

chical expert layers in smart contracts, enhancing vulnerability detection capabilities 

through context-aware prioritization of expert contributions. 

• We propose an adaptive loss weighting algorithm informed by the intrinsic charac-

teristics of smart contract data, aiming to mitigate negative transfer in multi-task 

learning while enhancing vulnerability detection performance. 

• The experimental study reveals that the effectiveness of adaptive loss weight algo-

rithms is not universal across different domains. The impact of adaptive loss weights 
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on vulnerability detection remains underexplored in existing research. Our work 

bridges this critical gap in the existing literature. 

Following this introduction, the discourse proceeds along three axes. Section 2 

elaborates on the proposed methodology. Section 3 systematizes the empirical valida-

tion through quantitative benchmarking. Section 4 concludes the paper by summarizing 

the key findings and contributions. 

2 Proposed Approach 

The proposed framework (Fig. 1) exhibits a tri-stage processing pipeline: Data Pro-

cessing, Model Building, and Model Training. Next, we'll take a closer look at each 

module. 

 

Fig. 1. Overall model flow chart. 

2.1 Data Processing 

Only 1% of the existing smart contract source code is public [20], while the smart con-

tract bytecode on the blockchain platform is public. Therefore, our proposed model 

takes the bytecode as input. Let the set of smart contract bytecodes be denoted as 

SCB𝑠𝑒𝑡 = {SCB1, SCB2, . . . , SCB𝑛}, with preprocessing conducted according to Equa-

tion (1). 

 𝐼𝑛𝑑𝑒𝑥𝑉 = Set(Tokenizer(Split(𝑆𝐶𝐵𝑖))), 𝑖𝜖𝑛 (1) 

Herein, 𝐼𝑛𝑑𝑒𝑥𝑉𝜖ℝ(𝑛,𝑘). 𝑛 denotes the number of smart contract bytecodes. 𝑘 denotes 

the number of tokens generated from the segmented instances of the smart contract 

bytecode. 𝑆𝑝𝑙𝑖𝑡(∙) denotes the process of partitioning a smart contract bytecode in-

stance into a set of byte tokens. 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(∙) denotes the transformation of a set of 

byte tokens into an index vector. 𝑆𝑒𝑡(∙) denotes the set of index vectors corresponding 

to all smart contract bytecodes. 
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2.2 Model Building 

The general basic model architecture, depicted in Fig. 2, comprises four components: 

Input Layer, Shared Layer, Entropy Weight Layer, and Branch Layer. 

 

Fig. 2. Model basic structure. 

Input Layer. The input layer, the first component of the model, receives external input 

𝐼𝑛𝑑𝑒𝑥𝑉. 

Share Layer. The share layer, the second component of the model, learns com-

mon semantic and syntactic features in smart contracts. These common characteristics 

are shared by the vulnerability branch layer and are common between different vulner-

ability branches. The share layer consists of four key layers. 

• Embedding Layer. The embedding layer maps each byte in the smart contract byte 

sequence to the vector space, as referenced in Equation (2). The embedding layer 

provides dual advantages for bytecode analysis: 1) Manifold-aware dimensionality 

reduction that projects high-dimensional bytecode sequences into compact latent 

representations while preserving semantic topology through neighborhood conser-

vation; 2) Geometry-preserving encoding where syntactically similar byte fragments 

maintain isomorphic relationships in the vector space. 

 𝑆𝐶𝐵𝑉  =  𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐼𝑛𝑑𝑒𝑥𝑉) (2) 
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Herein, 𝑆𝐶𝐵𝑉  𝜖 ℝ(𝑛,𝑘,𝑑). 𝑑 denotes the vector dimension corresponding to each byte 

token. 

• GRU Layer. The GRU architecture employs gate mechanisms to autonomously ex-

tract vulnerability patterns from byte sequences, as indicated in Equation (3). We 

selected the Gated Recurrent Unit (GRU) [36] for our model due to its efficiency in 

handling sequential bytecode inputs and its smaller parameter count compared to the 

Long Short-Term Memory (LSTM) [37] network, which is crucial for managing 

limited types of new vulnerabilities and minimizing parameter load in the shared 

layer. 

