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Abstract. Fraud detection is crucial in social service networks to maintain user 

trust and improve service network security. Existing spectral graph-based meth-

ods address this challenge by leveraging different graph filters to capture signals 

with different frequencies in service networks. However, most graph filter-based 

methods struggle with deriving clean and discriminative graph signals. On the 

one hand, they overlook the noise in the information propagation process, result-

ing in a degradation of filtering ability. On the other hand, they fail to discrimi-

nate the frequency-specific characteristics of graph signals, leading to the distor-

tion of signal fusion. To address these issues, we develop a novel spectral graph 

network based on information bottleneck theory (SGNN-IB) for fraud detection 

in service networks. SGNN-IB splits the original graph into homophilic and het-

erophilic subgraphs to better capture the signals at different frequencies. For the 

first limitation, SGNN-IB applies information bottleneck theory to extract key 

characteristics of encoded representations.  For the second limitation, SGNN-IB 

introduces prototype learning to implement signal fusion, preserving the fre-

quency-specific characteristics of signals. Extensive experiments on three real-

world datasets demonstrate that SGNN-IB outperforms state-of-the-art fraud de-

tection methods. 

Keywords: Fraud Detection, Graph Neural Network, Heterophily. 

1 Introduction 

The rapid growth of digital service networks has transformed how services are deliv-

ered across industries, enabling seamless interactions across platforms, from financial 

services to e-commerce. However, this transformation has introduced new risks, par-

ticularly from sophisticated fraud schemes that undermine service quality, erode cus-

tomer trust, and threaten operational stability. In service-oriented industries, where 

transaction networks and customer relationships form graph-structured systems, 



leveraging advanced analytics to address these risks is becoming a critical area for data-

driven decision-making. This is particularly evident in financial platforms, where trans-

action records structured as graphs can reveal intricate patterns characteristic of fraud-

ulent behavior. Developing effective fraud detection methods is essential, not only for 

enhancing system security but also for maintaining user trust and protecting the repu-

tation of online platforms. As digital fraud schemes continue to grow in complexity, it 

is crucial to refine and advance graph-based detection methods to keep pace with 

emerging threats. 

In this context, graph neural networks (GNNs) have emerged as a transformative 

technology for social service networks due to their exceptional ability to perceive in-

teractive information, as demonstrated in various social service scenarios, such as fraud 

detection [1]. GNNs are particularly well-suited for identifying risky and fraudulent 

behaviors that may be hidden within dense, high-dimensional interactive information. 

By integrating both interaction data and user-specific attributes, GNNs can detect sus-

picious activities with high accuracy, significantly enhancing the security of digital ser-

vice platforms and establishing a more trustworthy online environment. 

However, GNN-based fraud detection faces two main challenges: (1) Data imbal-

ance. In real-world service ecosystems, fraudulent entities (such as fake accounts, ma-

licious transactions, or service abuse) are often a minority within the network. The 

dominance of legitimate service nodes and regular interactions makes it difficult for 

detection models to capture the subtle anomalies associated with fraudulent behavior. 

This imbalance reduces the model's sensitivity to minority-class samples and weakens 

its ability to differentiate between normal service patterns and sophisticated fraud tac-

tics, ultimately lowering both detection accuracy and generalization performance. 

(2) Heterophily. Traditional GNNs, designed around homophily (the assumption 

that connected nodes exhibit similar features and behaviors), are poorly suited for ser-

vice fraud detection. A significant limitation of these models is the over-smoothing 

effect, which is especially problematic in service networks. These models assume that 

interconnected nodes in a network share similar features and behaviors, thereby dimin-

ishing the ability to distinguish between linked entities. Fraudsters exploit this design 

flaw by creating cross-service-cluster relationships, such as generating high-frequency 

interactions or embedding themselves within legitimate transaction pathways to hide 

their fraudulent actions. Through these heterophilic strategies, fraudulent nodes can 

contaminate their local neighborhoods, obscuring their anomalous behavior and evad-

ing detection by GNNs. As a result, GNNs fail to identify the abnormal patterns, oper-

ational irregularities, and behavioral deviations that distinguish malicious users from 

legitimate participants in service networks. 

To address these challenges, existing methods primarily focus on spatial domain 

analysis, which includes strategies like attention mechanisms [2] and auxiliary loss 

functions [3]. For example, attention mechanisms can dynamically allocate the weights 

to the neighbors and manage to boost the contributions of nodes with high affinity; 

resampling techniques can adaptively determine which neighboring nodes to retain 

through feedback. However, these methods often face high computational costs and 

may alter the underlying structure of the service network. Recently, spectral domain 

analysis has been explored as a promising alternative [4]. By filtering high- and low-
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frequency signals in the service network, spectral GNNs are better equipped to capture 

the distinct characteristics of anomalies, offering improved efficiency and accuracy 

over spatial approaches.  

