

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Smart Contract Vulnerabilities Detection with Adaptive

Loss Weight and Entropy Weight

Jingyuan Hu1 and Peng Su2() and Xuanxia Yao3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China.
hujingyuan@iie.ac.cn

2 School of Computer and Communication Engineering, University of Science and Technology

Beijing, Beijing, China. D202310412@xs.ustb.edu.cn
3 School of Computer and Communication Engineering, University of Science and Technology

Beijing, Beijing, China. Kathy.yao@163.com

Abstract. Smart contract security constitutes the foundational cornerstone for

ensuring the trusted operational integrity of blockchain ecosystems. In recent

years, multi-task learning (MTL) architectures have been widely adopted in smart

contract vulnerability detection, owing to their context-aware optimization and

superior generalization capabilities compared to single-task learning (STL)

frameworks. However, MTL-based approaches for smart contract vulnerability

detection face two persistent challenges: (1) the negative transfer phenomenon,

the mitigation of negative transfer via adaptive loss weighting remains underex-

plored in existing research. (2) performance degradation caused by the homoge-

neous contribution assumption where undifferentiated contract representations

impair expert layer learning efficacy. To overcome these limitations, we propose

a novel detection framework incorporating adaptive loss weight and entropy-

based feature enhancement. Our dual-weighting mechanism introduces: (1) dy-

namic loss coefficients that automatically balance task-specific optimization ob-

jectives based on evolving learning complexity and task significance, and (2) en-

tropy-aware attention weights that prioritize high-information contract features

during expert network training. Comprehensive evaluations on real-world smart

contract datasets demonstrate the framework's superior detection performance

compared to three adaptive weighting baselines. Experimental results reveal sig-

nificant improvements in F1-score across multiple vulnerability types, validating

the effectiveness of our approach in mitigating negative transfer while maintain-

ing robust concurrent detection capabilities.

Keywords: Smart Contract, Vulnerability Detection, Adaptive Loss Weight,

Entropy Weight.

1 Introduction

As a mature paradigm in blockchain-based decentralized architectures, smart contracts

have become a focal point for academic research and industrial adoption, catalyzing

methodological advancements in automated trust management [1,2,3,4,5,6]. However,

this immutability of the code and the high value involved make smart contracts a prime

target for cyberattacks [7]. When a vulnerability in smart contract code is identified, it

will bring huge economic losses to the blockchain platform. “DAO” attack caused $60

million in economic losses to the blockchain platform in 2016 [8]. These ongoing se-

curity incidents highlight the urgent need in blockchain technology to enhance contract

vulnerability assessment frameworks.

To date, numerous automated analysis frameworks have emerged to identify se-

curity weaknesses in contracts. Fuzz testing [9], dynamic analysis [10,11] and symbolic

execution [12,13,14,15] are commonly used detection methods, which identify smart

contract vulnerabilities through predefined rules. However, the multitude of vulnera-

bility types may lead to predefined patterns that do not cover all potential vulnerability

types. Consequently, these methods can produce false positives or false negatives, af-

fecting their effectiveness in accurately detecting vulnerabilities [16]. Therefore, re-

searchers have recognized the need to explore alternative approaches to reduce costs

and enhance the vulnerability detection performance. Recently, deep learning-based

approaches for static code analysis have shown promise.

Deep learning employs neural networks to automatically learn vulnerability pat-

tern features from data [17,18,19,20]. Among them, compared with the single-task

learning model [19,21,22,23,24,25], models based on multi-task learning are capable

of concurrently detecting multiple types of vulnerabilities and possess excellent scala-

bility [20,26,27,28]. However, existing models still face some challenges. (1) Treating

the contribution of each smart contract to the expert layer equally causes the learning

performance of the expert layer to decrease. (2) Negative transfer phenomenon de-

grades the model's generalization and overall performance. The adaptive loss weight

method can mitigate the negative transfer. Existing work has shown that adaptive loss

weight methods are effective in the text image field [29,30,31,32,33,34,35], but the

differences between text image data and smart contract data and the characteristics of

smart contract data make it difficult for the adaptive loss weight algorithm to be uni-

versal between the two. The impact of adaptive loss weights on vulnerability detection

remains underexplored in existing research. Existing works support this conclusion

[20,26,27,28].

To overcome these problems, we propose a model based on adaptive loss weight

and entropy weight. First, information entropy is used to quantify the inherent

knowledge of each smart contract, enabling discriminative weighting of their contribu-

tions to the expert layer. Then, we develop an adaptive loss weight algorithm to balance

the diverse tasks in multitask learning, thereby effectively mitigating negative transfer.

This study advances the field through three principal innovations:

• We propose a novel entropy-weighted contribution allocation framework for hierar-

chical expert layers in smart contracts, enhancing vulnerability detection capabilities

through context-aware prioritization of expert contributions.

• We propose an adaptive loss weighting algorithm informed by the intrinsic charac-

teristics of smart contract data, aiming to mitigate negative transfer in multi-task

learning while enhancing vulnerability detection performance.

• The experimental study reveals that the effectiveness of adaptive loss weight algo-

rithms is not universal across different domains. The impact of adaptive loss weights

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

on vulnerability detection remains underexplored in existing research. Our work

bridges this critical gap in the existing literature.

