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Abstract. Structured pruning is a highly effective model compression technique 

that balances accuracy and acceleration, making it widely adopted in the field of 

convolutional neural networks. Traditional pruning methods relying on magni-

tude-based criteria exhibit limitations in distinguishing critical channels because 

of narrow parameter distributions in sparse models. Building on this phenome-

non, we propose a statistical feature-driven structured pruning framework that 

integrates dependency-aware group regularization. By incorporating a depend-

ency graph to model inter-layer relationships and leveraging both the mean and 

variance of channel parameters, we design a dynamic regularization term to re-

duce both the norm and variance of channels, encouraging uniform shrinkage. 

Our approach has been validated through experiments across diverse datasets and 

model architectures, achieving only a 0.71% accuracy drop on ImageNet com-

pared to the baseline model under similar FLOPs reduction ratios. 

Keywords: Structured Pruning, Convolutional Neural Networks, Regulariza-

tion, Statistical Feature 

1 Introduction 

With the widespread application of deep learning across various fields, the scale and 

complexity of neural network models have grown rapidly, resulting in a vast number 

of parameters, high computational resource demands, and significant storage space re-

quirements. This limits the deployment of deep learning models on resource con-

strained devices, such as mobile devices and embedded systems, but also increases the 

energy consumption and time costs during training and inference processes. Therefore, 

various model compression techniques such as model distillation, quantization, and 

pruning have been proposed and extensively studied. Among these, structured pruning 

stands out as a primary technique, which not only greatly decreases the model's com-

putational load and storage requirements but also aligns better with the architecture of 



 

hardware accelerators. For this reason, this article concentrates on the domain of struc-

tured pruning [2, 6]. 

 

Fig. 1. Regularized vs Non-Regularized ResNet-56 on CIFAR-10.  

Within structured pruning methods, regularization serves as a crucial technique to 

encourage model parameters to shrink towards zero, thereby facilitating the removal of 

redundant structures. Common regularization methods include 𝑙1  regularization, 𝑙2 

regularization, and Elastic Net regularization [3, 17, 20]. 𝑙1 regularization adds a pen-

alty term based on the absolute values of the parameters, promoting sparsity; 𝑙2 regu-

larization penalizes the sum of the squares of the parameters, preventing them from 

becoming too large; Elastic Net regularization combines the advantages of both 𝑙1 and 

𝑙2, encouraging sparsity while also controlling parameter magnitudes. However, these 

regularization methods typically operate under the assumption that channels with 

smaller norms are less informative [12]. In practice, after applying regularization, some 

channels may have overall small norms but exhibit high variance in their parameters, 

indicating that these channels still contain significant information in certain aspects.  

To validate our hypothesis, we quantified the sparsity level of channel groups (con-

taining 1 or 2 channels) between the regularized and non-regularized models based on 

their 𝑙2 magnitudes. Channel groups were sorted in ascending order of their 𝑙2 values 

for comparison. As shown in the left image of Figure 1, the intermediate layers of the 

regularized model exhibit significantly higher sparsity compared to the non-regularized 

counterpart, with nearly half of the parameters approaching zero.  

Furthermore, the right image of Figure 1 compares the accuracy decay of the model 

after pruning channels using traditional norm-based criteria versus pruning channels 

using our evaluation standard. We found that pruning based on the 𝑙2 results in a greater 

loss of model accuracy. This phenomenon suggests that solely relying on parameter 

norms for pruning may lead to the unintended removal of informative channels.  

Specifically, the conventional "smaller-norm-less-informative" assumption suffers 

from two critical limitations: Traditional metrics often rely on parameter magnitude, 

leads to misidentifying channels with high mean but low variance as informative, while 

overlooking those with moderate means but high variance that may encode dynamic 

features. Additionally, traditional methods apply uniform importance across all layers, 
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failing to account for the different layer sensitivity in deep networks, where shallow 

layers exhibit higher parametric variance for primitive feature extraction, while deeper 

layers demand stable, low-variance representations to preserve semantic fidelity [4, 5]. 

Motivated by these limitations, we propose Statistical Feature-Driven Regularization, 

a dual-constraint framework that simultaneously suppresses channel parameter magni-

tudes and stabilizes their distributions through adaptive regularization. The detailed al-

gorithm flow is outlined in Algorithm 1. By explicitly controlling both first-order mag-

nitude statistics and second-order distribution variance, it provides systematic yet gen-

tle guidance for  

Building upon the proposed regularization method based on parameter statistical 

features, the main contributions of our paper are as follows: 

─ We propose a regularization method based on model statistical features, which uni-

formly regularizes redundant channels, effectively reducing model redundancy and 

enhancing model compression performance. 

