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Abstract. As a new generation of energy storage devices, sodium-ion batteries
have promising applications in renewable energy storage and electric vehicles.
However, the state-of-charge (SOC) estimation of sodium-ion batteries is limited
by their complex electrochemical properties and dynamic responses. In this pa-
per, we propose a SOC estimation method for sodium-ion batteries based on ex-
tended Kalman filter (EKF). Firstly, a second-order RC equivalent circuit model
is established for the characteristics of sodium-ion batteries, and the feasibility of
the open-circuit voltage-based accurate estimation of the state of charge of so-
dium-ion batteries is verified through the open-circuit voltage (OCV) test exper-
iments, and the experimental data-driven method is adopted for the parameter
identification; furthermore, a system model is constructed in the Matlab/Simulink
simulation platform, and the applicability of the model is verified through the
online simulation. Secondly, the state space equations are constructed based on
the model, and the improved EKF algorithm is used to realize the online estima-
tion of SOC. Finally, the effectiveness of the proposed method is verified by the
stage discharge condition. The simulation results show that the method can accu-
rately track the SOC changes of sodium-ion batteries, and the estimation error is
controlled within 2.5%, with high estimation accuracy and robustness. Through
accurate parameter identification and model optimization, this paper significantly
improves the accuracy of SOC estimation of sodium-ion batteries, provides an
efficient and reliable solution for the sodium-ion battery management system,
and provides important technical support for its promotion in practical applica-
tions.

Keywords: Sodium-ion Battery, SOC Estimation, Extended Kalman Filter,
Equivalent Circuit Model, Parameter Identification.

1 Introduction

Energy storage technology is a key supporting technology to realize the goal of “carbon
peak and carbon neutral”. With the aggravation of global climate change, countries
have put forward the carbon neutral target, and promote the transformation of energy
structure from fossil energy-based to renewable energy-based M. Energy storage tech-
nology plays an important role in this process, which can effectively solve the problem



of intermittency and uncertainty of renewable energy, improve the efficiency of energy
utilization, and reduce the dependence on traditional fossil energy. With the advance-
ment of power system reform and smart grid construction, the role of energy storage
technology in the power system is becoming more and more prominent. Energy storage
technology can enhance the flexibility and stability of the power system, support the
large-scale access of new energy sources, and at the same time meet the peak and valley
differences in power demand!.

Currently, lithium-ion batteries, which are highly commercialized, have limitations
in terms of safety, cycle life, material cost and environmental impact. In contrast, so-
dium-ion batteries have become a strong contender for next-generation energy storage
devices by virtue of their abundant resources, low cost, high energy conversion effi-
ciency, and environmental friendlinesst®l. Sodium is a richly abundant element on the
earth, its abundance is about three times that of lithium, and it is inexpensive, which
makes sodium-ion batteries have a significant advantage in cost 1, and become one of
the important research directions in the field of energy storage. However, the commer-
cial application of sodium-ion batteries still faces many challenges, such as low energy
density and poor cycling stability 1, so improving their performance and reliability is
the focus of current research.

Compared with lithium-ion batteries, sodium-ion batteries have significant differ-
ences in material properties and working principles. For example, the ionic radius of
sodium ions is larger and the diffusion rate is slower, which leads to its energy storage
mechanism and performance characteristics are different from those of lithium-ion bat-
teries [, Therefore, the unique physicochemical properties of sodium-ion batteries need
to be fully considered for the estimation of their state of charge (SOC). At present, the
development of sodium-ion batteries is still in the primary stage, and the key technolo-
gies of their battery management system (BMS), especially the accurate estimation of
SOC, still need further in-depth research. By solving these problems, sodium-ion bat-
teries are expected to realize wider applications in the field of energy storage.