 𝑆𝐶𝐵𝑉1  =  𝐺𝑅𝑈(𝑆𝐶𝐵𝑉) (3) 

Herein, 𝑆𝐶𝐵𝑉1 𝜖 ℝ(𝑛,𝑑1) . 𝑑1 denotes the vector dimension produced by the GRU 

layer from 𝑛 vectors each of dimension 𝑑. 

• BN Layer. A Batch Normalization (BN) layer is appended after the GRU layer to 

accelerate the training and convergence of the neural network and mitigate the prob-

lem of vanishing gradient, as mentioned in Equation (4). 

 𝑆𝐶𝐵𝑉2  =  𝐵𝑎𝑡𝑐ℎ  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑆𝐶𝐵𝑉1) (4) 

Herein, 𝑆𝐶𝐵𝑉2 𝜖 ℝ(𝑛.𝑑1). The Batch Normalization layer does not alter the vector 

dimensionality. 

• Dropout Layer. A Dropout layer is added after the BN layer to prevent the neural 

network from overfitting. 

 𝑆𝐶𝐵𝑉3  =  𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑆𝐶𝐵𝑉2) (5) 

Herein, 𝑆𝐶𝐵𝑉3 𝜖 ℝ(𝑛,𝑑1). The dropout layer does not alter the vector dimensionality. 

Entropy Weight Layer. The entropy weight layer, the third component of the 

model, is designed to enhance the vulnerability detection capabilities of expert layer 

(branch layer). The amount of information contained in smart contracts with different 

vulnerability types is different, and the contribution of each smart contract to the task 

is also different. Information entropy can represent the amount of information. Infor-

mation entropy is used as the entropy weight of smart contracts to measure the amount 

of information contained in smart contracts. The calculation of information entropy is 

shown in Equation (6). 

 H(X)=− ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥)𝑥𝜖𝑋  (6) 

Herein, 𝑋 represents the smart contract bytecode. 𝐻(𝑋) represents the information en-

tropy corresponding to the smart contract bytecode. 𝑥  represents the byte in the 

bytecode. 𝑃(𝑥) represents the frequency of occurrence of a byte in the bytecode. 

To stabilize the training of the model, we average the information entropy accord-

ing to Equation (7). Herein, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋) represents the length of the smart contract 

bytecode. 

 𝐻(𝑋) =
𝐻(𝑋)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑋)
 (7) 



The entropy weight set (𝑆𝐶𝐵𝐻 ) corresponding to the smart contract bytecode set 

(𝑆𝐶𝐵𝑠𝑒𝑡) is obtained by Equation (8). 

 𝑆𝐶𝐵𝐻 = 𝑆𝑒𝑡(𝐻(𝑆𝐶𝐵𝑖)), 𝑖𝜖𝑛 (8) 

The weighted vector is computed using Equation (9). 

 𝑆𝐶𝐵𝑉𝐻 = 𝑆𝐶𝐵𝑉3 × 𝑆𝐶𝐵𝐻  (9) 

In the model instantiation stage, we use the Lambda architecture to combine the En-

tropy Weight Layer and the Share Layer. 

Branch Layer. The branch layer, the fourth component of the model, is used to 

detect concurrency vulnerabilities. Each vulnerability branch is built from the same 

neural network and is used to detect a vulnerability type. To obtain high-performance 

vulnerability detection branches with a limited dataset, the model parameters should be 

minimized. The probability of vulnerability risk for each branch is calculated according 

to Equation (10). 

 VD = Sigmoid(Dense(Dropout(BN(Dense(𝑆𝐶𝐵𝑉𝐻))))) (10) 

Herein, 𝑉𝐷𝜖(0,1). 𝑉𝐷 denotes the probability that a smart contract is susceptible to 

vulnerabilities. 