─ By combining mean and variance to assess channel importance, our approach en-

hances pruning effectiveness through dual-dimensional evaluation, maintaining 

model performance and alleviating the limitations of traditional methods that rely 

solely on norm magnitudes. 

2 Related Work 

The rise of structured pruning in neural network optimization has garnered significant 

attention in recent years. Unlike unstructured pruning, which removes individual 

weights based on their magnitudes, structured pruning focuses on removing entire chan-

nels, filters, or layers, leading to a more efficient and hardware-friendly model (4). This 

approach is particularly attractive for real-world deployment, as it often results in im-

proved computational efficiency and reduced memory consumption. Early methods, 

such as magnitude-based pruning, laid the groundwork for structured pruning tech-

niques, but they were often limited by their inability to account for the intricate depend-

encies and interactions among the channels [4, 7, 9, 11].  

Recent advancements in channel pruning have moved beyond simplistic magnitude-

based criteria by introducing sophisticated metrics to assess filter importance. Layer-

adaptive sparsity for magnitude-based pruning designed a layer-adaptive global prun-

ing scheme based on a relaxed output distortion minimization criterion [8], they extend 

single-layer magnitude-based pruning to the full model, and mathematically derive 

which channels have the minimal impact on the overall model distortion. In contrast, 

HRank [10] evaluates filters via the rank of their output feature maps, arguing that high-

rank features retain richer information and thus prioritizing their corresponding filters. 

Meanwhile, the White-Box channel pruning method [19] introduces class-wise masks 

to integrate category label information into the model regularization training process, 

thereby quantifying the contribution levels of individual channels to different classes, 

which enables straightforward pruning. 

Further diversifying evaluation criteria, entropy induced pruning [13] leverages in-

formation-theoretic principles, measuring parameter redundancy using the information 



 

entropy of normalized eigenvalues, where lower entropy indicates higher redundancy. 

Specifically project the convolutional layer weight matrices into a low-rank space via 

SVD decomposition. REPrune [14] jointly optimize channel pruning through clustering 

and the maximum coverage problem (MCP). Specifically, the method first performs 

Ward’s hierarchical clustering on kernels within each input channel to form clusters 

based on layer-specific thresholds, with each cluster representing a set of similar ker-

nels. It then selects filters via the MCP framework to maximally cover clusters, priori-

tizing the retention of filters containing cross-channel diverse kernels, while balancing 

compression rate and accuracy through dynamically adjusted pruning ratios and chan-

nel regrowth strategies. 

These methods collectively demonstrate a paradigm shift toward multi-dimensional 

importance metrics. Thereby enabling finer-grained trade-offs between model com-

pression and performance preservation compared to traditional magnitude-only ap-

proaches. Therefore, we propose a dual-dimensional evaluation metric that originates 

from two critical statistical characteristics of convolutional layer channel parameters, 

specifically assessing each channel's global performance. 

3 Methodology 

We propose a statistical feature driven methodology to identify structural redundancy 

in deep neural networks. The convolutional layer parameters' mean and variance char-

acteristics are systematically integrated into this framework, with the comprehensive 

workflow formalized in Algorithm 1. We will elaborate on the research approach and 

specific implementation of our method. 
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3.1 Preliminaries 

We assume that a neural network consists of  𝐿 layers, where the parameters of the i-th 

layer are denoted by 𝑊𝑖. The input and output channels of i-th layer are denoted by 𝐶𝑖𝑛
𝑖  

and 𝐶𝑜𝑢𝑡
𝑖  respectively, and the width of the convolutional kernel is denoted by 𝐾. So 

The tensor representing the layer in a deep convolutional neural network (CNN) can be 

parameterized by: 

 𝑊𝑖 ∈ 𝑅
𝐶𝑜𝑢𝑡
𝑖 ×𝐶𝑖𝑛

𝑖 ×𝐾×𝐾 (1) 

With the help of DepGraph [3], we can construct a grouping matrix 𝐺 ∈ 𝑅𝐿×𝐿 to find 

the coupled layers with inter-dependency to the i-th layer conveniently. The entries of 

the matrix 𝐺𝑖𝑗 means the presence of dependency between i-th layer and j-th layer, so 

the group corresponding to the i-th layer can be expressed by the formula below: 

 𝑔(𝑖) = {𝑗|𝐺𝑖𝑗 = 1} (2) 

And to reduce unnecessary computational overhead, the Dependency Graph 𝐷 was 

introduced. The key difference between 𝐷 and 𝐺  is that 𝐷 only registers the depend-

encies between adjacent layers. In other words, 𝐷 is the transitive reduction of 𝐺. No-

tably 𝐷 does not document the dependencies across different layers; instead, it focuses 

on the relationships between layer inputs and outputs. In detail, we refer to the input 

and output of 𝑊𝑖  as 𝑊𝑖
− and 𝑊𝑖

+ respectively. And then define two simple rules for 

identifying their dependencies: 

─ Inter-layer Dependency: dependency 𝑊𝑖
− ⇔𝑊𝑗

+ always emerges in connected lay-

ers with 𝑊𝑖
− ↔ 𝑊𝑗

+. 