Despite these advancements, spectral GNN-based fraud detection still have poor 

ability to capture clean and discriminative latent representations, which can be at-

tributed to the following limitations: (1) Although graph filters can capture signals in 

different frequency domains, these filters still assume that information interaction be-

tween nodes in the network is effective behavior, ignoring noise variables introduced 

by malicious propagation and irrelevant behavior patterns. (2) A prevalent solution to 

heterophily is to leverage different graph filters to capture the signals at different fre-

quencies. However, these signals from different graph filters lack the frequency-spe-

cific semantic discrimination, which makes the model hard to explicitly identify signal 

characteristics with different frequency domains, resulting in the distortion of the fused 

signals at the fusion node. 

To address these issues, we propose a novel spectral graph network based on in-

formation bottleneck theory (SGNN-IB) for fraud detection. SGNN-IB first splits the 

original graph into homophilic and heterophilic subgraphs using a heterophily-aware 

classifier. It then applies multi-scale graph filters to capture both low- and high-fre-

quency signals from the subgraphs and the original graph. For the first limitation, 

SGNN-IB incorporates information bottleneck theory [5] to enhance the encoding qual-

ity of graph filters with different frequencies, alleviating the noise interference in the 

encoded node embeddings. For the second limitation, SGNN-IB employs prototype 

learning to boost the semantic discrepancy between high- and low-frequency signals, 

thereby helping the model to identify diverse graph signals and fuse frequency-specific 

graph signals. 

In summary, our contributions are as follows: 

─ We present a novel SGNN-IB model to derive clean and discriminative characteris-

tics for fraud detection, which employs an edge classifier to split the original graph 

into homophilic and heterophilic subgraphs and then leverages Beta wavelet graph 

filters to capture critical characteristics of fraudsters. 

─ We introduce an IB-based loss function to decrease the noise in different signals and 

utilize prototype learning to capture the frequency-specific characteristics and im-

prove the signals' integration. 

─ Extensive experiments on widely used datasets demonstrate that our method signif-

icantly outperforms baseline approaches. Additionally, our ablation study validates 

the effectiveness of each component in the SGNN-IB framework. 

2 Related work 

Graph-based methods for fraud detection in service networks leverage the inherent top-

ological structure of service interactions to facilitate information propagation across 

individuals. A major challenge in fraud detection is data imbalance, as fraudsters often 

blend in with legitimate users, making their presence hard to detect. GNN-based fraud 

detection methods typically use various strategies to mitigate the impact of data 



imbalance and improve detection accuracy. For instance, ASA-GNN [6] adopts adap-

tive sampling strategies to filter out noisy nodes and propagate more representative in-

formation. Although these methods can effectively mitigate the issue of outliers in ser-

vice networks, the sampling strategies may disrupt the inherent structure of service in-

teractions, leading to the loss of important information. 

Another challenge is that fraudsters often hide by frequently interacting with be-

nign users, leading to heterophily, where connected nodes exhibit different patterns. To 

tackle this, GAGA [7] introduces a group-based strategy to mitigate the impact of high 

heterophily. Although these methods are effective, they suffer from significant compu-

tational complexity. 

Recent studies have used graph filters to capture both low- and high-frequency 

signals. For example, IDGL [8] applies dual-channel graph convolution filters to prop-

agate multi-scale frequency information. Additionally, some research addresses the 

``right-shift'' phenomenon caused by heterophily, using Beta wavelet transformations 

as spectral filters to capture important information [4]. 

Many filter-based methods rely on sophisticated graph filters to update node fea-

tures, achieving success in identifying fraudsters in service networks. These methods 

often use classical graph filters, such as polynomial and wavelet transformations, to 

capture both low- and high-frequency information. Given the complexity of graph 

structures, some approaches apply filters at different levels or perspectives, such as 

global vs. local views, homophilic vs. heterophilic views, and relation-based views, to 

enhance model representation. Despite these advances, such methods are still limited 

in obtaining representative characteristics of nodes and are vulnerable to noise interfer-

ence across different frequency domains. 

3 Preliminaries 

3.1 Definitions 

Definition 1 (Graph): Let a graph 𝒢 = (𝒱, ℰ,𝒳,𝒜,𝒴) denotes a service network. 𝒱 =
{𝑣1, 𝑣2, … , 𝑣𝑁} represents node set of graph 𝒢, where 𝑁 is the number of nodes. ℰ is the 

edge set of graph 𝒢 and 𝑒𝑢𝑣 ∈ ℰ denotes an edge from node 𝑢 to node 𝑣. 𝒳 ∈ ℝ𝑁×𝐷 

indicates the feature matrix of 𝑁 nodes, where 𝐷 is the feature dimension. 𝒜 ∈ ℝ𝑁×𝑁 

is the adjacency matrix of 𝒢. If 𝑒𝑢𝑣 ∈ ℰ, 𝑎𝑢𝑣 ∈ 𝒜 = 1, otherwise 𝑎𝑢𝑣 = 0. 𝒴 ∈ ℝ𝑁×1 

denotes the label of all nodes, where 𝑦𝑣 ∈ 𝒴 = 0 if node 𝑣 is a benign sample and 𝑦𝑣 ∈
𝒴 = 1 if node 𝑣 is a fraudster. 

