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Abstract. With the widespread application of deep learning technologies such as 

Convolutional Neural Networks (CNNs) and Generative Adversarial Networks 

(GANs), facial forgery techniques have matured rapidly, bringing innovative ap-

plications to multiple fields while also raising serious security concerns. To ad-

dress this challenge, researchers have developed various deepfake detectors. 

However, these detectors have shown significant vulnerabilities when faced with 

adversarial attacks. This study aims to systematically evaluate the performance 

of deepfake detectors under adversarial attacks and test the effectiveness of var-

ious defense methods. Through large-scale experiments, we analyzed the perfor-

mance of different types of detectors under various adversarial attacks and as-

sessed the efficacy of existing defense strategies. The results indicate that while 

some defense methods perform well in specific scenarios, the overall robustness 

of detectors still needs improvement. This research not only deepens our under-

standing of adversarial robustness in deepfake detection but also provides im-

portant experimental evidence and theoretical guidance for developing more ef-

fective defense strategies. 

Keywords: Internet of things, adversarial examples, object detection, computer 

vision, deep learning 

1 Introduction 

Benefiting from the significant advancements in deep learning technologies, particu-

larly Convolutional Neural Networks (CNNs) and deep generative models such as Gen-

erative Adversarial Networks (GANs), Diffusion Models, DeepFake has emerged as a 

prominent topic of interest in recent years. With the continuous advancements in face 
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generation technologies such as PGGAN [1] and StyleGAN3 [2], and face editing tech-

nologies like AttGAN [3] and StarGAN [4], the boundary between fake and real images 

is becoming increasingly indistinct, making it difficult for the human eyes to differen-

tiate between them. These technologies have introduced numerous innovative and prac-

tical applications in various fields such as advertising and film production, as illustrated 

in Fig 1. However, while DeepFake technology offers limitless possibilities for enhanc-

ing various aspects of people’s lives, it also poses potential threats to personal data 

privacy, social stability, and national security, as illustrated in Fig 1. 

 

Fig. 1. The top half of the image shows the work of Surrealist painter Salvador Dalí, who was 

resurrected using DeepFake technology, and who was able to talk about his past and even inter-

act with visitors at the Dalí Museum. The bottom half of the image shows American actor Jor-

dan Peele playing Obama’s speech using Deepfake technology. 

With the widespread application of deepfake technology, effectively detecting these 

fake images has become an urgent issue. To address this challenge, researchers have 

developed various deepfake detectors that utilize deep learning models to identify sub-

tle differences between fake and real images. Although these detectors perform excel-

lently in many cases, they also face significant challenges, especially when confronting 

adversarial attacks. Adversarial attacks are a method of misleading deep learning mod-

els by adding carefully designed, minute perturbations to input data. For deepfake de-

tectors, the threat of adversarial attacks is particularly severe, as these attacks can easily 

cause detectors to misclassify, allowing fake images to evade detection. This phenom-

enon has garnered widespread attention, prompting researchers to explore more robust 

defense mechanisms. To enhance the robustness of deepfake detectors, strategies for 

defending against adversarial attacks have gradually become a research focus. Alt-

hough various defense methods have been proposed, their performance is inconsistent 

across different attack scenarios. Therefore, a systematic evaluation of the effectiveness 

of existing defense methods has become particularly necessary. This study aims to sys-

tematically evaluate the performance of existing deepfake detectors when faced with 

adversarial attacks through experimental analysis, and to test the effectiveness of vari-

ous defense strategies. Through extensive experiments, we have conducted a detailed 
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analysis of the performance of different detectors under various attacks and explored 

the advantages and disadvantages of these defense methods. 

 

Fig. 2. Overview of Adversarial Attacks and Defense for Deepfake Detection. 

2 Related Work 

2.1 DeepFake 

The term deepfake originates from a combination of deep learning and fake. This tech-

nology gained widespread attention in 2017 when a Reddit user named deepfakes 

posted videos where faces of famous actresses were superimposed onto those of adult 

performers, bringing public awareness to the potential impact of deepfake technology. 

Deepfake technology is inherently dual-use, with applications that can be either bene-

ficial or harmful, depending on the intentions of the user. In recent years, while various 

face-swapping software and features have been introduced on entertainment media plat-

forms, many were later forced to shut down due to information security concerns. Pos-

itive applications of deepfake technology include enhancing participant experience in 

video conferences [5] or creating special effects in film production, bringing beloved 

deceased actors back to the movie screen. However, the technology can also be mali-

ciously exploited to create unauthorized pornographic content, manipulate recordings 

of political figures’ statements or behaviors, or even to breach facial recognition sys-

tems for financial fraud and other criminal activities. 

The malicious use of forged images can have severe negative impacts on individuals 

and society. To address this challenge, researchers have been dedicated to developing 

various detection methods to differentiate between real and forged images. These meth-

ods include traditional feature extraction-based algorithms and deep learning-based ap-

proaches. Traditional feature extraction algorithms analyze information such as image 

discontinuities [6], noise characteristics [7] and geometric transformations [8] to extract 

statistical features from the images. These features are then used with classifiers to de-

termine whether an image has been forged. However, these methods often have limited 

effectiveness in detecting advanced forgery techniques. In contrast, deep learning-

based methods have shown superior performance in forged image detection. These 



methods leverage the powerful learning capabilities of deep neural networks, training 

models to learn the differences between real and forged images and to classify them 

accordingly. Common deep learning models include Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs). CNNs automatically extract 

information such as texture, shape, and edges from raw images through hierarchical 

structures and convolution operations, learning to identify visual inconsistencies and 

anomalies in forged images. Deep learning-based methods have significantly improved 

the accuracy and robustness of detection tasks in identifying deepfake images. 