We focus on two types of vulnerability and build two branches of vulnerability. 

The proposed model can detect two types of vulnerabilities concurrently. This model 

has good scalability. When a new type of vulnerability is discovered, we just expand 

the new vulnerability branch after the shared layer to fine-tune the model. 

2.3 Model Training 

We design an adaptive loss weight algorithm based on Task Difficulty Rate (TDR) to 

mitigate negative transfer during model training. The TDR algorithm is presented in 

Algorithm 1, with its process described as follows. 

 

Algorithm 1 TDR Algorithm 

1. for each epoch e do 

2.    for each batch data i do 

3.        Get each task loss 𝐿𝑡 

4.        Store first batch loss 𝐿(𝑡,0) 

5.        for each task t do 

6.            𝑤𝑡 = (
𝐿𝑡

𝐿(𝑡,0)
)𝛼/∑ (

𝐿𝑡

𝐿(𝑡,0)
)𝛼𝑇

𝑡=1  

7.        end for 

8.        𝐿𝑜𝑠𝑠 =  ∑ 𝜔𝑡 × 𝐿𝑡 

9.        Use Loss to update model parameters. 

10.    end for 

11. end for 

1. Store the loss value of each task under the initial batch data. 
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2. Calculate the loss weight of each task under the current batch of data. The calculation 

of loss weight refers to Equation (11) and Equation (12). 𝐿𝑡 indicates the loss value 

of the task 𝑡. 𝐿(0,𝑡) indicates the initial loss value of task 𝑡. 𝑇 indicates the number 

of tasks. 𝛼 indicates a constant value. 𝑤𝑡  indicates the loss weight of the task 𝑡. 

 𝛾𝑡 =
𝐿𝑡

𝐿(0,𝑡)
 (11) 

 𝜔𝑡 =
(𝛾𝑡)𝛼

∑ 𝛾𝑡
𝛼𝑇

𝑡=1
 (12) 

3. The model’s overall loss is calculated based on the task's loss weight and loss value, 

which is used to update the model parameters. 

Time complexity analysis. Assume that 𝐸  is the number of 𝑒𝑝𝑜𝑐ℎ , 𝐵𝑆  is the 

number of 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒, and 𝑇 is the number of 𝑡𝑎𝑠𝑘. The time complexity of the TDR 

algorithm is 𝑂(𝐸 ×  𝐵𝑆 ×  𝑇), which is consistent with that of existing algorithms 

such as EMA, REMA, and JAME. 

2.4 Theoretical Derivation of the Collaborative Relationship between 

Entropy Weight and Adaptive Loss Weight 

Assume that 𝐿𝑖 = 𝑔(𝐻(𝑋), 𝜃𝑖), where 𝑖 denotes the 𝑖 − 𝑡ℎ task. 𝜃𝑖 denotes the model 

parameters of the 𝑖 − 𝑡ℎ task. 𝐿𝑖 denotes the loss of the 𝑖 − 𝑡ℎ task. As 𝐻(𝑋) increases, 

𝐿𝑖 also increases. Different tasks exhibit varying degrees of sensitivity to 𝐻(𝑋). When 
𝐿𝑖

𝐻(𝑥)
>

𝐿𝑗

𝐻(𝑥)
, it suggests that task 𝑖 is more sensitive to information entropy and should 

be assigned a higher weight. From Equation (11) and Equation (12), it can be observed 

that as 𝐿 increases, 𝛾 also increases, leading to a larger allocated weight. This is con-

sistent with the preceding analysis. 

3 Experiment 

We conduct comprehensive evaluations to address the following Research Questions 

(RQs): 

• RQ1: Whether the method improved the performance of concurrent detection of 

multiple vulnerabilities. 

• RQ2: Did Algorithm 1 outperform existing adaptive loss weight methods? And were 

existing adaptive loss weight methods suitable for smart contract vulnerability de-

tection? 

• RQ3: How do the parameters in Algorithm 1 affect the experimental results? 

• RQ4: Is the entropy weight method effective? 