Following this introduction, the discourse proceeds along three axes. Section 2

elaborates on the proposed methodology. Section 3 systematizes the empirical valida-

tion through quantitative benchmarking. Section 4 concludes the paper by summarizing

the key findings and contributions.

2 Proposed Approach

The proposed framework (Fig. 1) exhibits a tri-stage processing pipeline: Data Pro-

cessing, Model Building, and Model Training. Next, we'll take a closer look at each

module.

Fig. 1. Overall model flow chart.

2.1 Data Processing

Only 1% of the existing smart contract source code is public [20], while the smart con-

tract bytecode on the blockchain platform is public. Therefore, our proposed model

takes the bytecode as input. Let the set of smart contract bytecodes be denoted as

SCB𝑠𝑒𝑡 = {SCB1, SCB2, . . . , SCB𝑛}, with preprocessing conducted according to Equa-

tion (1).

 𝐼𝑛𝑑𝑒𝑥𝑉 = Set(Tokenizer(Split(𝑆𝐶𝐵𝑖))), 𝑖𝜖𝑛 (1)

Herein, 𝐼𝑛𝑑𝑒𝑥𝑉𝜖ℝ(𝑛,𝑘). 𝑛 denotes the number of smart contract bytecodes. 𝑘 denotes

the number of tokens generated from the segmented instances of the smart contract

bytecode. 𝑆𝑝𝑙𝑖𝑡(∙) denotes the process of partitioning a smart contract bytecode in-

stance into a set of byte tokens. 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(∙) denotes the transformation of a set of

byte tokens into an index vector. 𝑆𝑒𝑡(∙) denotes the set of index vectors corresponding

to all smart contract bytecodes.

 mart

 ontract

 tecode

 egmentation

 okeni er

 nde

 mbedding a er

 ector

 hare a er

 ranch

 ranch

loss

lossn

lossall

 pdate odel arameters

 orrespondence

2.2 Model Building

The general basic model architecture, depicted in Fig. 2, comprises four components:

Input Layer, Shared Layer, Entropy Weight Layer, and Branch Layer.

Fig. 2. Model basic structure.

Input Layer. The input layer, the first component of the model, receives external input

𝐼𝑛𝑑𝑒𝑥𝑉.

Share Layer. The share layer, the second component of the model, learns com-

mon semantic and syntactic features in smart contracts. These common characteristics

are shared by the vulnerability branch layer and are common between different vulner-

ability branches. The share layer consists of four key layers.

• Embedding Layer. The embedding layer maps each byte in the smart contract byte

sequence to the vector space, as referenced in Equation (2). The embedding layer

provides dual advantages for bytecode analysis: 1) Manifold-aware dimensionality

reduction that projects high-dimensional bytecode sequences into compact latent

representations while preserving semantic topology through neighborhood conser-

vation; 2) Geometry-preserving encoding where syntactically similar byte fragments

maintain isomorphic relationships in the vector space.

 𝑆𝐶𝐵𝑉 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐼𝑛𝑑𝑒𝑥𝑉) (2)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Herein, 𝑆𝐶𝐵𝑉 𝜖 ℝ(𝑛,𝑘,𝑑). 𝑑 denotes the vector dimension corresponding to each byte

token.

• GRU Layer. The GRU architecture employs gate mechanisms to autonomously ex-

tract vulnerability patterns from byte sequences, as indicated in Equation (3). We

selected the Gated Recurrent Unit (GRU) [36] for our model due to its efficiency in

handling sequential bytecode inputs and its smaller parameter count compared to the

Long Short-Term Memory (LSTM) [37] network, which is crucial for managing

limited types of new vulnerabilities and minimizing parameter load in the shared

layer.

 𝑆𝐶𝐵𝑉1 = 𝐺𝑅𝑈(𝑆𝐶𝐵𝑉) (3)

Herein, 𝑆𝐶𝐵𝑉1 𝜖 ℝ(𝑛,𝑑1) . 𝑑1 denotes the vector dimension produced by the GRU

layer from 𝑛 vectors each of dimension 𝑑.

• BN Layer. A Batch Normalization (BN) layer is appended after the GRU layer to

accelerate the training and convergence of the neural network and mitigate the prob-

lem of vanishing gradient, as mentioned in Equation (4).

 𝑆𝐶𝐵𝑉2 = 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑆𝐶𝐵𝑉1) (4)

Herein, 𝑆𝐶𝐵𝑉2 𝜖 ℝ(𝑛.𝑑1). The Batch Normalization layer does not alter the vector

dimensionality.

• Dropout Layer. A Dropout layer is added after the BN layer to prevent the neural

network from overfitting.

 𝑆𝐶𝐵𝑉3 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑆𝐶𝐵𝑉2) (5)

Herein, 𝑆𝐶𝐵𝑉3 𝜖 ℝ(𝑛,𝑑1). The dropout layer does not alter the vector dimensionality.

Entropy Weight Layer. The entropy weight layer, the third component of the

model, is designed to enhance the vulnerability detection capabilities of expert layer

(branch layer). The amount of information contained in smart contracts with different

vulnerability types is different, and the contribution of each smart contract to the task

is also different. Information entropy can represent the amount of information. Infor-

mation entropy is used as the entropy weight of smart contracts to measure the amount

of information contained in smart contracts. The calculation of information entropy is

shown in Equation (6).