Definition 2 (Multi-relation graph): If there are different relations between nodes in 

the graph, 𝒢 = (𝒱, ℰ𝑟|𝑟=1
𝑅 , 𝒳,𝒜𝑟|𝑟=1

𝑅 , 𝒴)  can be denoted as a multi-relation graph, 

where 𝑅 is the number of relation categories. For simplicity, a multi-relation graph can 

be identified as 𝒢 = (𝒳,𝒜𝑟|𝑟=1
𝑅 , 𝒴). 
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4 Methodology 

4.1 The SGNN-IB framework 

 
Fig. 1. The framework of SGNN-IB. First, SGNN-IB leverages an edge classifier to perceive 

heterophilic subgraphs. Then, SGNN-IB utilizes multi-scale graph filters to obtain the high- and 

low-frequency signals in the graph. Subsequently, SGNN-IB integrates the signals from different 

frequencies based on prototype learning. Finally, SGNN-IB is trained by the joint loss function, 

integrated with IB-loss. 

 

Fig. 2. The architecture of IB loss. To solve the noise issue, the model leverages classical IB 

theory, maximizing the mutual information between the latent features and the ground truths and 

minimizing the mutual information between the latent features and the original features. Here, 

latent features denote the high-pass and low-pass signals, and ground truths represent the band-

pass signals. To solve the stochasticity issue, the model introduces the mutual information be-

tween high-pass and low-pass signals. 

The framework of SGNN-IB is shown in Fig. 1. First, SGNN-IB employs an edge clas-

sifier to identify and extract heterophilic subgraphs within the graph structure. Subse-

quently, SGNN-IB applies diverse graph filters to encode the original graph and spe-

cific subgraphs. the graph signals into high-pass, low-pass, and band-pass components, 

capturing diverse frequency-specific information. To enhance frequency-specific se-

mantic discrimination, SGNN-IB introduces prototype learning to obtain the affinity of 
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signals and performs information fusion. To conquer the noise problem, SGNN-IB in-

troduces an IB loss to alleviate the interference of noise in the process of information 

propagation. Finally,  SGNN-IB is trained with an objective function that comprises IB 

loss, classification loss, and edge loss, ensuring a balanced and comprehensive learning 

process. The architecture of IB loss is shown in Fig. 2. 

4.2 Heterophily-aware edge classifier 

Traditional GNNs are established on the assumption that the connections between 

nodes exhibit homophily, which means the connected nodes belong to the same cate-

gory. In other words, traditional GNNs serve as a smoothing function for the graph 

signals. However, many connections show heterophily, indicating that the connected 

nodes have different labels. Simply deploying traditional GNNs may dilute the cate-

gorical characteristics of nodes, which hinders accurate node identification. Therefore, 

to avoid the loss of discriminative information in the graph, it is important to split ho-

mophilic and heterophilic connections.  

To perceive the heterophily in graph topology, we design a heterophily-aware edge 

classifier, which aims to identify the edge type of each edge. In the context of training 

data containing labeled nodes, we meticulously establish homophilic and heterophilic 

edges based on the labels of source and target nodes in the training set. The edge clas-

sifier, designed as a binary classification model, leverages the feature representations 

of both the source node 𝑢 and the target node 𝑣 to predict the type of edge 𝑒𝑢𝑣. This 

classifier is implemented using a multi-layer perceptron (MLP) architecture, thereby 

facilitating the discrimination between different edge types within the graph. 

For an edge 𝑒𝑢𝑣 with the source node 𝑢 and target node 𝑣, the computations are as 

follows: 

𝒉𝑢 = 𝜎(𝑾ℎ ∙ 𝒙𝑢 + 𝒃ℎ), 𝒉𝑣 = 𝜎(𝑾ℎ ∙ 𝒙𝑣 + 𝒃ℎ)                     (1) 

𝜙𝑢𝑣 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾[𝒉𝑢||𝒉𝑣||(𝒉𝑢 − 𝒉𝑣)]), 𝜋𝑢𝑣 = 2 ∗ 𝜙𝑢𝑣 − 1                  (2) 

where 𝜎(∙) is a nonlinear activation function, 𝒙𝑢 and 𝒙𝑣 are respectively the original 

features of node 𝑢 and 𝑣, 𝑾ℎ, 𝒃ℎ and 𝑾 are learnable parameters of the feature trans-

formation 𝒉𝑢  and 𝒉𝑣  are respectively transformed features of node 𝑢  and 𝑣 , 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(∙)  is Sigmoid activation function, [∙ || ∙] is concatenation function. 𝜋𝑢𝑣  is 

limited to [-1, 1] to discriminate the heterophilic connections. 