─  Intra-layer Dependency: dependency 𝑊𝑖
− ⇔𝑊𝑖

+ exists if and only if 𝑊𝑖
− and 𝑊𝑖

+ 

shares the same pruning schemes, denoted as 𝑠𝑐ℎ(𝑊𝑖
−) = 𝑠𝑐ℎ(𝑊𝑖

+). 

So the dependencies can be represented by the following formula: 

 𝐷(𝑊𝑖
−,𝑊𝑗

+) = 1[𝑊𝑖
− ↔ 𝑊𝑗

+]⏟        
𝐼𝑛𝑡𝑒𝑟−𝑙𝑎𝑦𝑒𝑟𝐷𝑒𝑝

∨ 1[𝑖 = 𝑗 ∧ 𝑠𝑐ℎ(𝑊𝑖
−) = 𝑠𝑐ℎ(𝑊𝑗

+)]⏟                    
𝐼𝑛𝑡𝑟𝑎−𝑙𝑎𝑦𝑒𝑟𝐷𝑒𝑝

 (3) 

Utilizing the Dependency Graph 𝐷, we can effectively prune channels that are mu-

tually dependent. 

3.2 Relative importance of channels based on statistical feature 

We begin by analyzing the parameter distribution of each layer in a sparse model. Ide-

ally, we would expect the parameter distribution of a model to be bimodal, with redun-

dant small parameters clustering in non-essential channels and significant parameters 

clustering in important channels, so that we can easily select unimportant channel 

through magnitude-based criteria. However, as shown in Fig.1, most of parameters in 

each layer is confined to a narrow range. Particularly in sparse models, a significant 

number of parameters approach zero, leading to many channels having similar norms. 



 

As a result, magnitude-based criteria can easily confuse important channels with redun-

dant ones when evaluated at the channel level. 

Building upon the empirically observed phenomena, we consider that when judging 

the importance of a channel, we need to consider that the distribution of parameters 

should not be concentrated in the interval close to 0. 

Our proposed dual-component evaluation metric strategically incorporates: 

The aggregate magnitude of parameters within each channel, and the distributional 

characteristics indicating whether parameters are tightly clustered near zero or exhibit 

broader dispersion. To implement this principle, we derive a statistical feature-driven 

importance metric by formally defining channel significance: 

 𝐼𝑗
(𝑘) = γ ⋅

𝐸(𝑊𝑗
(𝑘)
)

max𝐸(𝑊𝑗
(𝑚)

)
+ (1 − γ) ⋅

Var(𝑊𝑗
(𝑘)
)

maxVar(𝑊𝑗
(𝑚)

)
 (4) 

where 𝐸(𝑊𝑗
(𝑘)) denotes mean of channel 𝑘 parameters in layer 𝑗 (measures magni-

tude), Var(𝑊𝑗
(𝑘)) denotes variance of channel 𝑘 parameters (measures stability), and γ 

denotes weight coefficients. 

Our method categorizes channels into three distinct types: (1) Important channels 

with high mean 𝐸(𝑊(𝑘)) and high variance Var(𝑊(𝑘)), reflecting strong activation 

magnitudes and diverse parameter distributions; (2) redundant channels with low mean 

and low variance, where parameters cluster tightly near zero; (3) Noise-dominated 

channels, which exhibit either high mean with low variance or low mean with high 

variance, both contributing negligible task-relevant information. 

3.3 Regularization base on Statistical importance 

After identifying the importance of each channel, we can further incorporate this infor-

mation with group lasso to apply appropriate regularization terms to the channels. 

Stronger regularization constraints should be imposed on redundant channels, while 

weaker regularization should be applied to important channels. Our approach reduces 

the actual contribution of redundant channels, thereby enhancing the distinction be-

tween important and redundant channels.  