 H(X)=− ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥)𝑥𝜖𝑋 (6)

Herein, 𝑋 represents the smart contract bytecode. 𝐻(𝑋) represents the information en-

tropy corresponding to the smart contract bytecode. 𝑥 represents the byte in the

bytecode. 𝑃(𝑥) represents the frequency of occurrence of a byte in the bytecode.

To stabilize the training of the model, we average the information entropy accord-

ing to Equation (7). Herein, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋) represents the length of the smart contract

bytecode.

 𝐻(𝑋) =
𝐻(𝑋)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑋)
 (7)

The entropy weight set (𝑆𝐶𝐵𝐻) corresponding to the smart contract bytecode set

(𝑆𝐶𝐵𝑠𝑒𝑡) is obtained by Equation (8).

 𝑆𝐶𝐵𝐻 = 𝑆𝑒𝑡(𝐻(𝑆𝐶𝐵𝑖)), 𝑖𝜖𝑛 (8)

The weighted vector is computed using Equation (9).

 𝑆𝐶𝐵𝑉𝐻 = 𝑆𝐶𝐵𝑉3 × 𝑆𝐶𝐵𝐻 (9)

In the model instantiation stage, we use the Lambda architecture to combine the En-

tropy Weight Layer and the Share Layer.

Branch Layer. The branch layer, the fourth component of the model, is used to

detect concurrency vulnerabilities. Each vulnerability branch is built from the same

neural network and is used to detect a vulnerability type. To obtain high-performance

vulnerability detection branches with a limited dataset, the model parameters should be

minimized. The probability of vulnerability risk for each branch is calculated according

to Equation (10).

 VD = Sigmoid(Dense(Dropout(BN(Dense(𝑆𝐶𝐵𝑉𝐻))))) (10)

Herein, 𝑉𝐷𝜖(0,1). 𝑉𝐷 denotes the probability that a smart contract is susceptible to

vulnerabilities.

We focus on two types of vulnerability and build two branches of vulnerability.

The proposed model can detect two types of vulnerabilities concurrently. This model

has good scalability. When a new type of vulnerability is discovered, we just expand

the new vulnerability branch after the shared layer to fine-tune the model.

2.3 Model Training

We design an adaptive loss weight algorithm based on Task Difficulty Rate (TDR) to

mitigate negative transfer during model training. The TDR algorithm is presented in

Algorithm 1, with its process described as follows.

Algorithm 1 TDR Algorithm

1. for each epoch e do

2. for each batch data i do

3. Get each task loss 𝐿𝑡

4. Store first batch loss 𝐿(𝑡,0)

5. for each task t do

6. 𝑤𝑡 = (
𝐿𝑡

𝐿(𝑡,0)
)𝛼/∑ (

𝐿𝑡

𝐿(𝑡,0)
)𝛼𝑇

𝑡=1

7. end for

8. 𝐿𝑜𝑠𝑠 = ∑ 𝜔𝑡 × 𝐿𝑡

9. Use Loss to update model parameters.

10. end for

11. end for

1. Store the loss value of each task under the initial batch data.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2. Calculate the loss weight of each task under the current batch of data. The calculation

of loss weight refers to Equation (11) and Equation (12). 𝐿𝑡 indicates the loss value

of the task 𝑡. 𝐿(0,𝑡) indicates the initial loss value of task 𝑡. 𝑇 indicates the number

of tasks. 𝛼 indicates a constant value. 𝑤𝑡 indicates the loss weight of the task 𝑡.

 𝛾𝑡 =
𝐿𝑡

𝐿(0,𝑡)
 (11)

 𝜔𝑡 =
(𝛾𝑡)𝛼

∑ 𝛾𝑡
𝛼𝑇

𝑡=1
 (12)

3. The model’s overall loss is calculated based on the task's loss weight and loss value,

which is used to update the model parameters.

Time complexity analysis. Assume that 𝐸 is the number of 𝑒𝑝𝑜𝑐ℎ , 𝐵𝑆 is the

number of 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒, and 𝑇 is the number of 𝑡𝑎𝑠𝑘. The time complexity of the TDR

algorithm is 𝑂(𝐸 × 𝐵𝑆 × 𝑇), which is consistent with that of existing algorithms

such as EMA, REMA, and JAME.

2.4 Theoretical Derivation of the Collaborative Relationship between

Entropy Weight and Adaptive Loss Weight

Assume that 𝐿𝑖 = 𝑔(𝐻(𝑋), 𝜃𝑖), where 𝑖 denotes the 𝑖 − 𝑡ℎ task. 𝜃𝑖 denotes the model

parameters of the 𝑖 − 𝑡ℎ task. 𝐿𝑖 denotes the loss of the 𝑖 − 𝑡ℎ task. As 𝐻(𝑋) increases,

𝐿𝑖 also increases. Different tasks exhibit varying degrees of sensitivity to 𝐻(𝑋). When
𝐿𝑖

𝐻(𝑥)
>

𝐿𝑗

𝐻(𝑥)
, it suggests that task 𝑖 is more sensitive to information entropy and should

be assigned a higher weight. From Equation (11) and Equation (12), it can be observed

that as 𝐿 increases, 𝛾 also increases, leading to a larger allocated weight. This is con-

sistent with the preceding analysis.