To partition the original graph into a homophilic subgraph 𝒢ℎ𝑜𝑚𝑜  and a hetero-

philic subgraph 𝒢ℎ𝑒𝑡𝑒𝑟 , we leverage the prediction outcomes of all edges within the 

graph. The homophilic subgraph exclusively comprises edges predicted to exhibit ho-

mophily, whereas the heterophilic subgraph merely encompasses edges anticipated to 

display heterophily.  

The precise classification of edges is of paramount importance for subsequent pro-

cedures, as it directly influences the quality of the resultant partitioned subgraphs. To 

this end, we devise an auxiliary loss function tailored for training the edge classifier. 

This loss is derived from the constructed training edge set ℰ𝑡𝑟 and the corresponding 
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prediction outcomes. The heterophily-aware edge classifier is optimized using the train-

ing edge set ℰ𝑡𝑟 with the following loss function: 

ℒ𝐻 = −∑ [𝑦𝑒𝑢𝑣 log(𝜙𝑢𝑣) + (1 − 𝑦𝑒𝑢𝑣)log(1 − 𝜙𝑢𝑣)]𝑒𝑢𝑣∈ℰ𝑡𝑟                  (3) 

where 𝑦𝑒𝑢𝑣  is the label of edge 𝑒𝑢𝑣. If the edge exhibits homophily, the label 𝑦𝑒𝑢𝑣  is 1, 

otherwise the label 𝑦𝑒𝑢𝑣  is 0. 

4.3 The design of graph filter and information fusion 

Upon dividing the original graph, the resultant homophilic subgraph 𝒢ℎ𝑜𝑚𝑜  manifests 

an enrichment of low-frequency signals, whereas the heterophilic subgraph 𝒢ℎ𝑒𝑡𝑒𝑟  pre-

dominantly exhibits high-frequency signals. To capture signals within distinct fre-

quency bands, diverse filters are applied to these partitioned graphs. Notably, since the 

splitting process yields frequency-specific signals from the original graph, subgraphs 

inevitably lose the holistic structural information contained within the original graph. 

To bolster the overall semantic richness and the fidelity to original information, it is 

imperative to also apply filters to the original graph. 

Formally, consider the original graph 𝒢, alongside the predicted homophilic sub-

graph 𝒢ℎ𝑜𝑚𝑜  characterized by its Laplacian 𝑳ℎ𝑜𝑚𝑜, and the predicted heterophilic sub-

graph 𝒢ℎ𝑒𝑡𝑒𝑟  with 𝑳ℎ𝑒𝑡𝑒𝑟 . Given the model's need to discern signals of varying frequen-

cies across these three graphs, a versatile band-pass filter becomes indispensable. Craft-

ing an apt graph filter for the partitioned subgraphs presents a non-negligible challenge, 

as contemporary GNNs predominantly leverage low-pass filters [4]. Recently, research 

endeavors have introduced methodologies to learn arbitrary graph filters via polynomial 

approximation or Transformer architectures, exemplified by PolyFormer [9]. However, 

these methodologies fall short in the context of fraud detection tasks, where the minute 

proportion of fraudulent nodes within the graph exacerbates the issue of severe class 

imbalance. Consequently, high-frequency signals become relatively scant, leading the 

trained filter to potentially demonstrate a propensity for prioritizing low-frequency sig-

nals. 

Consequently, we adopt design band-pass filters based on Beta wavelet [10] to 

capture distinct frequency bands. Based on the Beta distribution, Beta wavelet transfor-

mation is defined as follows: 

𝑓(𝑥; 𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 𝑥 ∈ [0,1]                     (4) 

where Γ(∙) is Gamma distribution, 𝛼  and 𝛽  are the parameters of Beta distribution. 

Given the eigenvalues of the normalized graph Laplacian 𝑳 ∈ [0, 2] , we leverage 

𝑓∗(𝑥; 𝛼, 𝛽) =
1

2
𝑓 (

1

2
𝑥; 𝛼, 𝛽) to cover the whole spectral range of 𝑳. 

For simplicity, we constrain the 𝛼, 𝛽 ∈ ℕ+  and only generate a low-pass filter 

𝑓𝑙𝑜𝑤
∗ (𝑥; 𝛼, 𝛽) and a high-pass filter 𝑓ℎ𝑖𝑔ℎ

∗ (𝑥; 𝛼, 𝛽) to avoid computational complexity 

problems.  



Then we apply the high 𝑓𝑙𝑜𝑤
∗  to 𝑳ℎ𝑜𝑚𝑜 to capture low-frequency information from 

𝒢ℎ𝑜𝑚𝑜 . Correspondingly, we can obtain high-frequency signals by deploying 𝑓ℎ𝑖𝑔ℎ
∗  on 

the normalized Laplacian 𝑳ℎ𝑒𝑡𝑒𝑟  of 𝒢ℎ𝑒𝑡𝑒𝑟 . The formulations can be defined as follows: 

𝑯𝑖 = 𝑓𝑖
∗(𝑳𝑖 , 𝑯) = 𝑓𝑖 (

1

2
𝑳𝑖; 𝛼, 𝛽)𝑯, 𝑖 ∈ {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ}                      (5) 

where 𝑯 is the features matrix. Then, we integrate the obtained signals from different 

frequency domains: 

𝑯̂ = Φ(𝑯𝑙𝑜𝑤 , 𝑯ℎ𝑖𝑔ℎ)                             (6) 

where Φ(∙,∙) is an adaptive frequency fusion function, which is illustrated in Section 

4.4. 