As a key parameter reflecting the remaining battery charge, the estimation accuracy
of SOC directly affects the formulation of battery charging and discharging strategies
by the BMS, which in turn affects the service life and safety of the batteryl”). However,
the charging state of a battery cannot be directly measured and can only be indirectly
estimated based on externally measurable parameters such as terminal voltage, current
and temperature. In addition, the inherent electrochemical characteristics of sodium-ion
batteries, such as large polarization voltage and complex dynamic response, further in-
crease the difficulty of SOC estimation. Currently, the main research methods for SOC
include equivalent circuit model-based, data-driven, joint estimation of physical char-
acteristics, and novel algorithms and optimization strategies. Wu Shengli et al ¥ based
on the equivalent circuit model approach achieved high accuracy SOC estimation
through the second order RC model, introducing the multiple new holographic theory
combined with extended Kalman filtering (EKF), especially in the wide temperature
range. Xiong et al™ based on the data-driven approach combined with the LSTM-RNN
model in the hybrid neural network approach, and combined with the historical data to
achieve a high accuracy prediction. Shuai Jiang et al % joint estimation method based
on physical properties further improved the estimation accuracy through SOC-SOH
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joint estimation and temperature adaptive method. Yunhai Peng et al ¥ utilized particle
volume Kalman filtering (PF-CKF) to solve the estimation challenges in nonlinear sys-
tems and high noise environments. Overall, SOC estimation research is developing to-
wards high accuracy, strong robustness and multi-dimensional joint estimation, which
provides important support for the optimization of battery management systems.

Extended Kalman Filter (EKF) [*?, as a classical nonlinear state estimation algo-
rithm, is widely used in the field of SOC estimation for lithium-ion batteries due to its
advantages such as small computational effort and high estimation accuracy. However,
there are relatively few studies on the EKF algorithm for sodium-ion batteries, and most
of the existing methods use simple battery models, which are difficult to accurately
describe the dynamic characteristics of sodium-ion batteries.

Aiming at the above problems, this paper proposes an extended Kalman filter-based
method for estimating the state of charge of sodium-ion batteries. Firstly, the second-
order RC equivalent circuit model is used to model the sodium-ion battery, the open-
circuit voltage test is used to verify the feasibility of estimating the SOC of the sodium-
ion battery through the open-circuit voltage, and the least squares method is used to
identify the parameters. Next, the state space equation is constructed based on this
model, and the EKF algorithm is used to realize the online estimation of SOC. Finally,
the effectiveness of the proposed method is verified through simulation studies.

2 Modeling Of Sodium-lon Batteries

Existing studies are rich in exploring battery models, which can be mainly categorized
into four types: electrochemical model, energy model, coupling model and equivalent
circuit model. Among them, the electrochemical model establishes mathematical equa-
tions by describing the chemical reactions inside the battery, but due to the complexity
of the reaction process, the model has a large amount of computation, which is difficult
to be applied to the real-time estimation of the state of charge (SOC) of the battery. The
energy model focuses on analyzing the heat production characteristics of the battery
during operation, providing a theoretical basis for the battery thermal management sys-
tem. The coupled model integrates the characteristics of the electrochemical model and
the energy model. It should be noted that the electrochemical model, the energy model
and the coupled model are all constructed based on the internal chemical properties of
the battery, and their model parameters are often difficult to identify accurately, which
is not suitable for the simulation study of the model. The equivalent circuit model 13,
on the other hand, has the advantages of high computational efficiency, easy parame-
terization, and strong adaptability, and is suitable for state estimation algorithms to be
combined to achieve high-precision SOC estimation.

The battery equivalent circuit models mainly include the following typical struc-
tures: the Rint model, the Thevenin model, the PNGV model, the first-order RC model,
the second-order RC model, and the GNL model. In terms of the working principle,
sodium-ion batteries are similar to lithium-ion batteries in that they both realize energy
storage and release through the embedding/de-embedding reaction of sodium ions in
the positive and negative materials. Specifically, its charging and discharging process



contains several key mechanisms: sodium-ion migration in the electrolyte, ion diffusion
in the electrode material, and electrochemical reaction kinetics and other complex pro-
cesses. These processes exhibit different dynamic properties on the time scale and can
be roughly categorized into two types, one dominated by the ion migration in the elec-
trolyte and the electrochemical reaction on the electrode surface, which usually corre-
sponds to a shorter time constant, and the other dominated by the diffusion of sodium
ions in the electrode material, which usually corresponds to a longer time constant. The
second-order RC model describes the fast and slow dynamic characteristics of the bat-
tery through two RC parallel loops, respectively, which can better capture the electro-
chemical behavior of sodium-ion batteries on different time scales, and thus provide
accurate mathematical descriptions of the voltage response of the battery. Moreover,
the second-order RC model has a simple structure, convenient parameter identification
and strong adaptability, which is an efficient and reliable solution for modeling and
state estimation of sodium-ion batteries. The second-order RC model [ is shown in
Fig. 1.
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Fig. 1.Second order RC circuit equivalent model.