3 Experiment

We conduct comprehensive evaluations to address the following Research Questions

(RQs):

• RQ1: Whether the method improved the performance of concurrent detection of

multiple vulnerabilities.

• RQ2: Did Algorithm 1 outperform existing adaptive loss weight methods? And were

existing adaptive loss weight methods suitable for smart contract vulnerability de-

tection?

• RQ3: How do the parameters in Algorithm 1 affect the experimental results?

• RQ4: Is the entropy weight method effective?

• RQ5: Does the adaptive loss weight algorithm improve model performance at the

expense of time efficiency?

3.1 Datasets

• Datasets 1: Due to computational constraints, we selected 22033 contracts for train-

ing and 2448 for testing from the existing dataset [27]. The details of Dataset 1 are

shown in Fig. 3. Dataset 1 comprises two types of vulnerability, namely Redundant

Fallback Function Vulnerability (RFFV) and Integer Overflow or Underflow Vul-

nerability (IOUV). Dataset 1 comprises smart contract instances deployed in real-

world production environments.

• Dataset 2 and Dataset 3: Dataset 2 and Dataset 3 [38] are used to assess the effec-

tiveness of the entropy weight. Detailed information on Dataset 2 and Dataset 3 is

shown in Fig. 3. Dataset 2 contains one type of vulnerability, Reentrancy Vulnera-

bility (REV), while Dataset 3 contains another type, Unchecked return value Vul-

nerability (UCV). Dataset 2 and Dataset 3 comprise production-deployed smart con-

tract instances collected from real-world operational environments, respectively.

Fig. 3. Detailed information of Dataset.

3.2 Experimental Configuration

Table 1. Summary of model parameters.

Parameter name Parameter value Parameter name Parameter value

Hidden Units

Embedding: 20,

GRU: 128,

Dropout: 0.3, Dense:

[128,1]

𝛼(TDR) 0. − 0.9

BatchSize 32 Learning Rate 10−3

Optimizer Adam MAX Seq.Length 7500

𝛽(EMA, REMA) 0. − 0.9 Loss Function BCE

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Hardware Configuration. All experiments were performed on server computing

nodes with the CentOS operating system. The computing nodes were equipped with

Intel Xeon E5-2620 v4 processors. The processor model was 2.40 GHz, 6 cores. The

memory was 64GiB.

Software Configuration. The code was written in Python 3.7.3, and the third-

party libraries used in the process included Tensorflow 2.11.0, Pandas 0.24.2, Numpy

1.21.6 and Keras 2.11.0.

Model Parameters. Model parameters were shown in Table 1.

3.3 Experiments

(1) Answer to RQ1: As shown in Fig. 4 and Fig. 5, we designed four sets of experi-

ments to confirm the contribution of each submodule to the overall model.

Fig. 4. Under vulnerability branch 1, ablation

study results.

Fig. 5. Under vulnerability branch 2, ablation

study results.

• Method1: The model removes the entropy weight layer and does not employ the

Algorithm 1.

• Method2: The model includes an entropy weight layer, but the Algorithm 1 is not

applied.

• Method3: The model removes the entropy weight layer, yet the Algorithm 1 is ap-

plied.

• Method4: The model incorporates an entropy weight layer and applies the Algorithm

1.

Vulnerability Branch 1. The experimental results demonstrate significant perfor-

mance enhancements through the integration of entropy weighting and TDR Algorithm.

Compared to the basic model, the entropy-weighted layer achieved respective improve-

ments of 1.05%, 0.76%, 0.81%, and 0.79% in accuracy, precision, recall, and F1 score.

Algorithm 1 exhibited more pronounced gains, particularly in recall (3.98%↑) and the

F1 score (2.02%↑). The combined implementation yielded a notable 19.62% recall

improvement and 5.14% F1-score elevation, albeit with a marginal 1.87% precision

reduction. Our hybrid approach achieved optimal F1 score performance, indicating

effective model optimization through balanced multimetric enhancement. These sys-

tematic improvements substantiate the methodology's efficacy in addressing class im-

balance and feature representation challenges.

Vulnerability Branch 2. Compared to the basic model, the addition of the entropy

weight layer resulted in a slight decrease in recall, while significantly increasing preci-

sion (accuracy +0.73%, precision +15.54%, recall -3.97%, F1 score +0.16%). Incorpo-

rating Algorithm 1 alone slightly decreased recall but improved accuracy, precision,

and F1 score (accuracy +0.2%, precision +1.98%, recall -0.01%, F1 score +0.53%).

When both the entropy weight layer and Algorithm 1 were combined, the model

achieved notable improvements in precision, recall, and F1 score, despite a slight de-

crease in accuracy (accuracy -0.48%, precision +10.71%, recall +11.09%, F1 score

+11.54%). Our hybrid approach yielded the highest F1 score.

Scalability. We construct a new branch to systematically assess the scalability of the

model. The experimental results indicated that Vulnerability Branch 3 had an accuracy

of 62.34%, a precision of 61.32%, a recall of 89.95%, and an F1 score of 72.75%. This

shows that the model proposed in this paper has excellent scalability.