We have derived representations from both homophilic and heterophilic subgraphs 

utilizing low- and high-pass filters. Nevertheless, the structural integrity of these two 

subgraphs remains incomplete. To enhance the expressive power of our model, we em-

ploy the band-pass filters on the original graph and generate fused embeddings of band-

pass filters: 

𝑯𝑖
𝑜 = 𝑓𝑖

∗(𝑳0, 𝑯) = 𝑓𝑖 (
1

2
𝑳𝑜; 𝛼, 𝛽)𝑯                                  (7) 

𝑯̂𝑜 = Φ(𝑯𝑙𝑜𝑤
𝑜 , 𝑯ℎ𝑖𝑔ℎ

𝑜 )                                    (8) 

where 𝑯𝑖
𝑜 represents the transformed features by a single low- or high-pass filter. To 

protect the original semantic information of node features, the ultimate embedding of 

the node is constructed by concatenating the filtered representations and the linearly 

transformed residual representations from the original graph: 

𝑯̅ = 𝜎(𝑾𝑜[𝑯̂
𝑜, 𝑯̂])                        (9) 

where 𝑾𝑜 is learnable parameters. 

In practical scenarios, the majority of fraud graphs encompass diverse relation-

ships. After acquiring representations for each relation, we integrate the node represen-

tations stemming from these various relations, thereby constructing the definitive em-

bedding for the nodes. For the sake of brevity, we have omitted the explicit representa-

tion of these relations in the aforementioned equations. The relation fusion formulation 

can be defined as follows: 

𝑯𝑎𝑙𝑙 = 𝑾𝑟||𝑟=1
𝑅 𝑯̅𝑟            (10) 

where 𝑯̅𝑟 is the ultimate filtered embedding in homogeneous graph under relation 𝑟, 𝑅 

is the relation set of graph 𝒢 and 𝑾𝑟 is the learnable weights. 

4.4 Frequency-specific feature fusion based on prototype learning 

The high-frequency and low-frequency should reflect the behavior characteristics of 

nodes in different frequency domain modes. However,  due to the interactive pattern of 
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nodes, these signals lack discernible frequency-specific semantic information, which 

loses significant discrimination after feature fusion. Therefore, we introduce an adap-

tive frequency fusion function Φ(∙,∙), a prototype learning mechanism, to enhance the 

semantic representations in each frequency domain. 

Take high-frequency features as an example. Given the latent representations of 

frequency domain 𝑯ℎ𝑖𝑔ℎ, we first calculate the prototype of high-frequency domain: 

𝒄ℎ𝑖𝑔ℎ = 𝑅𝑒𝑎𝑑𝑜𝑢𝑡(𝑯ℎ𝑖𝑔ℎ)                                          (11) 

where 𝑅𝑒𝑎𝑑𝑜𝑢𝑡(∙) is average readout function. Then we can obtain the affinity score 

of the node features with prototype: 

𝑠ℎ𝑖𝑔ℎ =
1

len(𝑯ℎ𝑖𝑔ℎ)
∑ cos(𝒉(𝑖,ℎ𝑖𝑔ℎ), 𝒄ℎ𝑖𝑔ℎ)
len(𝑯ℎ𝑖𝑔ℎ)

𝑖=1
                          (12) 

where 𝒉(𝑖,ℎ𝑖𝑔ℎ) = 𝑯ℎ𝑖𝑔ℎ[𝑖, : ], cos(∙,∙) denotes the cosine distance, and len(∙) denotes 

the sample size in 𝑯ℎ𝑖𝑔ℎ . Similarly, we can obtain the affinity score $s_{low}$ in low-

frequency domain. A higher score indicates that the frequency-specific characteristics 

are more representative. 

To enhance the frequency-specific semantic discrimination, the fused representa-

tions should approach to frequency domain signals with high affinity. Therefore, we 

integrate the signals from high-frequency and low-frequency domain based on the af-

finity score: 

Φ(𝑯ℎ𝑖𝑔ℎ , 𝑯𝑙𝑜𝑤) =
𝑠ℎ𝑖𝑔ℎ

𝑠ℎ𝑖𝑔ℎ+𝑠𝑙𝑜𝑤
𝑯ℎ𝑖𝑔ℎ +

𝑠𝑙𝑜𝑤

𝑠ℎ𝑖𝑔ℎ+𝑠𝑙𝑜𝑤
𝑯𝑙𝑜𝑤                   (13) 

To capture signals within distinct frequency bands, diverse filters are applied to 

these partitioned graphs. Notably, since the splitting process yields frequency-specific 

signals from the original graph and there is interference in the propagation of infor-

mation in interactive behavior, subgraphs inevitably lose the holistic structural infor-

mation contained within the original graph. To bolster the overall semantic richness and 

the fidelity to original information, it is imperative to also apply filters to the original 

graph. 