As a result, we can derive a consistent sparse model that improves the channel prun-

ing performance. And the formula is expressed as follows:  

 ℒ(𝑤) = ℒcross-entropy + λ∑ ∑ 𝐼𝑗
(𝑘)𝐾

𝑘=1
𝐿
𝑗=1 |𝑊𝑗

(𝑘)|2 (5) 

Where (ℒcross-entropy) refers to the cross-entropy loss from the model's predictions, 

while 𝛾 scales the regularization term. Empirical results in Chapter 4 demonstrate that 

such adaptive regularization significantly enhances pruning efficacy without compro-

mising model accuracy. 
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3.4 Global Pruning 

It is important to highlight that the channel importance we measure is relative to each 

layer’s average. However, a significant observation during global pruning is that con-

volutional layers located in the middle of the network tend to exhibit more sparsity than 

those at the beginning or end. This leads to excessive pruning of middle layers, resulting 

in increased distortion as more channels are pruned simultaneously [8]. Therefore, 

when conducting global pruning, the interaction between pruned channels and the re-

maining channels must be carefully considered. Drawing inspiration from LAMP, we 

propose a layer-adaptive pruning framework based on statistical importance. 

The importance of channels is determined relative to their respective layers. We de-

fine the relative importance of a channel with the following equation: 

 𝐼𝑘 = γ ⋅
𝐸(𝑊𝑗

(𝑘)
)

∑ 𝐸(𝑊
𝑗
(𝑝)
)𝑝>𝑘

+ (1 − γ) ⋅
Var(𝑊𝑗

(𝑘)
)

∑ Var(𝑊
𝑗
(𝑝)
)𝑝>𝑘

 (6) 

In this formulation, The terms ∑ 𝐸(𝑊𝑗)𝑝>𝑘  and ∑ Var(𝑊𝑗)𝑝>𝑘  serve as normaliza-

tion factors that account for the remaining channels' overall magnitude and variability. 

The combination of these two components ensures that we adaptively balance the prun-

ing process, thus avoiding the excessive pruning of critical channels. 

4 Experiments 

4.1 Experimental setup 

Dataset In our experiments, we conducted comprehensive pruning and fine-tuning 

studies on mainstream deep learning architectures including MobileNet, ResNet and 

VGG. The evaluation utilized three benchmark datasets with varying scales:      

CIFAR-10/100 Datasets: As medium-scale benchmarks, CIFAR-10 contains 60,000 

32×32 RGB images (50,000 training/10,000 testing) across 10 classes, while CIFAR-

100 extends this to 100 fine-grained categories with 600 images per class. During train-

ing, we applied standard data augmentation including random cropping (with 4-pixel 

padding) and horizontal flipping. 

ImageNet-1K Dataset: This large-scale dataset comprises 1.28 million training im-

ages and 50,000 validation images across 1,000 object categories. Following estab-

lished protocols, we pre-served the original resolution (224×224 for most CNNs) and 

employed identity trans-formation for validation images 

Training strategy All experiments are conducted on NVIDIA A800 GPUs using 

PyTorch. We initialize baseline models (ResNet, VGG and MobileNet) with pre-trained 

weights from torchvision and timm repositories. For CNN-based architectures (ResNet, 

VGG, MobileNet), the training process spans 100 epochs with a batch size of 128. The 

learning rate is initialized at 0.01 and progressively reduced to 0.0001 using a linear 

step scheduler, coupled with the SGD optimizer (momentum=0.9). Weight decay is set 

to 1e-4 to regularize model parameters. 



 

4.2 Main Result on CIFAR-10 and CIFAR-100 

We evaluate our method against several prominent pruning techniques, including Net-

work Slimming, HRank, DepGraph and so on [3, 10, 11], across various architectures 

on the CIFAR-10 and CIFAR-100 datasets. 

For CIFAR-10, we evaluate our method on ResNet-56, achieving a pruning accuracy 

of 93.77%, representing a 0.27% improvement over the baseline, while reducing 

FLOPs by 55.1%. This result demonstrates the superiority of our approach over other 

pruning methods, highlighting the effectiveness of the statistical feature-based regular-

ization in preserving model performance during compression. On CIFAR-100, we ap-

ply our method to VGG-19, where we achieve a pruning accuracy of 71.50%, a 2.55% 

decrease from the baseline, with a significant reduction in FLOPs by 88.7%. Despite 

the slight accuracy drop, the substantial decrease in computational load underscores the 

efficiency of our pruning strategy. 