• RQ5: Does the adaptive loss weight algorithm improve model performance at the 

expense of time efficiency? 



3.1 Datasets 

• Datasets 1: Due to computational constraints, we selected 22033 contracts for train-

ing and 2448 for testing from the existing dataset [27]. The details of Dataset 1 are 

shown in Fig. 3. Dataset 1 comprises two types of vulnerability, namely Redundant 

Fallback Function Vulnerability (RFFV) and Integer Overflow or Underflow Vul-

nerability (IOUV). Dataset 1 comprises smart contract instances deployed in real-

world production environments. 

• Dataset 2 and Dataset 3: Dataset 2 and Dataset 3 [38] are used to assess the effec-

tiveness of the entropy weight. Detailed information on Dataset 2 and Dataset 3 is 

shown in Fig. 3. Dataset 2 contains one type of vulnerability, Reentrancy Vulnera-

bility (REV), while Dataset 3 contains another type, Unchecked return value Vul-

nerability (UCV). Dataset 2 and Dataset 3 comprise production-deployed smart con-

tract instances collected from real-world operational environments, respectively. 

 

Fig. 3. Detailed information of Dataset. 

3.2 Experimental Configuration 

Table 1. Summary of model parameters. 

Parameter name Parameter value Parameter name Parameter value 

Hidden Units 

Embedding: 20, 

GRU: 128, 

Dropout: 0.3, Dense: 

[128,1] 

𝛼(TDR) 0.  − 0.9 

BatchSize 32 Learning Rate 10−3 

Optimizer Adam MAX Seq.Length 7500 

𝛽(EMA, REMA) 0.  − 0.9 Loss Function BCE 
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Hardware Configuration. All experiments were performed on server computing 

nodes with the CentOS operating system. The computing nodes were equipped with 

Intel Xeon E5-2620 v4 processors. The processor model was 2.40 GHz, 6 cores. The 

memory was 64GiB. 

Software Configuration. The code was written in Python 3.7.3, and the third-

party libraries used in the process included Tensorflow 2.11.0, Pandas 0.24.2, Numpy 

1.21.6 and Keras 2.11.0. 

Model Parameters. Model parameters were shown in Table 1. 

3.3 Experiments 

(1) Answer to RQ1: As shown in Fig. 4 and Fig. 5, we designed four sets of experi-

ments to confirm the contribution of each submodule to the overall model. 

 

Fig. 4. Under vulnerability branch 1, ablation 

study results. 

 

Fig. 5. Under vulnerability branch 2, ablation 

study results. 

• Method1: The model removes the entropy weight layer and does not employ the 

Algorithm 1. 

• Method2: The model includes an entropy weight layer, but the Algorithm 1 is not 

applied. 

• Method3: The model removes the entropy weight layer, yet the Algorithm 1 is ap-

plied. 

• Method4: The model incorporates an entropy weight layer and applies the Algorithm 

1. 

Vulnerability Branch 1. The experimental results demonstrate significant perfor-

mance enhancements through the integration of entropy weighting and TDR Algorithm. 

Compared to the basic model, the entropy-weighted layer achieved respective improve-

ments of 1.05%, 0.76%, 0.81%, and 0.79% in accuracy, precision, recall, and F1 score. 

Algorithm 1 exhibited more pronounced gains, particularly in recall (3.98%↑) and the 

F1 score (2.02%↑). The combined implementation yielded a notable 19.62% recall 

improvement and 5.14% F1-score elevation, albeit with a marginal 1.87% precision 

reduction. Our hybrid approach achieved optimal F1 score performance, indicating 

     

    

     

     

     

     

     

  

     

     

     

     

     

     

    

     

       

       

       

       

            

 

  
  
  
 

  
      
         
        

     

     

     

     

     

     

    

     

     

     

    

  

     

     

     

     

       

       

       

       

            

 

  
  
  
 

  
      
         
        



effective model optimization through balanced multimetric enhancement. These sys-

tematic improvements substantiate the methodology's efficacy in addressing class im-

balance and feature representation challenges. 