(2) Answer to RQ2: To validate the applicability of existing adaptive loss weight

algorithms for smart contract vulnerability detection, we experimented with three pop-

ular algorithms, namely EMA, REMA, and JAME. It could be seen from Table 2 that

training models based on JAME algorithm caused the loss to disappear. To avoid the

influence of entropy weights on adaptive loss weights, the following experimental mod-

els do not include the entropy weight layer. As summarized in Table 2, focusing on the

comprehensive metric, when 𝛽 = 0.7 and 𝛽 = 0.3, the EMA algorithm and the REMA

algorithm achieved the optimal performance of the overall model respectively.

Vulnerability Branch 1. As summarized in Table 2, Algorithm 1 demonstrates sys-

tematic improvements over baseline methods in key evaluation metrics. Compared to

the EMA algorithm's peak performance (53.85% accuracy, 55.59% precision, 84.15%

recall, 66.95% F1), Algorithm 1 achieves significant enhancements of 8.32% in accu-

racy, 3.95% in precision, 15.34% in recall, and 7.55% in F1-score. When evaluated

against the REMA algorithm's optimal results (55.54% accuracy, 55.54% precision,

100% recall, 71.42% F1), Algorithm 1 exhibits marginal yet consistent gains of 6.63%

accuracy, 4% precision and 3.08% in the F1 score, despite a negligible 0.51% recall

reduction. This comparative analysis underscores Algorithm 1's robust capability to

balance performance improvements across complementary metrics.

Vulnerability Branch 2. As summarized in Table 2, Algorithm 1 demonstrates sig-

nificant performance improvements over baseline methods. Compared to the EMA al-

gorithm's optimal metrics (73.71% accuracy, 31.29% precision, 65.84% recall, 42.42%

F1), Algorithm 1 achieves enhancements of 18.01% in accuracy (+59.11% precision

and +21.05% F1) despite a 16.94% recall reduction. When benchmarked against the

REMA algorithm's peak performance (74.35% accuracy, 31.72% precision, 64.48% re-

call, 42.52% F1), Algorithm 1 maintains superior gains with 20.3% higher accuracy,

58.68% precision improvement, and 20.95% F1 increase, albeit with a 15.58% recall

trade-off. This comparative analysis highlights Algorithm 1's enhanced classification

efficacy through precision-F1 optimization, particularly notable given the inherent re-

call-precision dichotomy in imbalanced learning scenarios.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Table 2. Experimental results of existing methods under different parameter values.

Metho

d

Pa-

ram-

eter

Vulnerability Branch 1 Vulnerability Branch 2

Acc Pre Rec F1 Acc Pre Rec F1

TDR 0.1
62.17

%

59.54

%

99.49

%

74.50

%

91.72

%

90.40

%

48.90

%

63.47

%

EMA

0.1
53.81

%

55.52

%

84.73

%

67.08

%

76.48

%

21.85

%

23.22

%

22.51

%

0.2
54.05

%

55.69

%

84.58

%

67.16

%

76.28

%

22.00

%

24.04

%

22.97

%

0.3
53.93

%

55.60

%

84.73

%

67.14

%

76.48

%

22.27

%

24.04

%

23.12

%

0.4
46.70

%

56.96

%

16.57

%

25.67

%

75.36

%

20.80

%

24.04

%

22.30

%

0.5
54.34

%

55.80

%

85.52

%

67.54

%

75.64

%

21.29

%

24.31

%

22.70

%

0.6
55.62

%

55.62

%

99.49

%

71.35

%

44.93

%
5.65%

17.48

%
8.54%

0.7


53.85

%

55.59

%

84.15

%

66.95

%

73.71

%

31.29

%

65.84

%

42.42

%

0.8
53.65

%

55.81

%

79.52

%

65.59

%

74.75

%

20.49

%

24.86

%

22.46

%

0.9
55.10

%

55.37

%

98.69

%

70.94

%

76.76

%

22.68

%

24.04

%

23.34

%

REM

A

0.1
55.82

%

56.01

%

95.29

%

70.55

%

82.79

%

41.48

%

41.25

%

41.36

%

0.2
53.97

%

55.65

%

84.42

%

67.08

%

77.49

%

23.05

%

22.67

%

22.86

%

0.3


55.54

%

55.54

%

100.00

%

71.42

%

74.35

%

31.72

%

64.48

%

42.52

%

0.4
55.66

%

55.61

%

99.92

%

71.46

%

14.79

%
9.28%

54.64

%

15.87

%

0.5
55.42

%

57.47

%

75.90

%

64.41

%

77.93

%

23.78

%

22.67

%

23.21

%

0.6
53.53

%

55.41

%

83.64

%

66.66

%

75.68

%

21.34

%

24.31

%

22.73

%

0.7
55.30

%

56.53

%

84.51

%

67.74

%

55.18

%

22.32

%

82.51

%

35.13

%

0.8
61.29

%

59.01

%

99.27

%

74.02

%

78.61

%

25.00

%

22.67

%

23.78

%

0.9
40.63

%

44.69

%

28.94

%

35.13

%

13.78

%

10.02

%

60.92

%

17.21

%

JAME - - - - - - - - -

Fig. 6. Under vulnerability branch 1, experi-

mental study of Cross-Domain adaptive loss

weight algorithms in smart contract vulnera-

bility detection.

Fig. 7. Under vulnerability branch 2, experi-

mental study of Cross-Domain adaptive loss

weight algorithms in smart contract vulnera-

bility detection.