The second-order RC equivalent circuit model consists of a voltage source Uoc, an
ohmic internal resistance RO, an electrochemical polarization internal resistance R1 and
capacitance C1, and a concentration polarization resistance R2 and capacitance C2. The
equivalent circuit dynamic equations are established according to Kirchhoff's law as
shown in Equation 1.
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3 Parameter Identification

Battery parameter identification 113 refers to the process of determining unknown pa-
rameters (internal resistance, capacitance, open-circuit voltage) in a battery model
through experimental data or algorithms. These parameters are the core of the battery
model and directly affect the accuracy and predictive ability of the model. The purpose
of parameter identification is to enable the battery model to accurately reflect the actual
behavior of the battery, thus supporting battery state estimation (SOC, SOH), perfor-

mance prediction and optimal control.

The experimental object of this paper is the 26700 sodium-ion battery produced by
Zhongke Haina, and the main performance parameters of this battery are listed in Table
1. The experimental platform built in this paper is shown in Fig. 2, which consists of
four main parts: a computerized data processing system, a 26700 sodium-ion battery, a

DC charging power supply and a discharge electronic load.

Table 1. Basic parameters of sodium-ion battery monomer

Item Specification Note
Nominal capacity/Ah 3.0 23°C, 0.5C
Nominal Voltage/V 3.0 —_—

Cut-off charging 4 -
voltage/V

Cut-off discharging 15 T: 0~+60°C
voltage /V

Standard charging 0.25C CC to 4V -

mode

Dimension/mm CV 10 0.05C —

\, T #- 9

- Q' .- e
a discharge a DC charging
electronic load. power supply

transmission

()
(SI@

a computerized 26700
data processing system sodium-ion batteries

A
TCP/IP information

Fig. 2.Experimental platform



3.1  Open-circuit Voltage Test

In order to obtain the correspondence between the open-circuit voltage and the state of
charge (OCV-SOC curve) of a battery, an open-circuit voltage test is required. In this
paper, the intermittent discharge test was conducted at room temperature (25<C), using
1C discharge multiplication, and the resting time under each SOC point was 30 min.
To investigate the difference between the OCV-SOC curves of sodium-ion batteries
and lithium-ion batteries, this test is conducted to determine the sodium-ion batteries
and lithium-ion batteries with the model number of 18650 under the same conditions.

The relationship between SOC and open-circuit voltage under the corresponding
point is obtained from the test as shown in Tables 2 and 3. Polynomial fitting of SOC
and open-circuit voltage under the corresponding point is carried out, and in order to
ensure the accuracy and continuity, this paper adopts a fifth-order polynomial for the
fitting, and the relationship between OCV-SOC of sodium-ion and lithium-ion batteries
is obtained as shown in Egs. (2) and (3). The function fitting curves are shown in Figs.
3 and 4.

Table 2. Sodium-ion battery open circuit voltage test results

SOC/% 0 10 20 30 40 50 60 70 80 90 100
OCV/IV | 1.892 | 2.294 | 2.552 | 2.737 | 2.895 | 3.088 | 3.264 | 3.431 | 3.58 | 3.734 | 3.882

Table 3. Lithium-ion battery open circuit voltage test results

SOC/% 0 10 20 30 40 50 60 70 80 90 100
OCV/IV | 2923 | 3.206 | 3.251 | 3.281 | 3.287 | 3.289 | 3.299 | 3.324 | 3.325 | 3.325 | 3.363

OCV =8.67xSOC® —25.58x SOC* +28.16 x SOC?