Deepfake detection fundamentally involves a binary classification task, which entails 

distinguishing between “fake” and “real” images. This task typically employs Deep 

Neural Networks (DNNs), which learn to detect deeply falsified data through training 

on both “real” and “fake” data examples. Commonly used deep convolutional networks 

include VGG [9], ResNet [10], MesoNet [11], EfficientNet [12], Xception [13], Dense-

Net [14], MobileNet [15] and GramNet [16]. Although these models excel in this par-

ticular task, recent studies have revealed the potential vulnerability of DNNs to adver-

sarial attacks. 

2.2 Adversarial Attacks and Defense 

Over the past decade, adversarial attacks have been extensively studied. Various neural 

network architectures, from ordinary image classifiers and deepfake detectors to video 

forgery detection systems and object detection models, have been proven vulnerable to 

adversarial vulnerabilities. These models can be easily deceived by carefully crafted 

adversarial examples, leading to incorrect predictions. Adversarial attacks are generally 

categorized into two main types: white-box attacks and black-box attacks. 

In white-box attacks, the attacker has full access to all parameter information of the 

target model and can utilize detailed gradient information to finetune the perturbations. 

In contrast, black-box attacks lack direct access to the model’s internal information and 

can be further divided into query-based attacks and transferability-based attacks. In 

query-based attacks, attackers create effective adversarial examples by submitting spe-

cific inputs to the target model and analyzing its responses. They infer the model’s 

features and potential vulnerabilities by examining the correlation between input sam-

ples and their outputs. In transferability-based attacks, attackers leverage knowledge or 

adversarial examples obtained from other models, transferring this information to the 

target model to understand its behavior and implement attacks. 

In response to adversarial attacks, researchers have proposed various defense strate-

gies to enhance the robustness of deep learning models against adversarial examples. 

These defense methods can be broadly classified into two categories: input prepro-

cessing defense methods and model internal enhancement defense methods. 

The core idea of input preprocessing defense methods is to process the input data to 

eliminate or weaken adversarial perturbations. These methods include image smooth-

ing techniques (such as median filtering, mean filtering, and Gaussian filtering) and 

denoising techniques (such as autoencoder-based denoising [18-20] and JPEG com-

pression). These approaches can reduce the effectiveness of adversarial examples with-

out significantly affecting normal samples. However, while preprocessing methods can 
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mitigate attacks to some extent, they often show limitations when facing high-intensity 

perturbations. Model internal enhancement defense methods aim to improve the 

model’s robustness through modifications in model architecture or training processes. 

Data augmentation defenses, such as AugMix [21], introduce diverse input samples 

during training to help the model learn more generalizable features, thereby enhancing 

robustness under adversarial perturbations. Adversarial Training is a widely used and 

effective defense strategy that incorporates adversarial examples directly into the train-

ing set, enabling the model to learn how to resist these attacks. Additionally, techniques 

like Gradient Masking increase the difficulty for attackers to generate adversarial ex-

amples by obscuring the model’s gradient information. Defensive Distillation trains the 

target model to soften its outputs, making it challenging for attackers to generate effec-

tive adversarial perturbations using gradient information. Furthermore, recent years 

have seen the emergence of defenses based on high-level features, which focus on the 

robustness of high-level features in deep networks and can more effectively counter 

cross-model adversarial transfer attacks. 

However, despite the fact that adversarial defense methods have improved model 

robustness to some extent, existing defense strategies still have significant limitations 

in the face of more complex and dynamic attack techniques. Defense mechanisms are 

often unable to comprehensively address different types of attacks, particularly show-

ing unsatisfactory performance against black-box attacks. 

3 Adversarial Attack Strategies 

Adversarial attacks have evolved significantly, employing various sophisticated tech-

niques to manipulate neural networks. This section examines several prominent attack 

strategies that have emerged in recent years. We will explore the Basic Iterative Method 

(BIM) [22], Momentum Iterative Fast Gradient Sign Method (MIFGSM) [23], Trans-

lation-Invariant Fast Gradient Sign Method (TIFGSM) [24], Scale-Invariant Method 

(SIM) [25], Projected Gradient Descent (PGD) [26], Optimization-based attack algo-

rithms (C&W) [27], and DeepFool [28]. 