As shown in Fig. 6 and Fig. 7, the performance of both vulnerability detection branches

deteriorated after the introduction of the EMA algorithm on the basic model. Upon

integrating the REMA algorithm into the basic model, while the comprehensive F1

score of the vulnerability detection branch 1 increased by 1.74%, the comprehensive

F1 score of the vulnerability detection branch 2 decreased by 19.1%. After incorporat-

ing the JAME algorithm into the baseline model, there was a loss of loss during the

model training process. Therefore, adaptive loss weight algorithms from other domains

are not readily applicable to the field of vulnerability detection.

(3) Answer to RQ3: Our ablation study of hyperparameter 𝛼 in the TDR Algo-

rithm reveals task-specific metric tradeoffs across vulnerability detection branches (Ta-

ble 3). For branch 1, 𝛼 = 0.7 maximizes accuracy (0.633), while 𝛼 = 0.1 achieves Pa-

reto-optimal F1 scores through balanced precision-recall synergy (F1: 0.745). Branch

2 demonstrates asymmetric optimization dynamics, with 𝛼 = 0.1 simultaneously max-

imizing accuracy (0.914) and F1 (0.867) despite suboptimal precision. Thus, the TDR

algorithm achieves superior model performance when 𝛼 = 0.1.

Table 3. Experimental results of TDR algorithm under different parameter values.

Pa-

ram-

eter

Vulnerability Branch 1 Vulnerability Branch 2

Acc Pre Rec F1 Acc Pre Rec F1

0.1 62.17% 59.54% 99.49% 74.50% 91.72% 90.40% 48.90% 63.47%

0.2 61.21% 58.93% 99.49% 74.02% 82.39% 44.04% 72.67% 54.84%

0.3 62.21% 59.60% 99.27% 74.48% 85.28% 52.60% 70.60% 60.28%

0.4 62.62% 60.20% 96.45% 74.13% 90.43% 92.10% 38.25% 54.05%

0.5 61.21% 58.95% 99.34% 73.99% 82.27% 53.78% 72.13% 61.62%

0.6 62.41% 60.00% 97.03% 74.14% 90.19% 88.60% 38.25% 53.43%

0.7 63.30% 62.71% 83.71% 71.70% 91.23% 85.23% 48.90% 62.15%

0.8 62.58% 63.28% 77.71% 69.76% 91.07% 89.56% 44.53% 59.48%

0.9 61.01% 65.30% 63.60% 64.42% 91.03% 89.07% 44.53% 59.38%

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

(4) Answer to RQ4: Higher information entropy in smart contracts enriches their in-

formational content, enhancing model learning of vulnerability patterns and improving

detection performance. Ablation experiments (Fig. 4 and Fig. 5) confirm the efficacy

of entropy weighting in boosting vulnerability detection capabilities. We further exam-

ine the entropy weighting mechanism through additional analytical dimensions to sub-

stantiate its effectiveness.

The contract abstract syntax tree generates multiple token sequences using differ-

ent traversal methods. If the model achieves the best vulnerability detection perfor-

mance on a set of token sequences with high information entropy, it indirectly substan-

tiates the effectiveness of information entropy as an entropy weight. We conducted ex-

perimental validation on a smart contract vulnerability detection model [38] using Da-

taset 2 and Dataset 3, respectively.

Empirical data (Table 4) demonstrate a positive correlation between token se-

quence entropy levels and vulnerability detection efficacy, confirming information en-

tropy's validity as a quantifiable metric for evaluating syntactic patterns' discriminative

contributions to detection models.

Additionally, we validate the ability of entropy weights to enhance the perfor-

mance of vulnerability detection models on another state-of-the-art model (VulnSense

[22]) and dataset [39]. As indicated in Table 5, the method by Duy et al. demonstrated

significant improvements in model performance on four evaluation metrics after incor-

porating entropy weights.

Table 4. Association analysis between data information entropy and model vulnerability detec-

tion performance in Dataset 2 and Dataset 3.

Dataset Methods

Infor-

mation

Entropy

Accuracy Precision Recall F1

Dataset2

Pysolc+DFS 5.7850 90.67% 81.17% 67.20% 73.53%

Pysolc+BFS 5.2943 90.55% 90.16% 59.14% 71.43%

Pysolc+SBT 4.2055 89.37% 77.36% 66.13% 71.30%

Dataset3

Pysolc+DFS 5.7925 90.11% 73.74% 78.49% 76.04%

Pysolc+BFS 5.2145 90.43% 81.29% 67.74% 73.90%

Pysolc+SBT 4.2050 85.91% 62.01% 76.34% 68.43%

Table 5. Experimental comparison of Du et al.’s method with and without entropy weights.

Method Accuracy Precision Recall F1

VulnSense 57.29% 78.24% 64.03% 70.43%

VulnSense+ En-

tropy Weight
73.71% 78.53% 92.09% 84.77%

Answer to RQ5: This study quantifies the computational efficiency of our adaptive

loss weight mechanism through rigorous time complexity analysis. The proposed algo-

rithm introduces only minimal overhead from its weight derivation operations (Equa-

tion (11) and Equation (12)), requiring merely 0.02 seconds cumulative execution time

across 689 training iterations on a 𝑁 = 22033 smart contract dataset with batch size

32. This represents < 0.005% of total training duration, demonstrating that our

performance gains in vulnerability detection are achieved without compromising com-

putational tractability. The subsecond latency confirms the algorithm's suitability for

large-scale smart contract analysis while maintaining a strict linear-time complexity

𝑂(𝑇) relative to task count 𝑇.