)
~14.5x SOC? +5.246x SOC +1.891

OCV =12.05xSOC® -34.36x SOC* +36.66 x SOC*

®)
—18.03xSOC? +4.113x SOC +2.927

ocv

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC

Fig. 3. OCV-SOC polynomial fitting curves for sodium-ion batteries
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Fig. 4.0CV-SOC polynomial fitting curves for Lithium-ion batteries

The linear trend of the OCV-SOC relationship of sodium-ion batteries can be pre-
liminarily observed through the fifth-order polynomial fitting curves in Fig. 3. In order
to further quantify the highly linear characteristics of the OCV-SOC relationship of
sodium-ion batteries, this paper adopts linear regression methods to linearly fit the
open-circuit voltages (OCVs) of the sodium-ion batteries at different SOC points in
order to accurately characterize the linear properties of their OCV-SOC relationship
and to provide high-precision mathematical model support for subsequent SOC estima-
tion. The results are shown in Fig. 5.

ocv

1 1 L 1 1 L 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
S0C

Fig. 5. OCV-SOC linear fitting curve for sodium-ion batteries

The results of comparative analysis show that there is a significant difference be-
tween the open-circuit voltage-state of charge (OCV-SOC) relationship curves of so-
dium-ion batteries and lithium-ion batteries. Meanwhile, the linear fitting curve of the
sodium-ion battery shows that the OCV-SOC curve of the sodium-ion battery exhibits
good linear characteristics and does not have the voltage plateau phenomenon common
in lithium-ion batteries. This highly linear OCV-SOC relationship allows the open-cir-
cuit voltage of sodium-ion batteries to more directly and accurately reflect their SOC



state, thus significantly improving the accuracy of SOC estimation. In contrast, the
OCV-SOC relationship of lithium-ion batteries exhibits strong nonlinearity due to the
existence of multiple voltage platforms, resulting in a certain limitation of the SOC
estimation accuracy. This characteristic of sodium-ion batteries not only simplifies the
complexity of battery modeling, but also reduces the design difficulty of battery man-
agement system (BMS) algorithms, enabling them to exhibit higher applicability and
reliability in dynamic application scenarios such as electric vehicles. Therefore, so-
dium-ion batteries have obvious advantages in terms of SOC estimation accuracy and
BMS adaptability, which provide important technical support for their large-scale ap-
plication in electric vehicles and energy storage systems.

3.2 Open-circuit Voltage Test

Offline parameter identification ¢! refers to the process of determining the parameters
of a battery model by means of experimental data and algorithms when the battery is
not in its actual operating state (i.e., offline). Offline parameter identification is usually
performed in a laboratory or controlled environment and can provide highly accurate
parameter estimates that provide the basis for battery modeling, state estimation, and
performance optimization*l. Since this paper has verified that the OCV-SOC curves
of sodium-ion batteries exhibit good linear characteristics through the open-circuit volt-
age test, and their dynamic response varies less, which significantly reduces the mod-
eling complexity, the offline parameter identification is used for the five parameters of
the second-order RC model, namely, RO, R1, R2, C1, and C2.

In this paper, HPPC experiments are used for parameter identification. Here, a com-
plete cycle experiment with SOC of 60% is selected for illustration.

In figure 6, A~B stage is the pulse discharge process, and B~D stage is the discharge
resting phase.

B

0 10 20 30 40 50 60 70 80 Q0 100
/s

Fig. 6. HPPC voltage curve at SOC=60%

Parameter identification of polarization resistance and capacitance
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In the resting phase after pulse discharge, the phenomenon of slow voltage recovery is
mainly affected by the combined effect of polarization resistance and polarization ca-
pacitance inside the battery. This process is reflected in the figure is the B~C stage, this
process is the second-order RC circuit of the zero input response, in the B~C stage at
any moment of the battery's operating voltage is:

U=0CV, - IRe ™ —IR,e™ @)

The rebound voltage curves of stages B to C are fitted by a customized second-order
exponential function called “Custom Equations” in the fitting toolbox in Matlab:
General model:

f (x) = A—B*exp(—ax) — C *exp(-bx) (5)

Coefficients:

A=3.734, B =0.02671,C =0.01281, a =0.03705, b =0.00244

Equating Eq. (4) with Eq. (5) correspondingly the parameters of the model can be
obtained as follows: Therefore, through the above identification method, the identifica-
tion results of the equivalent impedance parameters of the battery at each SOC point
can be obtained as shown in Table 4.