Vulnerability Branch 2. Compared to the basic model, the addition of the entropy 

weight layer resulted in a slight decrease in recall, while significantly increasing preci-

sion (accuracy +0.73%, precision +15.54%, recall -3.97%, F1 score +0.16%). Incorpo-

rating Algorithm 1 alone slightly decreased recall but improved accuracy, precision, 

and F1 score (accuracy +0.2%, precision +1.98%, recall -0.01%, F1 score +0.53%). 

When both the entropy weight layer and Algorithm 1 were combined, the model 

achieved notable improvements in precision, recall, and F1 score, despite a slight de-

crease in accuracy (accuracy -0.48%, precision +10.71%, recall +11.09%, F1 score 

+11.54%). Our hybrid approach yielded the highest F1 score. 

Scalability. We construct a new branch to systematically assess the scalability of the 

model. The experimental results indicated that Vulnerability Branch 3 had an accuracy 

of 62.34%, a precision of 61.32%, a recall of 89.95%, and an F1 score of 72.75%. This 

shows that the model proposed in this paper has excellent scalability. 

(2) Answer to RQ2: To validate the applicability of existing adaptive loss weight 

algorithms for smart contract vulnerability detection, we experimented with three pop-

ular algorithms, namely EMA, REMA, and JAME. It could be seen from Table 2 that 

training models based on JAME algorithm caused the loss to disappear. To avoid the 

influence of entropy weights on adaptive loss weights, the following experimental mod-

els do not include the entropy weight layer. As summarized in Table 2, focusing on the 

comprehensive metric, when 𝛽 = 0.7 and 𝛽 = 0.3, the EMA algorithm and the REMA 

algorithm achieved the optimal performance of the overall model respectively. 

Vulnerability Branch 1. As summarized in Table 2, Algorithm 1 demonstrates sys-

tematic improvements over baseline methods in key evaluation metrics. Compared to 

the EMA algorithm's peak performance (53.85% accuracy, 55.59% precision, 84.15% 

recall, 66.95% F1), Algorithm 1 achieves significant enhancements of 8.32% in accu-

racy, 3.95% in precision, 15.34% in recall, and 7.55% in F1-score. When evaluated 

against the REMA algorithm's optimal results (55.54% accuracy, 55.54% precision, 

100% recall, 71.42% F1), Algorithm 1 exhibits marginal yet consistent gains of 6.63% 

accuracy, 4% precision and 3.08% in the F1 score, despite a negligible 0.51% recall 

reduction. This comparative analysis underscores Algorithm 1's robust capability to 

balance performance improvements across complementary metrics. 

Vulnerability Branch 2. As summarized in Table 2, Algorithm 1 demonstrates sig-

nificant performance improvements over baseline methods. Compared to the EMA al-

gorithm's optimal metrics (73.71% accuracy, 31.29% precision, 65.84% recall, 42.42% 

F1), Algorithm 1 achieves enhancements of 18.01% in accuracy (+59.11% precision 

and +21.05% F1) despite a 16.94% recall reduction. When benchmarked against the 

REMA algorithm's peak performance (74.35% accuracy, 31.72% precision, 64.48% re-

call, 42.52% F1), Algorithm 1 maintains superior gains with 20.3% higher accuracy, 

58.68% precision improvement, and 20.95% F1 increase, albeit with a 15.58% recall 

trade-off. This comparative analysis highlights Algorithm 1's enhanced classification 

efficacy through precision-F1 optimization, particularly notable given the inherent re-

call-precision dichotomy in imbalanced learning scenarios. 
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Table 2. Experimental results of existing methods under different parameter values. 