4.5 IB-based representation denoising 

Even though high-pass and low-pass filters encapsulate distinct semantic information 

within graphical representations, as illustrated in Section 1, there is interference in the 

propagation of information in interactive behavior, which results in noise problems in 

the propagation of information. These issues leave the graph filtering capability con-

strained and hindering the generation of sufficiently discriminative representations 

across diverse frequency domains. 

To this end, we introduce the IB theory to improve the quality of latent represen-

tations against noise. According to IB theory, the training objective is twofold: (1) to 

maximize mutual information between encoded embeddings 𝑯 and labels 𝒀, and (2) to 



minimize mutual information between the encoded embeddings 𝑯 and the node fea-

tures 𝑿. 

𝑎𝑟𝑔max
𝑯

−𝐼(𝑯; 𝒀) + 𝜇 ∙ 𝐼(𝑯; 𝑿)                                    (14) 

where 𝜇 is a balanced coefficient. The IB Theory can compress the information within 

input data to distill and preserve the most task-relevant knowledge, effectively reducing 

noise and redundant information while extracting the most predictive and useful fea-

tures. 

Based on this idea, we develop an IB-based information-enhancing module to im-

prove the quality of graph filters and provide more optimization guidance for signals in 

different frequencies. First, our basic objective function is consistent with IB theory: 

(1) to maximize the mutual information between the latent embeddings 𝑯 and the labels 

𝒀, and (2) to minimize the mutual information between the latent embeddings and input 

features 𝑿. However, due to the lack of prior knowledge of different frequency signals, 

it is impractical to calculate the mutual information directly using ground truth labels. 

To this end, we regard the latent embeddings from the encoded original graph using 

different graph filters as labels 𝒀 , and the representations encoded from the hetero-

philic and homophilic using corresponding graph filters as the latent embeddings 𝑯. 

Then, the IB-based loss function can be defined as follows: 

𝐼(𝑯; 𝒀) = 𝐼(𝑯ℎ𝑖𝑔ℎ; 𝑯ℎ𝑖𝑔ℎ
𝑜 ) + 𝐼(𝑯𝑙𝑜𝑤; 𝑯𝑙𝑜𝑤

𝑜 )                     (15) 

𝐼(𝑯; 𝑿) = 𝐼(𝑯ℎ𝑖𝑔ℎ; 𝑯) + 𝐼(𝑯𝑙𝑜𝑤; 𝑯)                           (16) 

The overall IB-based loss function is defined by averaging each term of mutual in-

formation: 

ℒ𝐼𝐵 =
1

2
× [−𝐼(𝑯; 𝒀) + 𝜇 ∙ 𝐼(𝑯; 𝑿)]                           (17) 

Through the implementation of the information-enhancing module based on IB the-

ory, the graph filters obtain explicit guidance to effectively counteract noise within fea-

tures. This ensures that the encoded representations not only preserve the vital charac-

teristics of the original features but also meticulously filter out redundant and irrelevant 

information. Additionally, the graph filters operate across different frequency channels, 

maintaining their specificity and ensuring that each channel remains relatively inde-

pendent. This approach enables the generation of high-quality, fused features that are 

crucial for the accuracy of the model. 

5 Experiments 

5.1 Experimental setup 

Datasets. We execute experiments on three public fraud detection datasets, YelpChi 

[11], Amazon [3], and FDCompCN [4]. In the YelpChi dataset, nodes represent reviews, 

and it includes three types of relations: 1) R-U-R represents the reviews posted by the 
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same user, 2) R-S-R denotes reviews related to the same product with the same star 

rating, and 3) R-T-R stands for the reviews related to the same product posted in the 

same period. In the Amazon dataset, nodes represent users, with three types of relations: 

1) U-P-U denotes users reviewing at least one same product, 2) U-S-U represents users 

having at least one same star rating within a specific period, and 3) U-V-U indicates 

subscribers with the top 5 percent mutual review text similarities. In the FDCompCN 

dataset, nodes represent companies, and it includes three types of relations: 1) C-I-C 

represents companies that have investment relationships, 2) C-P-C indicates companies 

and their disclosed customers, and 3) C-S-C suggests companies and their disclosed 

suppliers. The dataset statistics are summarized in Table 1. 