4 Conclusion

This study addresses limitations in MTL for smart contract vulnerability detection by

proposing an entropy-weighted adaptive loss framework to mitigate negative transfer

and challenge the homogeneous contribution assumption. We identify critical deficien-

cies in existing MTL approaches: 1) equal weighting of contract contributions degrades

expert layer effectiveness, and 2) conventional adaptive loss weight algorithms

(EMA/REMA/JAME) inadequately handle smart contracts' unique data characteristics.

Our solution introduces a Task Difficulty Rate (TDR) mechanism that synergizes en-

tropy-based feature importance with dynamic loss adjustment. Experimental validation

demonstrates substantial performance gains, with TDR achieving F1-score improve-

ments of 7.87% and 30.74% for distinct vulnerability types compared to baseline mod-

els. The results establish a new paradigm for contract-aware MTL optimization, sug-

gesting future extensions through multimodal data fusion with adaptive weighting ar-

chitectures.

Acknowledgments. This project is supported by the National Key Research and Development

Project (Grant No:2022YFB2703100), and the National Natural Science Foundation of China

(U22B2032).

Disclosure of Interests. The authors declare no potential conflict of interests.

References

1. Wan, Z., Guan, Z., Cheng, X.: PRIDE: A Private and Decentralized Usage-Based Insurance

Using Blockchain. In: 2018 IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical

and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1349-1354. IEEE,

New York (2018)

2. Zhang, Y.C., Zhang, J., Gao, W.Z., et al.: Distributed electrical energy systems: Needs, con-

cepts, approaches and vision. Acta Automatica Sinica 43 (2017)

3. Christidis, K., Devetsikiotis, M.: Blockchains and Smart Contracts for the Internet of Things.

IEEE Access 4, 2292-2303 (2016)

4. Abdullah, A., Md, Z., Anirban, B., et al.: Privacy-friendly platform for healthcare data in

cloud based on blockchain environment. Future generation computer systems 95, 511–521

(2019)

5. Shahriar Rahman, M., Al Omar, A., Bhuiyan, M., et al.: Accountable Cross-Border Data

Sharing Using Blockchain Under Relaxed Trust Assumption. In: IEEE Transactions on En-

gineering Management 67, 1476-1486 (2020)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

6. Zheng, Z.B., Xie, S.A., Dai, H.N., et al.: An overview on smart contracts: Challenges, ad-

vances and platforms. IEEE Transactions on Engineering Management 67, 1476–1486

(2020)

7. Bartoletti, M., Pompianu, L.: An Empirical Analysis of Smart Contracts: Platforms, Appli-

cations, and Design Patterns. In: Financial Cryptography and Data Security, pp. 494–509.

Springer, Heidelberg (2017)

8. Badruddoja, S., Dantu, R., He, Y., et al.: Making Smart Contracts Smarter. In: 2021 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1-3. IEEE, New

York (2021)

9. Fu, Y., Ren, M., M, F.C., et al.: Evmfuzzer: detect evm vulnerabilities via fuzz testing. In:

Proceedings of the 2019 27th ACM joint meeting on european software engineering confer-

ence and symposium on the foundations of software engineering, pp. 1110–1114. ACM,

New York (2019)

10. Xu, J.Z., Dang, F., Ding, X., et al.: A survey on vulnerability detection tools of smart con-

tract bytecode. In 2020 IEEE 3rd International Conference on Information Systems and

Computer Aided Education (ICISCAE), pp. 94–98. IEEE, New York (2020)

11. Krupp, J., Rossow, C.: teether: Gnawing at ethereum to automatically exploit smart con-

tracts. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1317–1333.

ACM, New York (2018)

12. Nikoli ć, I., Kolluri, A., Sergey, I., et al.: Finding the greedy, prodigal, and suicidal contracts

at scale. In: Proceedings of the 34th annual computer security applications conference, pp.

653–663. ACM, New York (2018)

13. Sukrit, K., Seep, G., Mohan, D., et al.: Zeus: analyzing safety of smart contracts. In: Network

and Distributed System Security Symposium, pp. 1–12. San Diego (2018)

14. Mossberg, M., Manzano, F., Hennenfent, E., et al.: Manticore: A user-friendly symbolic

execution framework for binaries and smart contracts. In: 2019 34th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pp. 1186–1189. IEEE, New

York (2019)

15. Fu, M.L., Wu, L.F., Hong, Z., et al.: A critical-path-coverage-based vulnerability detection

method for smart contracts. IEEE Access 7, 147327–147344 (2019)

16. Qian, P., Liu, Z.G., He, Q.M., et al.: Towards automated reentrancy detection for smart con-

tracts based on sequential models. IEEE Access 8, 19685–19695 (2020)

17. Gao, Z.P., Jayasundara, V., Jiang, L.X., et al.: Smartembed: A tool for clone and bug detec-

tion in smart contracts through structural code embedding. In: 2019 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), pp. 394–397. IEEE, New York