3.1 BIM 

The Basic Iterative Method (BIM), also known as Iterative Fast Gradient Sign Method 

(I-FGSM), is an extension of the Fast Gradient Sign Method (FGSM). BIM applies 

FGSM multiple times with a small step size, clipping pixel values after each iteration 

to ensure the resulting adversarial example remains within an ϵ-neighborhood of the 

original image. The attack can be formalized as: 

𝑥0
adv = 𝑥,  𝑥𝑡+1

adv = Clip𝑥
ϵ {𝑥𝑡

adv + α ⋅ sign (∇𝑥𝐽(𝑥𝑡
adv, 𝑦true))} (1) 

where 𝑥𝑡
adv  is the adversarial example at iteration 𝑡 , 𝛼  is the step size, and  

𝐶𝑙𝑖𝑝𝑥
𝜖 performs per-pixel clipping to ensure the 𝐿∞ distance between 𝑥 and 𝑥adv is at 

most 𝜖. BIM typically produces stronger adversarial examples than FGSM due to its 

iterative nature. 



3.2 MIFGSM 

The Momentum Iterative Fast Gradient Sign Method (MIFGSM) integrates momentum 

into the iterative process of BIM to stabilize update directions and escape from poor 

local maxima. MIFGSM maintains a velocity vector that accumulates the gradient of 

previous iterations, which is then used to update the adversarial example: 

𝑔𝑡+1 = μ ⋅ 𝑔𝑡 +
∇𝑥𝐽(𝑥𝑡

adv, 𝑦true)

||∇𝑥𝐽(𝑥𝑡
adv, 𝑦true)||

1

, (2) 

𝑥𝑡+1
adv = Clip

𝑥
𝜖 {𝑥𝑡

adv + 𝛼 ⋅ sign(𝑔𝑡+1)}, (3) 

where μ is the decay factor for the momentum term. MIFGSM has demonstrated im-

proved success rates in both white-box and black-box attack scenarios compared to 

BIM. 

3.3 TIFGSM 

The Translation-Invariant Fast Gradient Sign Method (TIFGSM) addresses the vulner-

ability of adversarial examples to simple image transformations like translation. 

TIFGSM generates adversarial perturbations that remain effective under translation by 

convolving the gradient with a kernel 𝑊: 

𝑥𝑡+1
adv = Clip𝑥

ϵ {𝑥𝑡
adv + α ⋅ sign (𝑊 ∗ ∇𝑥𝐽(𝑥𝑡

adv, 𝑦true))}, (4) 

The kernel 𝑊 is typically chosen as a uniform kernel. This approach creates more ro-

bust adversarial examples that can maintain their effectiveness even when the input 

image is slightly translated. 

3.4 SIM 

The Scale-Invariant Method (SIM) extends the concept of TIFGSM to handle scale 

transformations. SIM generates adversarial perturbations that are effective across dif-

ferent scales by incorporating a set of scaling operations 𝑠 into the gradient calculation: 

𝑥𝑡+1
adv = Clip𝑥

ϵ {𝑥𝑡
adv + α ⋅ sign (∑ ∇𝑥𝐽(𝑠(𝑥𝑡

adv), 𝑦true)

𝑠∈𝑆

)}, (5) 

where 𝑠(𝑥) represents the scaling operation applied to the input 𝑥. By considering mul-

tiple scales during the attack, SIM produces adversarial examples that are more robust 

to scaling transformations. 

3.5 PGD 

Projected Gradient Descent (PGD) is a powerful iterative attack that can be seen as a 

variant of BIM with uniform random initialization. PGD starts from a random point 

within the allowed perturbation range and then iteratively applies FGSM followed by 

projection onto the allowed set: 
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𝑥0
adv = 𝑥 + Uniform(−ϵ, ϵ), (6) 

𝑥𝑡+1
adv = Proj𝑥

ϵ {𝑥𝑡
adv + α ⋅ sign (∇𝑥𝐽(𝑥𝑡

adv, 𝑦true))}, (7) 

where 𝑃𝑟𝑜𝑗𝑥
𝜖 projects the perturbed image back onto the 𝜖-ball centered at 𝑥. PGD is 

often considered one of the strongest first-order attacks and is frequently used for ad-

versarial training. 

3.6 C&W 

The Carlini and Wagner (C&W) attack is an optimization-based method that aims to 

find the smallest perturbation that can mislead the target model. It formulates the prob-

lem as an optimization task: 

min
δ

||δ||
𝑝

+ 𝑐 ⋅ 𝑓(𝑥 + δ), (8) 

subject to 𝑥 + δ ∈ [0,1]𝑛, where 𝑓 is a carefully designed loss function that encourages 

misclassification, 𝑐 is a constant balanced through binary search, and 𝑝 is typically 2 

(𝐿2 norm) or ∞ (𝐿∞norm). C&W attacks are known for producing highly effective ad-

versarial examples with small perturbations. 

3.7 DeepFool 

DeepFool is an iterative attack that seeks the minimal perturbation to cross the decision 

boundary of the classifier. For binary classifiers, it approximates the decision boundary 

with a hyperplane and moves the input towards the closest point on this hyperplane. 

For multi-class classifiers, it iteratively moves towards the nearest decision boundary. 

The update step can be expressed as: 

𝑥𝑡+1
adv = 𝑥𝑡

adv +
|𝑓(𝑥𝑡

adv)|

||∇𝑓(𝑥𝑡
adv)||

2

2 ∇𝑓(𝑥𝑡
adv), (9) 

where 𝑓 is the decision function of the classifier. DeepFool often produces smaller per-

turbations compared to other methods while maintaining a high fooling rate. 