Table 1. Statistics of datasets 

Dataset Application Node Dimension Fraud (%) Relation Edge 

Yelp review 45954 32 14.53% 

R-U-R 98630 

R-T-R 1147232 

R-S-R 7693958 

Amazon review 11944 24 6.87% 

U-P-U 351216 

U-S-U 7132958 

U-V-U 2073474 

FDCompCN financial 5317 57 10.50% 

C-I-C 5686 

C-P-C 760 

C-S-C 1043 

 

Baselines. We select ten baselines to validate the advancement of our model. We 

categorize the baselines into three groups: shallow methods, GNNs, and GNN-based 

fraud detection frameworks. Among these, MLP and XGBoost are typically shallow 

methods based on feature learning, which ignore graph topology. GCN [12], GAT [13], 

FAGCN [14], and GPR-GNN [15] are GNN-based methods. CARE [11], Fdetector [3], 

BWGNN [10], and SEFraud [1] are fraud detection frameworks based on GNNs. 

Evaluation settings. Since the fraud detection problem exhibits data imbalance, we 

select four metrics to evaluate all models, including AUC, Recall (R), GMean (G), and 

F1-score (F). 

Implementation details. The experiments utilize PyTorch in Python 3.9.12, deploy-

ing a single NVIDIA A40 GPU, 40GB of RAM, and a 2.60GHz Xeon (R) Gold 6240 

CPU. All the baselines can be reproduced by public source codes and Python depend-

encies. 

5.2 Overall performance 

The experimental results of our study are summarized in Table 2. The best results are 

highlighted in bold, while the second-best results are underlined. 

For shallow methods, we find that MLP performs better than XGBoost. This is 

because MLPs can adaptively learn and represent nonlinear relationships in the data. 

Among GNN-based models, GPRGNN and FAGCN demonstrate better performance 



compared to traditional GCN and GAT models. GPRGNN excels by capturing both 

structural and feature information. FAGCN is particularly effective at identifying fraud-

related features. Graph-based approaches outperform feature-based shallow methods, 

as they are better equipped to capture the complex relational and interactive information 

embedded within the graph structure. This advantage stems from the ability of GNNs 

to handle the data imbalance commonly seen in fraud detection tasks 

Table 2. Performance of the proposed SGNN-IB model and comparative model on three da-

tasets. All results are in %. 

Dataset Yelp Amazon FDCompCN 

Metric R F AUC G R F AUC G R F AUC G 

XGBoost 19.15 61.72 59.01 43.51 69.09 72.68 79.54 78.87 61.25 61.17 50.64 58.04 

MLP 69.37 61.48 77.43 70.73 78.18 72.95 87.78 82.93 57.08 54.80 43.06 58.48 

GCN 77.53 36.67 59.33 49.46 80.00 56.43 84.61 73.72 52.92 51.01 40.89 43.95 

GAT 62.15 42.77 56.13 53.13 80.00 71.46 88.03 83.04 52.55 51.36 38.20 42.94 

GPRGNN 75.16 57.34 77.12 69.84 80.09 64.15 89.08 82.32 56.40 47.52 50.31 52.09 

FAGCN 70.64 61.11 77.90 70.88 81.21 69.30 90.48 84.33 57.90 48.48 51.59 49.50 

CARE 72.32 60.40 77.41 70.86 75.76 70.45 86.19 81.71 57.21 43.59 49.00 50.10 

FDetector 84.61 70.78 88.90 81.64 82.12 71.36 89.84 84.29 55.96 48.33 47.89 49.10 

BWGNN 82.56 72.32 89.72 81.92 83.94 69.43 91.91 84.67 58.01 47.91 49.79 52.33 

SEFraud 78.64 72.51 86.77 82.44 88.67 71.28 91.50 85.13 57.49 50.31 50.41 53.74 

SGNN-IB 86.37 74.64 92.06 84.40 90.30 71.56 93.03 86.65 58.93 52.22 56.43 54.17 

 

The proposed SGNN-IB outperforms all these baseline models. In comparison to 

the best performance in baselines, SGNN-IB shows an absolute improvement of 1.76%, 

2.13%, 2.34%, and 1.96% in Recall, F1-Macro, AUC, and GMean on the YelpChi da-

taset.  On the Amazon dataset, SGNN-IB achieves absolute improvements of 1.63%, 

0.20%, 1.12%, and 1.52%, respectively. For the FDCompCN dataset, SGNN-IB im-

proves by 0.92%,1.91%, 6.02%, and 0.43% in Recall, F1-Macro, AUC, and GMean. 

The success of SGNN-IB can be attributed to several key factors. First, SGNN-IB 

uses both low-pass and high-pass filters to selectively extract relevant information from 

homogeneous and heterogeneous structures, respectively. It also employs a prototype 

learning method to maintain the discriminative information of different frequency do-

main. In addition, to enhance the robustness of the filtering process against noise, 

SGNN-IB integrates an IB-based enhancement module. This module guides the graph 

filter, enabling it to generate high-quality, encoded features that improve fraud detec-

tion performance. 

5.3 Ablation experiments 

To evaluate the contribution of each component in the SGNN-IB framework, we con-

duct ablation studies by examining five variants. -edge denotes SGNN-IB without het-

erophily-aware edge classifier, -low denotes SGNN-IB without low-pass filter, -high 

represents SGNN-IB without high-pass filter, -rel denotes SGNN-IB without relation 
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fusion, and -IB represents SGNN-IB without IB-based information enhancer. The re-

sults of these ablation experiments are presented in Table 3, with the best results high-

lighted in bold and the second-best results underlined. 