Metho

d 

Pa-

ram-

eter 

Vulnerability Branch 1 Vulnerability Branch 2 

Acc Pre Rec F1 Acc Pre Rec F1 

TDR 0.1 
62.17

% 

59.54

% 

99.49

% 

74.50

% 

91.72

% 

90.40

% 

48.90

% 

63.47

% 

EMA 

0.1 
53.81

% 

55.52

% 

84.73

% 

67.08

% 

76.48

% 

21.85

% 

23.22

% 

22.51

% 

0.2 
54.05

% 

55.69

% 

84.58

% 

67.16

% 

76.28

% 

22.00

% 

24.04

% 

22.97

% 

0.3 
53.93

% 

55.60

% 

84.73

% 

67.14

% 

76.48

% 

22.27

% 

24.04

% 

23.12

% 

0.4 
46.70

% 

56.96

% 

16.57

% 

25.67

% 

75.36

% 

20.80

% 

24.04

% 

22.30

% 

0.5 
54.34

% 

55.80

% 

85.52

% 

67.54

% 

75.64

% 

21.29

% 

24.31

% 

22.70

% 

0.6 
55.62
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Fig. 6. Under vulnerability branch 1, experi-

mental study of Cross-Domain adaptive loss 

weight algorithms in smart contract vulnera-

bility detection. 

 

Fig. 7. Under vulnerability branch 2, experi-

mental study of Cross-Domain adaptive loss 

weight algorithms in smart contract vulnera-

bility detection. 

As shown in Fig. 6 and Fig. 7, the performance of both vulnerability detection branches 

deteriorated after the introduction of the EMA algorithm on the basic model. Upon 

integrating the REMA algorithm into the basic model, while the comprehensive F1 

score of the vulnerability detection branch 1 increased by 1.74%, the comprehensive 

F1 score of the vulnerability detection branch 2 decreased by 19.1%. After incorporat-

ing the JAME algorithm into the baseline model, there was a loss of loss during the 

model training process. Therefore, adaptive loss weight algorithms from other domains 

are not readily applicable to the field of vulnerability detection. 

(3) Answer to RQ3: Our ablation study of hyperparameter 𝛼 in the TDR Algo-

rithm reveals task-specific metric tradeoffs across vulnerability detection branches (Ta-

ble 3). For branch 1, 𝛼 = 0.7 maximizes accuracy (0.633), while 𝛼 = 0.1 achieves Pa-

reto-optimal F1 scores through balanced precision-recall synergy (F1: 0.745). Branch 

2 demonstrates asymmetric optimization dynamics, with 𝛼 = 0.1 simultaneously max-

imizing accuracy (0.914) and F1 (0.867) despite suboptimal precision. Thus, the TDR 

algorithm achieves superior model performance when 𝛼 = 0.1. 

Table 3. Experimental results of TDR algorithm under different parameter values. 

Pa-

ram-

eter 

Vulnerability Branch 1 Vulnerability Branch 2 

Acc Pre Rec F1 Acc Pre Rec F1 

0.1 62.17% 59.54% 99.49% 74.50% 91.72% 90.40% 48.90% 63.47% 

0.2 61.21% 58.93% 99.49% 74.02% 82.39% 44.04% 72.67% 54.84% 

0.3 62.21% 59.60% 99.27% 74.48% 85.28% 52.60% 70.60% 60.28% 

0.4 62.62% 60.20% 96.45% 74.13% 90.43% 92.10% 38.25% 54.05% 

0.5 61.21% 58.95% 99.34% 73.99% 82.27% 53.78% 72.13% 61.62% 

0.6 62.41% 60.00% 97.03% 74.14% 90.19% 88.60% 38.25% 53.43% 

0.7 63.30% 62.71% 83.71% 71.70% 91.23% 85.23% 48.90% 62.15% 

0.8 62.58% 63.28% 77.71% 69.76% 91.07% 89.56% 44.53% 59.48% 

0.9 61.01% 65.30% 63.60% 64.42% 91.03% 89.07% 44.53% 59.38% 
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(4) Answer to RQ4: Higher information entropy in smart contracts enriches their in-

formational content, enhancing model learning of vulnerability patterns and improving 

detection performance. Ablation experiments (Fig. 4 and Fig. 5) confirm the efficacy 

of entropy weighting in boosting vulnerability detection capabilities. We further exam-

ine the entropy weighting mechanism through additional analytical dimensions to sub-

stantiate its effectiveness. 