4 Defense Strategies 

Deep neural networks face the threat of adversarial examples, so more and more re-

searchers are actively exploring the field of adversarial defense, considering improving 

the robustness of models as a top priority. This section will focus on image prepro-

cessing methods, data enhancement [21] and Denoising Network [18-20]. 

4.1 Image Preprocessing 

Image preprocessing techniques play a crucial role in enhancing the robustness of deep 

learning models against adversarial attacks. By applying various smoothing methods to 

input images, we can reduce the effectiveness of perturbations introduced by attackers. 



In this section, we discuss three commonly used smoothing techniques: Median 

Smoothing, Gaussian Smoothing, Average Smoothing and JPEG Compression. 

Median Smoothing Median Smoothing is a non-linear filtering technique commonly 

used to remove noise from images. This method replaces each pixel’s value with the 

median value of the pixels in its surrounding neighborhood. The median is determined 

by sorting the pixel values within the neighborhood and selecting the middle value. 

Median Smoothing is particularly effective in eliminating ‘salt-and-pepper’ noise, 

which manifests as random white and black pixels scattered throughout the image. This 

technique is beneficial for adversarial defense as it can diminish the impact of isolated 

pixel perturbations introduced by adversarial attacks without significantly blurring the 

image. 

Gaussian Smoothing Gaussian Smoothing, also known as Gaussian Blur, is a linear 

filtering technique that reduces image noise and detail by averaging the pixels within a 

neighborhood weighted by a Gaussian function. The Gaussian function gives more 

weight to pixels closer to the central pixel, leading to a more natural and less harsh 

blurring effect compared to simple averaging. The degree of smoothing is controlled 

by the standard deviation (𝛿) of the Gaussian distribution. Gaussian Smoothing is ef-

fective in reducing high-frequency noise and perturbations, making it a useful prepro-

cessing step in adversarial defense by blurring out subtle adversarial perturbations 

while maintaining the overall structure of the image. 

Average Smoothing Average Smoothing, also known as Mean Filtering, is the sim-

plest form of smoothing technique. It works by replacing each pixel’s value with the 

average value of the pixels in its surrounding neighborhood. This technique effectively 

reduces random noise by averaging out pixel values, leading to a smoother image. How-

ever, it may also blur sharp edges and details, making it less suitable for preserving fine 

image structures. Despite this, Average Smoothing can still be useful in adversarial 

defense by reducing the impact of widespread perturbations across the image. 

JPEG Compression JPEG Compression is a widely used image compression tech-

nique that can also serve as an effective adversarial defense method. This process in-

volves converting the image into the frequency domain using the Discrete Cosine 

Transform (DCT), quantizing the DCT coefficients, and then encoding the quantized 

values. By reducing the precision of the DCT coefficients, JPEG Compression effec-

tively removes high-frequency components, including many adversarial perturbations. 

The degree of compression can be adjusted by changing the quality factor, which con-

trols the level of quantization. JPEG Compression is advantageous in adversarial de-

fense as it can significantly reduce the influence of subtle adversarial noise while re-

taining the essential visual information of the image. 
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4.2 Data Enhancement 

AugMix [21] AugMix is an innovative data augmentation technique designed to en-

hance the robustness of deep learning models and improve their generalization to un-

certain data. In real-world applications, the distribution of training data often differs 

from that of test data, which can lead to significant degradation in model performance. 

AugMix addresses this challenge through a unique approach, opening new possibilities 

in the field of defense strategies. Unlike traditional data augmentation methods, Aug-

Mix employs a more complex and effective processing workflow. It begins by applying 

multiple parallel augmentation operations to the original image, such as geometric 

transformations, rotations, and color adjustments. These augmented images are then 

combined according to specific proportions, creating a new augmented version. Finally, 

this new version is mixed with the original image at a predetermined ratio to generate 

the final augmented sample. The core advantage of AugMix lies in its ability to generate 

samples that maintain high similarity to the original image, effectively avoiding exces-

sive distortion. Furthermore, through the combination of various augmentation opera-

tions, it offers a richer range of possible variations. The randomness in mixing ratios 

further increases data diversity, exposing the model to a broader distribution of data. 

By applying AugMix during the training process, models can learn more robust fea-

ture representations. This enables models to perform better when faced with unknown 

data distributions, thereby enhancing their adaptability and defensive capabilities in 

practical applications. 

4.3 Denoising Network 

DAE[18] The Denoising Autoencoder (DAE) is an unsupervised learning algorithm 

that has been adapted as a strategy for adversarial defense. Originally designed for noise 

reduction and feature extraction, DAEs have shown promise in mitigating the effects 

of adversarial perturbations on neural networks. 

At its core, DAE is a type of neural network that learns to reconstruct clean data 

from corrupted inputs. This principle aligns well with the challenge of adversarial ex-

amples, where imperceptible perturbations can significantly alter a model’s predictions. 

In the context of adversarial defense, the DAE is trained to remove these malicious 

perturbations, effectively denoising the adversarial examples. 

The structure of DAE typically consists of two main components: an encoder and a 

decoder. The encoder compresses the input data into a lower dimensional latent repre-

sentation, while the decoder reconstructs the output data from this latent space. During 

training, the DAE learns to minimize the reconstruction error between its output and 

the original, uncorrupted input. 