Table 3. Performance of the ablation experiments on three datasets. All results are in %. 

Dataset Yelp Amazon FDCompCN 

Metric R F AUC G R F AUC G R F AUC G 

-edge 84.32 68.28 85.62 74.36 83.21 66.34 84.51 81.51 51.21 46.32 50.11 48.29 

-low 85.31 67.48 85.43 76.73 82.37 64.74 85.97 76.94 52.14 45.80 49.39 48.22 

-high 83.53 66.67 83.33 79.46 80.44 63.48 82.11 79.55 51.39 43.82 50.73 46.77 

-rel 82.64 66.15 77.90 74.86 83.64 65.54 88.54 80.28 55.83 49.33 50.81 48.96 

-IB 81.53 67.57 89.13 79.26 88.99 69.45 90.42 84.68 53.93 50.48 53.61 51.28 

SGNN-IB 86.37 74.64 92.06 84.40 90.30 71.56 93.03 86.65 58.93 52.22 56.43 54.17 

 

The results indicate that SGNN-IB outperforms all its variants, demonstrating the 

effectiveness of each component in the framework. Meanwhile, -low performs rela-

tively close to SGNN-IB, while -high shows lower performance. This suggests that 

high-pass signals play a particularly important role in detecting fraudulent activities. 

Additionally, the performance of -IB reinforces the effectiveness of the IB-based infor-

mation enhancement module, which contributes to noise reduction and improved model 

robustness. 

5.4 Sensitivity experiments 

We conduct sensitivity experiments by selecting three key model hyperparameters: 𝜇, 

𝜆, and 𝜂. The parameter 𝜇 controls the contribution of mutual information between the 

input features and the filtered features, as well as between different filter channels. The 

parameter 𝜆 controls the influence of the heterophily-aware edge classifier, while 𝜂 

controls the contribution of the information enhancement loss based on the information 

bottleneck (IB) theory. The values of 𝜆 and 𝜂 range from 0.1 to 1.5, with a step size of 

0.1. The range for 𝜇 is from 0.000001 to 0.1, with an exponential step size. The results 

of these sensitivity experiments for the YelpChi and Amazon datasets are shown in Fig. 

3 and 4. 

From the sensitivity experiments across these three datasets, we observe that the 

parameters 𝜆 and 𝜇 have a significant impact on model performance, while 𝜂 plays a 

relatively minor role. Specifically, take the YelpChi dataset as an example. As shown 

in Fig. 3(a), a small value of 𝜆 limits the effectiveness of the edge classifier, leading to 

incorrect identification of heterophilic edges. This misclassification hampers the cap-

ture of high-frequency signals, which are crucial for identifying fraudulent behavior, 

thus reducing the model's ability to detect fraudsters. On the other hand, increasing 𝜆 

enhances the classifier’s capacity, but its effect on performance is relatively small be-

yond a certain threshold. Fig. 3(b) and 3(c) further show that 𝜂 and 𝜇 mainly affect the 

model’s ability to filter noise and extract key features. However, when these values are 

too large, the loss function tends to converge rapidly to negative values during training, 



resulting in a slight decline in performance. In particular, for 𝜇, which regulates the 

data purification and compression between the input data and the filtered features, 

smaller exponential values are more effective. This allows SGNN-IB to focus on the 

most essential components of the original features, improving its ability to capture the 

key information related to fraud. 

 

 

Fig. 3. Sensitivity experimental results on YelpChi dataset: (a) Sensitivity results for parameter 

𝜆; (b) Sensitivity results for parameter 𝜂; (c) Sensitivity results for parameter 𝜇. 

 

Fig. 4. Sensitivity experimental results on the Amazon dataset: (a) Sensitivity results for param-

eter 𝜆; (b) Sensitivity results for parameter 𝜂; (c) Sensitivity results for parameter 𝜇. 

6 Conclusion 

In this paper, we propose a novel spectral graph network based on information bottle-

neck (SGNN-IB) for fraud detection in service networks. SGNN-IB innovatively uti-

lizes an edge classifier to dissect the original service network into heterophilic and ho-

mophilic sub-networks. It then applies band-pass graph filters to effectively extract 

high- and low-frequency service patterns from each subgraph. The framework inte-

grates these signals from multiple relational dimensions to enhance the representation 

of fraudulent behavior. To improve the robustness and filtering capabilities of the spec-

tral graph network, we introduce an information bottleneck-based learning module. To 

evaluate the effectiveness and improvements of SGNN-IB, we conduct comprehensive 

experiments on three publicly available datasets. The results show that our model out-

performs existing state-of-the-art methods in terms of detection accuracy. Future re-

search will focus on developing more efficient and scalable methods for large-scale 

fraud detection. Additionally, exploring the potential role of multi-modal information 

in fraud detection presents an exciting avenue for future work. 
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