Table 4. Second order RC model parameter identification results

SOC R1 R2 Cl C2 RO
0.1 0.445 0.0331 11.6242 12990 0.2776
0.2 0.0134 0.011 24427 47064 0.1501
0.3 0.0094 0.0109 56792 3265.4 0.1377
0.4 0.005 0.0116 114280 3002.2 0.1326
0.5 0.0107 0.0051 3216.8 94744 0,1294
0.6 0.0092 0.005 3310.1 86078 0.1284
0.7 0.0085 0.0041 3162.5 100060 0.1271
0.8 0.0033 0.0075 166020 3863.3 0.1342
0.9 0.0074 0.0027 4165 227580 0.1271
1.0 0.0026 0,0069 139480 3337.3 0.1265

3.3 Matlab/Simulink Based Model Simulation and Comparative Validation

In order to verify the accuracy of the model and parameter identification, this study
compares the measured voltage data with the simulation results for verification. As
shown in Fig. 7, the battery simulation model and its parameter settings are constructed
in the Matlab/Simulink environment.



[*a] Module Parameter : Battery (Table-Based) X

outHPPC1 Battery (Table-Based)

Settings  Description

To Workspace
P Selected part <click to select>
~ Main
. > Vector of state-of-charge values, ... [0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
ﬁ\}\ Tabulate parameters over tempe... No
\‘L/ Current directionality Disabled
J J > Open-circuit voltage, VO(SOC) [1.892,2.294,2.552,2.73.. V
(A > Terminal voltage operating rang... [0, inf] onf] Vv
\QL > Terminal resistance, RO(SOC) [0.2776,0.15,0.1377,0.1... Ohm
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—  Battery = o -
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Second polarization resistance, R... [0.0331,0.011,0.0109,0.... Ohm

> Second time constant, tau2(SOC)  [429.969,517.704,35.59... s

Fig. 7.Battery Simulation Model and Battery Parameter Setting

In this study, two discharge conditions are used to verify the accuracy of the simulation
model: constant current discharge and pulse discharge. The constant-current discharge
is verified using a 1C discharge multiplier, and the simulation curve obtained under this
condition is shown in Fig. 8(a). In the pulse discharge validation stage, the experimental
data of one complete cycle was selected for analysis in this study, and the specific test
conditions are set as follows: 3A pulse current was used, and the discharge is left for
30 minutes after 6 minutes, and the simulation result curve is obtained as shown in Fig.
8(b).

‘Stimuation Voliage ‘Stimuiation Vallaga
——— Actual Voltage ——— Actual Voltage

[ 500 1000 1500 2000 2500 3000 3500 4000 0 500 10-00 15‘00 20‘00 25‘01)
tis ts

(a) (b)

Fig. 8. Simulation Result Curve

Constant current terminal voltage simulation results show that the simulation voltage
and the actual voltage in the initial moment (t = 0s) are close to 3.5V, the error is very
small, providing an accurate starting point for the subsequent analysis; in the interval
from t = 0s to t = 2500s, the simulation voltage and the actual voltage trend is highly
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consistent with that of the actual voltage, although the simulation voltage is slightly
lower, but the error is stable and smaller, indicating that the model can effectively cap-
ture the change rule of the actual voltage; To t = 3500s, the two voltages are reduced to
a lower level, the error is still maintained in a small range, the simulation voltage de-
creases slightly faster, but the overall error on the model analysis and prediction of the
impact can be ignored.

The simulation results of the pulse-terminal voltage show that at the initial moment,
the actual voltage is slightly higher than 3.5 V, and the simulated voltage is about 3.5
V, with a small gap. Subsequently, the actual voltage drops rapidly to 3.3V, and the
simulated voltage then drops but is slightly higher, which is a short period of time and
a small error. After that, the actual voltage rises rapidly, and the simulated voltage rises
synchronously, and both of them are close to 3.7V in 500s, almost coinciding, which
indicates that the model can accurately follow the voltage change in the rapid phase.
After the stabilization stage, both voltages are stabilized at about 3.7V, and the curves
almost overlap with negligible error, indicating that the model has very high accuracy
in the steady state. Overall, despite the transient differences in the initial phase, the
simulation model can accurately reflect the actual voltage changes in the recovery and
stabilization phases, showing high reliability and accuracy.