HGD[19] Before discussing the High-Level Representation Guided Denoiser (HGD), 

let’s first review the previously proposed Pixel Guided Denoiser (PGD). Let 𝑥 repre-

sent the original clean image, 𝑥∗ the adversarial example, and 𝑥′ the denoised image. 



PGD defines the loss function as 𝐿 = |𝑥 − 𝑥′|, where |⋅| denotes the L1 norm. Since 

this loss function is defined at the image pixel level, it is named the pixel-guided de-

noiser. However, PGD has a fatal flaw. Denoising is relative, not absolute, and no mat-

ter how perfect the denoising process is, there will always be residual noise in the im-

age. Moreover, there exists an error amplification effect in DNNs. That is, the residual 

adversarial noise is amplified layer by layer, resulting in sufficient noise in the final 

output to cause DNN misclassification. 

To address this issue, liao [19] proposed the HGD method. Considering the error 

amplification effect in DNNs, HGD defines the loss function at the output layer. Let 𝑦 

represent the output of the original clean image through the DNN, 𝑦∗ the output of the 

adversarial example, and 𝑦‘ the output of the denoised image. HGD defines the loss 

function as 𝐿 = |𝑦 − 𝑦′|, representing the difference between the outputs of the de-

noised image and the original image. The goal of HGD is to minimize this loss function. 

The smaller the loss function, the smaller the difference between the output of the de-

noised image and the original image, indicating a closer approximation to the initial 

image and better denoising effect. 

HGD is further categorized into three types based on the position and type of the 

added loss function. First is the FGD (Feature Guided Denoiser). Let 𝑙 =  −2 be de-

fined as the index of the topmost convolutional layer, after which the activations are 

fed into the linear classification layer. Therefore, compared to lower convolutional lay-

ers, it is more related to the classification objective. The loss function used in FGD is 

also known as perceptual loss or feature matching loss. The second type is LGD (Logit 

Guided Denoiser). Let 𝑙 =  −1 be defined as the index of the layer before the final 

softmax function, i.e., the logits. The loss function here is the difference between the 

logits of 𝑥  and 𝑥′ activations. The last type is CGD (Class Guided Denoiser). This 

method uses the classification loss of the target model as the denoising loss function, 

which is a supervised learning method requiring true labels. 

In this study, we chose to use the LGD as our HGD implementation method. This 

approach directly optimizes the logits at the output layer, which can more effectively 

reduce the impact of adversarial noise on the final classification results. 

TD[20] The TD method is a semi-supervised learning approach designed to effectively 

remove adversarial perturbations while preserving the original attributes of the input 

image. It comprises two main modules: a reconstruction module and a denoising mod-

ule. These modules work together to ensure the method’s effectiveness in removing 

adversarial noise while maintaining the original features of the input image. TD em-

ploys an encoder-decoder architecture for its denoiser. Specifically, the denoiser con-

sists of an encoder 𝐺𝑒𝑛𝑐  and a decoder 𝐺𝑑𝑒𝑐 . Given an input image 𝑥 ∈ 𝑅𝑚, the encoder 

𝐺𝑒𝑛𝑐  encodes it into a latent representation, which is then decoded by the decoder 

𝐺𝑑𝑒𝑐  into a reconstructed image. Theoretically, denoising learning can use any high-

level representation to highlight the differences between adversarial and original sam-

ples, such as the topmost convolutional layer, logits layer, or final softmax layer. In this 

study, we chose the logits layer to assist denoising learning because the output of the 

logits layer is simpler and exhibits larger value differences. The reconstruction module 
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ensures that the original features of the input image are not lost during the reconstruc-

tion process, while the denoising module is responsible for effectively removing adver-

sarial perturbations. During training, each batch contains clean images and their corre-

sponding adversarial images, with the clean images serving as labels. Simultaneously, 

random Gaussian noise is added to the latent representation to achieve good generali-

zation. The TD method is a semi-supervised learning approach with good transferabil-

ity. This means that denoised samples should also possess transferability, i.e., the de-

noising effect of the samples should be maintained when applied to other models. This 

characteristic makes TD a promising method for defending against adversarial attacks, 

especially in scenarios involving unknown models or black-box attacks. 

5 Experiments 

In this section, we provide a comprehensive overview of the experiments conducted to 

evaluate the robustness of DeepFake detectors against adversarial attacks and the ef-

fectiveness of various defense mechanisms.  

5.1 Dataset 

FaceForensics++ [29] is a popular dataset containing real videos from YouTube and 

their corresponding fake versions. This dataset includes various manipulation methods, 

such as DeepFake, Face2Face, FaceSwap, and NeuralTextures. We process the video 

frames to create a training set, a validation set, and a test set. The training set contains 

a total of 180,000 real and fake images. We also created a smaller test set to evaluate 

the attack algorithm. From this test set, we selected 1,000 images, consisting of 500 

real and 500 fake images. The fake images were further divided into 4 subgroups, with 

each subgroup containing 125 images created using a different forgery technique. In 

total, our test set includes 500 authentic images and 500 synthesized images across 4 

categories of deepfakes. 