(2019)

18. Zhao, H., Su, P., Wei, Y.H., et al.: Gan-enabled code embedding for reentrant vulnerabilities

detection. In: Knowledge Science, Engineering and Management, pp. 585–597. Springer,

Heidelberg (2021)

19. Cai, J., Li, B., Zhang, J.L., et al.: extended abstract of combine sliced joint graph with graph

neural networks for smart contract vulnerability detection. In: 2023 IEEE International Con-

ference on Software Analysis, Evolution and Reengineering (SANER), pp. 851–852. IEEE,

New York (2023)

20. Christoph, S., Huili, C., Hossein, F., et al.: Smarter contracts: Detecting vulnerabilities in

smart contracts with deep transfer learning. In: Network and Distributed System Security

Symposium, San Diego (2023)

21. Lohith, J., Anusree, K., Guru, N., et al.: TP-Detect: trigram-pixel based vulnerability detec-

tion for Ethereum smart contracts. Multimed Tools Appl 82, 36379–36393 (2023)

https://link.springer.com/article/10.1007/s11042-023-15042-4#auth-Lohith_J-J-Aff1
https://link.springer.com/article/10.1007/s11042-023-15042-4#auth-Anusree_Manoj-K-Aff1

22. Duy, P.T., Khoa, N.H., Quyen, N.H., et al.: Vulnsense: efficient vulnerability detection in

ethereum smart contracts by multimodal learning with graph neural network and language

model. International Journal of Information Security 24 (2025)

23. Yuan, D.W., Wang, X.H., Li, Y., et al.: Optimizing smart contract vulnerability detection

via multi-modality code and entropy embedding. Journal of Systems and Software

202(111699) (2023)

24. Sun, X.B., Tu, L.Q., Zhang, J.L., et al.: Assbert: Active and semi-supervised bert for smart

contract vulnerability detection. Journal of Information Security and Applications

73(103423) (2023)

25. Li, M.L., Ren, X.X., Fu, H., et al.: Convmhsa-scvd: Enhancing smart contract vulnerability

detection through a knowledge-driven and data-driven framework. In: 2023 IEEE 34th In-

ternational Symposium on Software Reliability Engineering (ISSRE), pp. 578–589. IEEE,

New York (2023)

26. Lutz, O., Chen, H.L., Fereidooni, H., et al.: Escort: ethereum smart contracts vulnerability

detection using deep neural network and transfer learning. arXiv preprint arXiv:2103.12607

(2021)

27. Huang, J., Zhou, K., Xiong, A., et al.: Smart contract vulnerability detection model based

on multi-task learning. Sensors 22(1829) (2022)

28. Zhou, K., Huang, J., Han, H., et al.: Smart contracts vulnerability detection model based on

adversarial multi-task learning. Journal of Information Security and Applications

77(103555) (2023)

29. Liu, S.C., Liang, Y.Y., Gitter, A.: Loss-balanced task weighting to reduce negative transfer

in multi-task learning. In: Proceedings of the AAAI conference on artificial intelligence, pp.

9977–9978. ACM, New York (2019)

30. Liu, S.K., Johns, E., Andrew J, D.: End-to-end multi-task learning with attention. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.

1871–1880. IEEE, New York (2019)

31. Fatemeh Salehi, R., Michael, G.: Multi-task network embedding with adaptive loss

weighting. In: 2020 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), pp. 1–5. IEEE, New York (2020)

32. Anish, L., Essam, S., Saimourya, S., et al.: Mitigating negative transfer in multi-task learning

with exponential moving average loss weighting strategies (student abstract). In: Proceed-

ings of the AAAI Conference on Artificial Intelligence 37(13), 16246–16247 (2023)

33. Lin, B.J., Ye, F.Y., Zhang, Y., et al.: Reasonable effectiveness of random weighting: A lit-

mus test for multi-task learning. arXiv preprint arXiv:2111.10603 (2021)

34. Chen, Z., Badrinarayanan, V., Lee, C., et al.: Gradnorm: Gradient normalization for adaptive

loss balancing in deep multitask networks. In: International conference on machine learning,

pp. 794–803. PMLR (2018)

35. Ting, G., Tyler, L., Cory, S., et al.: A comparison of loss weighting strategies for multi task

learning in deep neural networks. IEEE Access 7(141), 627–141632 (2019)

36. Chung, J.Y., Gulcehre, C., Cho, K.H., et al.: Empirical evaluation of gated recurrent neural

networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

37. Memory, L.: Long short-term memory. Neural computation 9, 1735–1780 (2010)

38. Chen, Y.Z., Sun, Z.Y., Gong, Z.H., et al.: Improving smart contract security with contrastive

learning-based vulnerability detection. In: Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering, pp. 1-11. ACM, New York (2024)

39. Gao, Z.P., Jiang, L.X., Xia, X., et al.: Checking smart contracts with structural code embed-

ding. IEEE Transactions on Software Engineering 47(12), 2874–2891 (2021)

https://arxiv.org/search/cs?searchtype=author&query=Davison,+A+J
https://ieeexplore.ieee.org/author/37086962628
https://ieeexplore.ieee.org/author/37394939100
https://arxiv.org/search/cs?searchtype=author&query=Badrinarayanan,+V