Specific analysis of the experimental data shows that the average relative error be-
tween the output voltage and the experimental data is less than 4%, of which the root
mean square error is 4.2% in the constant current discharge condition and 0.5% in the
pulse discharge condition, which indicates that the battery model can accurately reflect
the actual dynamic characteristics and has good dynamic performance.

4 SOC Estimation Of Sodium-ion Batteries

4.1 Extended Kalman Filter Algorithm

Extended Kalman Filter (EKF) is an extension of Kalman Filter 8! (KF) for nonlinear
systems. Kalman filter as a recursive estimation algorithm is mainly applied to state
estimation of dynamic systems. The algorithm has a wide range of applications in sev-
eral engineering fields such as navigation systems, automatic control and signal pro-
cessing. However, the standard Kalman filter assumes that both the dynamic and ob-
servation models of the system are linear, while the EKF deals with nonlinear systems
by linearizing the nonlinear model™. Its system space state model is as follows:

X = f (Xk—l'uk—l)+wk—l ©)

z, =h(x)+Vv,
Where X, is the state vector, U, is the control input, Z, is the observation vector, W,

and Vv, are the process noise and observation noise, respectively, which are usually
assumed to be zero-mean Gaussian white noise.



The function is linearized, and the state transfer F, and observation matrices H,
are computed using Jacobi matrices:

of
Fo=— 7
OX|,
k—lk-1
oh
H,=—
OX X1 (8)
Projected state:
Rea = f (R Us) o)
Predicting covariances:
T
Pk\k—l =F Pk—l\k—le +Q (10)
Where Q, is the process noise covariance matrix.
Update step:
Calculate the Kalman gain:
T T =
Ky = FyeHe (Hkpk\k-lHk + Rk) 1)
Update the status estimate:
R = Kgs T Ky (Zk —h (Xk\k—l)) 12)
Updated covariance estimates:
Pk\k = (I —-KyH, ) Pk\k—l (13)

Where R, is the observation noise covariance matrix.

4.2  SOC Estimation Of Sodium-ion Batteries Based On EKF

State of Charge (SOC) estimation of sodium-ion batteries based on Extended Kalman
Filter (EKF) is a commonly used Battery Management System (BMS) technique
[20].SOC is the percentage of remaining battery charge, and an accurate estimation of
SOC is critical for battery performance optimization, lifetime management, and safety.
EKF can efficiently estimate the SOC of a nonlinear battery system by combining a
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battery model and real-time measurement data, it is able to effectively estimate the SOC
of a nonlinear battery system.

The EKF state space used in this paper not only considers the SOC, but also intro-
duces two voltage decay terms (the voltages of the two RC links), which reflect the
battery characteristics more realistically than the traditional first-order RC model. The
SOC estimation accuracy is improved by using the dynamically changing battery pa-
rameters over time and fitting them by an eighth-order polynomial.

Equation of state:

A
1 0 0 C
SOC, A SOC, At
U, [=]0 e** 0 U, |=|R|1-e™ | 1, +w,, (19
U At
2,k O 0 eRZCZ 2,k-1 at
R,| 1-e"

Where: At is the experimental sampling period; Uy, k and Uz are the voltage values on
C; and C; at time k, respectively; C is the cell capacity; n is the Coulombic efficiency
of the cell.

du,, (soc) S0C
Uk = W—l—l Ul,k — ROIk +Vk (15)
U2,k

Among them:



X = Ul,k
UZ,k
10 o0
—At
A=|0 e 0
—At
00 i
_,At
c

dsocC

C - M_l_l} (26)

D, =-R,
By substituting the above model parameters into the Kalman filtering algorithm, this
study achieves an accurate estimation of the SOC of sodium-ion batteries.

5 Experimental Stimulation

In order to verify the estimation accuracy of the extended Kalman filter algorithm on
the SOC of sodium-ion batteries, this paper selects the stage discharge condition as the
verification, adopts 1C discharge multiplication rate, takes the measured current and
voltage data as the input, and estimates the SOC of sodium-ion batteries based on the
second-order RC equivalent circuit model. The estimation results and error analysis are
shown in Figs. 9 and 10, respectively. The SOC obtained by the ampere-time integra-
tion method is chosen as the reference value. The simulated terminal voltage results are
approximated as the simulated open-circuit voltage and linearly fitted to the corre-
sponding SOC reference value, and the fitting results are plotted on the same graph with
the linear fitting results obtained from the open-circuit voltage test, as shown in Fig.
11, which reveals that the simulation results are highly consistent with the experimental
results, and further verifies the highly linear characteristics of the OCV-SOC curve of
the sodium-ion battery.
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Fig. 9.Terminal Voltage Estimation Result Curve

12 0z
—— Actual Vaiue —— 50C armor
—— Estimates value
015
08
w01
o5t <}
o E
g @
a o
04 o
@ oos
- N _
o
0

t/s 10! /s 10!