5.2 DeepFake Detectors 

In this study, we have adopted several popular Deep Neural Network (DNN) based 

detectors to identify and analyze DeepFake images. These detectors include VGG16 

[9], ResNet50 [10], MesoNet, MesoInception [11], EfficientNet [12], Xception [13], 

DenseNet121 [14], MobileNetV2 [15] and GramNet [16]. Each of these models brings 

unique architectural advantages and has demonstrated efficacy in the task of DeepFake 

detection. 

5.3 Details of the Attack Implementation、 

For the models, we use an input image size of 224×224×3. We have chosen the adver-

sarial attack algorithms, such as BIM, MIFGSM, TIFGSM, SIM, PGD, C&W and 

DeepFool. For each attack method, in addition to varying the perturbation magnitude 𝜖 



(with a maximum value of 16/255), we use the optimal hyperparameters as specified in 

their respective original publications. These attacks are attacked with full knowledge 

of the model, i.e., white-box attacks. 

5.4 Details of the Defense Implementation 

For adversarial defense methods, we selected algorithms from three perspectives. From 

the image processing perspective, we chose Median Smoothing, Gaussian Smoothing, 

Average Smoothing, and JPEG compression. From the data augmentation perspective, 

we selected AugMix and from the denoising network perspective, we opted for DAE, 

HGD, and TD. 

For various smoothing defenses of the image, the size of 3*3 convolution kernel is 

what we used. When using JPEG compression, we set the quality to 70, 80, and 90 to 

test the defense of JPEG compression at different quality. 

When using AugMix for data augmentation to enhance the robustness of the deep-

fake detector, we strictly followed the parameters provided in the original paper, but 

the epoch was set to 20 to ensure the same parameters as when training the baseline 

model. The accuracy of the deepfake detector after data enhancement by AugMix is 

shown in Table 1. The base represents the accuracy of the benchmark model. Bolding 

in the table represents the optimal value. 

When training the denoising network, the input image size is 224*224*3, the learn-

ing rate is set to 1e-3, and epoch are all set to 20, we use the optimal hyperparameters 

as specified in their respective original publications. 

Table 1. Accuracy of Deepfake Detectors 

Model\ACC Base AugMix [21] 

VGG16 [9] 0.955 0.960 

ResNet50 [10] 0.939 0.939 

MesoNet [11] 0.774 0.807 

MesoInception[11] 0.875 0.839 

EfficientNetb4[12] 0.939 0.962 

Xception [13] 0.945 0.958 

DenseNet121 [14] 0.948 0.960 

MobileNetV2 [15] 0.953 0.961 

GramNet [16] 0.953 0.952 

 

6 Analysis of Experimental Results 

The experimental results on counter-attack algorithms and defense measures are shown 

in Table 2, where NA stands for no defense measures are performed, MS, GS and AS 
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stand for Median Smoothing, Gaussian Smoothing, Average Smoothing. From the col-

umn in Table 2 NA, we can see that any of the adversarial attack algorithms, with 

knowledge of the model, are powerful enough to almost completely tamper with the 

model output. 

6.1 From the perspective of image preprocessing 

Simple image smoothing techniques, such as Median Smoothing, Gaussian Smoothing, 

and Average Smoothing, demonstrate varying degrees of defensive capability against 

certain adversarial attacks, but their overall effectiveness remains limited. These tech-

niques are generally more effective in addressing non-structured noise perturbations; 

however, their defensive capabilities are relatively limited against the structured per-

turbations introduced by many advanced adversarial attacks. Experimental results indi-

cate that these smoothing techniques exhibit better defensive performance against 

DeepFool attacks. This may be attributed to the fact that the DeepFool algorithm aims 

to push images towards the decision boundary with minimal perturbations, which are 

more easily eliminated or weakened by smoothing processes. However, for attack al-

gorithms like PGD or BIM that introduce larger magnitude and more structured pertur-

bations, simple smoothing techniques often struggle to provide effective defense. This 

disparity can be explained by the nature of adversarial perturbations. Advanced adver-

sarial attacks typically generate structured perturbations that correspond to the critical 

features relied upon by neural networks. These perturbations are meticulously designed 

to maximize their impact on the model’s decision-making process while maintaining 

visual similarity. In contrast, simple smoothing techniques primarily target random 

noise and struggle to effectively remove these highly coupled, structure-based pertur-

bations. 

In conclusion, while image smoothing techniques can provide a certain level of de-

fense in some scenarios, their effectiveness is highly dependent on the characteristics 

of the attack. 

JPEG70, JPEG80, and JPEG90 represent JPEG processing at different compression 

rates, with higher numbers indicating lower compression rates and greater preservation 

of image details. As JPEG quality increases, the loss of image details due to compres-

sion decreases, and more of the adversarial perturbations are also retained. Conse-

quently, JPEG90 typically offers less effective defense against adversarial attacks com-

pared to JPEG70, but JPEG90 better maintains the visual quality and details of the 

original image. JPEG compression defense primarily works by reducing high-fre-

quency components in the image. This method is particularly effective against attacks 

that mainly rely on high-frequency perturbations, as high-frequency components often 

contain many adversarial disturbances. However, for attacks that have widely distrib-

uted perturbations and do not solely depend on high frequencies, JPEG compression’s 

defensive effectiveness is relatively lower. This is because such attacks may introduce 

significant perturbations in low and mid-frequency ranges as well, which are not easily 

eliminated by JPEG compression. 