The contract abstract syntax tree generates multiple token sequences using differ-

ent traversal methods. If the model achieves the best vulnerability detection perfor-

mance on a set of token sequences with high information entropy, it indirectly substan-

tiates the effectiveness of information entropy as an entropy weight. We conducted ex-

perimental validation on a smart contract vulnerability detection model [38] using Da-

taset 2 and Dataset 3, respectively. 

Empirical data (Table 4) demonstrate a positive correlation between token se-

quence entropy levels and vulnerability detection efficacy, confirming information en-

tropy's validity as a quantifiable metric for evaluating syntactic patterns' discriminative 

contributions to detection models. 

Additionally, we validate the ability of entropy weights to enhance the perfor-

mance of vulnerability detection models on another state-of-the-art model (VulnSense 

[22]) and dataset [39]. As indicated in Table 5, the method by Duy et al. demonstrated 

significant improvements in model performance on four evaluation metrics after incor-

porating entropy weights. 

Table 4. Association analysis between data information entropy and model vulnerability detec-

tion performance in Dataset 2 and Dataset 3. 

Dataset Methods 

Infor-

mation 

Entropy 

Accuracy Precision Recall F1 

Dataset2 

Pysolc+DFS 5.7850 90.67% 81.17% 67.20% 73.53% 

Pysolc+BFS 5.2943 90.55% 90.16% 59.14% 71.43% 

Pysolc+SBT 4.2055 89.37% 77.36% 66.13% 71.30% 

Dataset3 

Pysolc+DFS 5.7925 90.11% 73.74% 78.49% 76.04% 

Pysolc+BFS 5.2145 90.43% 81.29% 67.74% 73.90% 

Pysolc+SBT 4.2050 85.91% 62.01% 76.34% 68.43% 

Table 5. Experimental comparison of Du  et al.’s method with and without entropy weights. 

Method Accuracy Precision Recall F1 

VulnSense 57.29% 78.24% 64.03% 70.43% 

VulnSense+ En-

tropy Weight 
73.71% 78.53% 92.09% 84.77% 

 

Answer to RQ5: This study quantifies the computational efficiency of our adaptive 

loss weight mechanism through rigorous time complexity analysis. The proposed algo-

rithm introduces only minimal overhead from its weight derivation operations (Equa-

tion (11) and Equation (12)), requiring merely 0.02 seconds cumulative execution time 

across 689 training iterations on a 𝑁 = 22033 smart contract dataset with batch size 

32. This represents < 0.005%  of total training duration, demonstrating that our 



performance gains in vulnerability detection are achieved without compromising com-

putational tractability. The subsecond latency confirms the algorithm's suitability for 

large-scale smart contract analysis while maintaining a strict linear-time complexity 

𝑂(𝑇) relative to task count 𝑇. 

4 Conclusion 

This study addresses limitations in MTL for smart contract vulnerability detection by 

proposing an entropy-weighted adaptive loss framework to mitigate negative transfer 

and challenge the homogeneous contribution assumption. We identify critical deficien-

cies in existing MTL approaches: 1) equal weighting of contract contributions degrades 

expert layer effectiveness, and 2) conventional adaptive loss weight algorithms 

(EMA/REMA/JAME) inadequately handle smart contracts' unique data characteristics. 

Our solution introduces a Task Difficulty Rate (TDR) mechanism that synergizes en-

tropy-based feature importance with dynamic loss adjustment. Experimental validation 

demonstrates substantial performance gains, with TDR achieving F1-score improve-

ments of 7.87% and 30.74% for distinct vulnerability types compared to baseline mod-

els. The results establish a new paradigm for contract-aware MTL optimization, sug-

gesting future extensions through multimodal data fusion with adaptive weighting ar-

chitectures. 
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