Fig. 10. SOC Estimation Result Curve

4

@ Expermental Value Data Prints
Linear fiting of axpedmental vahiss
®  Senuiion Vsiue Data Points
Linear fitting of simulatec values

o 01 o0z 03 04 05 08 07 08 09 1
S0C
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The analysis results based on the experimental data show that the EKF algorithm ex-
hibits good tracking accuracy and stability in sodium-ion battery SOC estimation. As
shown in Fig. 9, the SOC curve estimated by the EKF algorithm fits well with the real
value curve under the 1C stage discharge condition, and the estimation effect is good.



The mathematical calculation of the experimental data yields that its mean absolute
error (MAE) is controlled within 0.9% and the root mean square error (RMSE) is lower
than 2.5%, which verifies the effectiveness of the algorithm. However, in the interval
where the SOC is lower than 10%, there is a significant nonlinear relationship between
the open-circuit voltage (OCV) and the SOC, and at the same time, the complex elec-
trochemical polarization effect inside the cell is more significant in the low SOC region,
which together lead to the decrease of the SOC estimation accuracy. The experimental
data show that the estimation error increases about 0.7%-1.2% in the interval of
SOC<10% compared with other intervals, which is consistent with the theoretical anal-
ysis. From the perspective of the overall error distribution and change trend of the im-
ages, the error between the simulation results and the actual measurements is always
kept at a low level, and the fluctuation range of the error is small, with no obvious
deviation or accumulation phenomenon. In addition, the change trends of the simulation
curve and the actual curve during the discharge process are highly consistent, especially
during the rapid voltage change and stabilization phases, which are almost completely
overlapped. This indicates that the proposed SOC estimation method can effectively
capture the dynamic characteristics of sodium-ion batteries and maintain a stable esti-
mation performance under different operating conditions. Therefore, the method not
only meets the accuracy requirements of SOC estimation for sodium-ion batteries, but
also demonstrates good robustness and reliability, which provides strong support for its
application in practical battery management systems.

6 Conclusion

In this study, a second-order RC equivalent circuit model based on dynamic character-
istics is proposed to address the technical difficulties in estimating the state of charge
(SOC) of sodium-ion batteries. The model can accurately characterize the polarization
effect of the battery. The simulation experiments are carried out under two typical
working conditions of constant current discharge and pulse discharge, and the results
verify that the model has high estimation accuracy and reliability. On this basis, an SOC
estimation method based on extended Kalman filter (EKF) is proposed, and combined
with the open-circuit voltage (OCV) test experiments, the feasibility of realizing the
accurate estimation of SOC based on OCV for sodium-ion batteries is verified. The
experimental data-driven parameter identification method is adopted to ensure the ac-
curacy and reliability of the model parameters, and the state-space equations are con-
structed to realize the online estimation of SOC using the improved EKF algorithm.
Simulation results show that the method can accurately track the SOC changes of so-
dium-ion batteries, and the estimation error is controlled within 2.5%, exhibiting high
estimation accuracy and robustness.

In this paper, the accuracy of SOC estimation of sodium-ion batteries is significantly
improved through accurate parameter identification and EKF model optimization,
providing an efficient and reliable solution for sodium-ion battery management system
(BMS). The results provide a theoretical basis and technical reference for the develop-
ment of the BMS state estimation module, which is not only suitable for the laboratory
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environment, but also able to meet the demand for high accuracy of SOC estimation in
practical applications, and provides important technical support for the promotion of
sodium-ion batteries in the fields of renewable energy storage and electric vehicles.
Future research will further optimize the adaptive ability of the model parameters to
cope with more complex working conditions and promote the practical application and
development of sodium-ion battery technology.
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