It’s worth noting that JPEG compression as a defense mechanism presents a trade-

off: higher compression rates may provide better defensive effects but also lead to 



greater loss of image details, potentially affecting the model’s normal recognition ca-

pabilities. Conversely, lower compression rates preserve more image details and poten-

tial adversarial perturbations but may still offer a degree of defense in certain situations 

while minimizing the impact on the original image quality. 

Table 2. Adversarial Attacks and Defense Results 

Models Methods\ACC NA MS GS AS JPEG70 JPEG80 JPEG90 
AugMix 

[21] 
DAE [18] HGD [19] TD [20]  

VGG16[9] 

BIM [22] 0.087 0.087 0.111 0.087 0.349 0.092 0.221 0.168 0.443 0.500 0.568 

MIFGSM[23] 0.091 0.092 0.111 0.087 0.050 0.088 0.090 0.116 0.087 0.894 0.870 

TIFGSM [24] 0.091 0.091 0.092 0.087 0.044 0.087 0.091 0.085 0.087 0.501 0.508 

SIM [25] 0.001 0.008 0.048 0.003 0.102 0.002 0.001 0.021 0.000 0.702 0.757 

PGD [26] 0.000 0.180 0.118 0.034 0.486 0.129 0.000 0.819 0.715 0.998 0.999 

C&W [27] 0.000 0.021 0.069 0.136 0.473 0.264 0.076 0.239 0.501 0.500 0.502 

DeepFool[28] 0.023 0.663 0.549 0.521 0.510 0.465 0.216 0.925 0.503 0.500 0.502 

ResNet50 

[10] 

BIM [22] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.025 0.979 0.955 

MIFGSM[23] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.497 0.508 

TIFGSM [24] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.239 0.164 

SIM [25] 0.000 0.004 0.000 0.000 0.011 0.003 0.000 0.001 0.000 0.482 0.489 

PGD [26] 0.000 0.150 0.062 0.070 0.007 0.000 0.000 0.183 0.265 0.999 1.000 

C&W [27] 0.000 0.023 0.047 0.067 0.160 0.077 0.028 0.416 0.498 0.532 0.527 

DeepFool[28] 0.187 0.803 0.576 0.553 0.473 0.280 0.092 0.906 0.517 0.608 0.528 

 

MeseNet 

[11] 

BIM [22] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.001 0.722 0.647 

MIFGSM[23] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.565 0.644 

TIFGSM [24] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.230 0.455 

SIM [25] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.007 0.433 0.390 

PGD [26] 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.045 0.378 0.896 0.867 

C&W [27] 0.134 0.213 0.223 0.238 0.349 0.281 0.246 0.373 0.427 0.621 0.536 

DeepFool[28] 0.130 0.580 0.441 0.555 0.470 0.336 0.150 0.761 0.524 0.629 0.558 

MesoInception 

[11] 

BIM [22] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.376 0.935 0.991 

MIFGSM[23] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.699 0.582 

TIFGSM [24] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.082 0.922 

SIM [25] 0.000 0.000 0.010 0.002 0.000 0.000 0.000 0.007 0.000 0.682 0.548 

PGD [26] 0.000 0.002 0.000 0.139 0.000 0.000 0.000 0.043 0.459 0.974 1.000 

C&W [27] 0.010 0.072 0.194 0.417 0.429 0.326 0.182 0.285 0.505 0.515 0.505 

DeepFool[28] 0.091 0.690 0.544 0.527 0.560 0.498 0.254 0.786 0.507 0.508 0.503 

Efficient-

Netb4[12] 

BIM [22] 0.000 0.022 0.000 0.016 0.000 0.000 0.000 0.136 0.195 1.000 1.000 

MIFGSM[23] 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.134 0.084 0.677 0.499 

TIFGSM [24] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.000 0.551 0.612 

SIM [25] 0.017 0.000 0.000 0.000 0.018 0.017 0.017 0.065 0.024 0.784 0.500 

PGD [26] 0.000 0.333 0.079 0.436 0.000 0.000 0.000 0.621 0.605 1.000 0.999 

C&W [27] 0.000 0.041 0.082 0.135 0.186 0.073 0.031 0.269 0.502 0.500 0.461 

DeepFool[28] 0.040 0.707 0.616 0.585 0.426 0.240 0.080 0.910 0.512 0.500 0.484 

Xception 

[13] 

BIM [22] 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.021 0.206 0.978 0.474 

MIFGSM[23] 0.001 0.001 0.001 0.001 0.010 0.010 0.010 0.021 0.050 0.683 0.001 

TIFGSM [24] 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.015 0.045 0.640 0.001 

SIM [25] 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.021 0.049 0.572 0.001 
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PGD [26] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.235 0.296 1.000 0.997 

C&W [27] 0.000 0.026 0.050 0.077 0.161 0.045 0.014 0.369 0.487 0.517 0.347 

DeepFool[28] 0.145 0.786 0.624 0.579 0.461 0.256 0.062 0.935 0.504 0.550 0.739 

Dense-

Net121[14] 

BIM [22] 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.022 0.013 0.989 0.989 

MIFGSM[23] 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.006 0.006 0.583 0.945 

TIFGSM [24] 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.004 0.006 0.627 0.854 

SIM [25] 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.015 0.000 0.571 0.552 

PGD [26] 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.239 0.060 0.999 1.000 

C&W [27] 0.000 0.030 0.055 0.070 0.160 0.053 0.010 0.462 0.499 0.542 0.552 

DeepFool[28] 0.168 0.762 0.627 0.609 0.492 0.270 0.076 0.938 0.505 0.597 0.535 

Mo-
bileNetV2[15] 

BIM [22] 0.007 0.007 0.011 0.019 0.008 0.023 0.009 0.148 0.152 0.500 0.930 

MIFGSM[23] 0.007 0.023 0.010 0.007 0.036 0.006 0.006 0.132 0.058 0.501 0.779 

TIFGSM [24] 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.029 0.007 0.529 0.512 

SIM [25] 0.009 0.011 0.018 0.026 0.016 0.014 0.025 0.020 0.007 0.502 0.894 

PGD [26] 0.000 0.086 0.090 0.114 0.333 0.318 0.004 0.539 0.658 0.999 0.997 

C&W [27] 0.095 0.110 0.137 0.196 0.307 0.160 0.114 0.326 0.513 0.486 0.502 

DeepFool[28] 0.145 0.744 0.697 0.616 0.548 0.395 0.113 0.915 0.531 0.502 0.500 

GramNet 

[16] 

BIM [22] 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.017 0.142 0.992 0.982 

MIFGSM[23] 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.029 0.006 0.977 0.981 

TIFGSM [24] 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.016 0.006 0.519 0.564 

SIM [25] 0.023 0.001 0.001 0.000 0.056 0.042 0.029 0.028 0.000 0.948 0.990 

PGD [26] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.162 0.310 0.986 0.980 

C&W [27] 0.000 0.019 0.042 0.062 0.107 0.036 0.020 0.248 0.511 0.585 0.549 

DeepFool[28] 0.082 0.795 0.620 0.582 0.434 0.221 0.038 0.915 0.515 0.540 0.537 

 

6.2 From the perspective of data enhancement 

Data augmentation, by increasing the diversity of training data, enhances the robustness 

of models, making it a relatively effective defense strategy. As shown in Table 1, mod-

els generally exhibit significant accuracy improvements after AugMix data augmenta-

tion. Moreover, as shown in Table 2, AugMix demonstrates a certain degree of defen-

sive effectiveness. This indicates that data augmentation not only boosts model perfor-

mance on clean data but also strengthens its resilience against adversarial attacks. How-

ever, while data augmentation provides better defense against various adversarial at-

tacks compared to simple smoothing methods, it still falls short of the effectiveness 

seen with specifically designed denoising defense networks. Data augmentation heavily 

relies on increasing the diversity of the training data, which might limit its effectiveness 

against certain specially crafted attacks, particularly when adversarial examples differ 

significantly from real data. 

6.3 From the perspective of denoising network 

The DAE builds upon the traditional autoencoder by adding noise to the input and then 

reconstructing the clean input from these noisy corrupted examples. As shown in Table 

2, the DAE method demonstrates a certain level of defensive capability, indicating its 



ability to resist adversarial attacks to some extent. This lays the groundwork for subse-

quent defensive methods. 

The results in Table 2 show that both HGD and TD exhibit relatively consistent and 

superior performance across different models and attack methods. This suggests that 

these methods might capture some essential features of adversarial examples and utilize 

these features to distinguish between normal and adversarial examples. Specifically, 

HGD leverages high-level features to guide the denoising process, indicating that ad-

versarial perturbations may share certain common patterns in high-level feature spaces. 

Focusing on high-level semantic features, rather than pixel-level changes, could be the 

key to designing effective defenses. High-level features often correspond to more ab-

stract semantic information, which may exhibit greater stability when facing different 

attacks. Therefore, HGD can achieve robust defensive performance across various at-

tacks. 

On the other hand, the design goal of the TD method is to achieve transferable de-

noising, and this transferability may be the reason for its outstanding performance 

across different scenarios. Transferable defense methods are particularly important for 

practical applications, as they can better address unknown or novel attacks. Compared 

to defenses designed for specific attacks, transferable methods can provide broader and 

more enduring defensive capabilities. 

7 Conclusion 

In this study, we systematically explored the effectiveness of adversarial attacks and 

defense methods in the task of deepfake detection. Through experimental analysis, we 

evaluated the performance of deepfake detectors when faced with various adversarial 

attacks and tested the efficacy of different defense strategies. The results indicate that 

deepfake detectors exhibit significant vulnerability to adversarial attacks, while apply-

ing specific defense strategies notably enhances their robustness. Notably, certain ad-

vanced defense methods demonstrated strong consistency and effectiveness in address-

ing different types of attacks, suggesting their ability to effectively capture and utilize 

key features of adversarial perturbations. This research not only deepens our under-

standing of adversarial robustness in deepfake detection but also provides strong sup-

port for developing more robust and efficient defense methods in the future.  
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