Table 1.   Pruning results on CIFAR-10 and CIFAR-100 

       
Dataset Architecture Method Baseline Accpruned  ∆Acc ∆FLOPs 

       

CIFAR 

10 

ResNet-18 

OTOv2 [1] 93.02% 92.86% -0.16% 79.7% 

ATO [18] 94.41% 94.51% 0.1% 79.8% 

ours 94.04% 94.27% 0.23% 80.6% 

ResNet-56 

L1 [9] 92.80% 91.80% -1.0% 50.0% 

LAMP [8] 93.53% 93.16% -0.37% 53.1% 

L2 [3] 93.53% 93.77% 0.23% 51.3% 

White-Box [19] 93.26% 93.54% 0.28% 55.6% 

ATO [18] 93.50% 93.74% 0.24% 55.0% 

ours 93.50% 93.77% 0.27% 55.1% 

CIFAR 

100 

VGG-19 

EigenD [15] 73.3% 65.18% -8.16% 88.6% 

Greg [16] 74.02% 67.75% -6.27% 88.7% 

L2 [3] 73.50% 70.39% -3.11% 88.7% 

ours 74.05% 71.50% -2.55% 88.7% 

ResNet-18 

OTOv2 [1] - 74.96% - 39.8% 

ATO [18] 77.95% 76.79% -1.16% 40.1% 

ours 77.62% 76.91% -0.71% 44.75% 

ResNet-34 

OTOv2 [1] - 74.96% - 49.5% 

ATO [18] 78.43% 78.54% 0.11% 49.5% 

ours 78.13% 78.44% 0.31% 50.3% 

MobileNetv2 
L2 [3] 71.11% 71.67% 0.56% 33.4% 

ours 70.78% 71.59% 0.81% 50.34% 
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What's more, as illustrated in Figure 2, our method consistently outperforms other 

methods in terms of both accuracy and compression, even at higher compression rates, 

demonstrating its robustness and effectiveness across a range of pruning levels. 

These results validate the efficacy of our channel pruning method, which utilizes 

convolutional layer statistical features to identify and retain critical channels, leading 

to models that are both efficient and performant across different architectures and da-

tasets. 

 

Fig. 2.  Comparison of Top-1 accuracy between existing methods and our approach under vary-

ing FLOPs pruning rates. Experiments were performed using ResNet-56 architectures on the 

CIFAR-10 dataset. 

4.3 Main Result on ImageNet 

We also evaluate our pruning method on the ImageNet dataset using the ResNet-50 

architecture and compare its performance with existing pruning techniques. As shown 

in Table 2, The original ResNet-50 model achieves a top-1 accuracy of 76.15% on the 

ImageNet validation set. After applying our pruning method, the pruned model 

achieves a top-1 accuracy of 75.34%, resulting in a decrease of 0.81% from the base-

line. In terms of computational efficiency, the pruned model demonstrates a 54.8% re-

duction in FLOPs, significantly lowering the computational burden. 

In summary, our channel pruning method effectively reduces computational com-

plexity in ResNet-50 models on ImageNet, offering a competitive trade-off between 

accuracy and efficiency. 

  



 

Table 2.  Pruning results on ImageNet 

Architecture Method Baseline 𝐀𝐜𝐜 𝐩𝐫𝐮𝐧𝐞𝐝 ∆𝐀𝐜𝐜 ∆𝐅𝐋𝐎𝐏𝐬 

ResNet-50 

BN [11] 76.10% 75.30% -0.50% 50.0% 

HRANK [10] 76.15% 75.10% -1.05% 43.9% 

L2 [3] 76.15% 75.18% -0.97% 54.6% 

White-Box [19] 

(3) 

76.15% 75.32% -0.83% 45.6% 

ours 76.15% 75.44% -0.71% 54.8% 

      

4.4 Ablation Study 

To validate the effectiveness of the proposed statistical feature-based regularization 

method within the pruning framework, we conducted a systematic ablation study on the 

gamma parameter, which was evenly partitioned into ten incremental steps from 0 to 1, 

with detailed experimental results summarized in Table 3. 

Through comparative analysis of pruning outcomes across these configurations, our 

objective is to demonstrate empirically whether the integration of both statistical fea-

tures (mean and variance) provides superior pruning decision-making compared to sce-

narios where either feature is utilized independently.  

This experimental design aligns with established methodologies in sparse neural net-

work optimization, where parameter sensitivity analysis and feature fusion strategies 

have been shown to critically influence model compression efficacy. The structured 

exploration of gamma's role in balancing feature contributions further adheres to rigor-

ous ablation protocols recommended in prior studies on pruning-induced regulariza-

tion. 

Table 3.   Ablation Study of Structured Pruning on ResNet-56 for CIFAR-10 (All experiments 

use identical pruning ratios. ∆FLOPs reflects actual computation reduction. Bold value indi-

cates best performance.) 

     𝛾 ∆FLOPs 𝐴𝑐𝑐𝑜𝑟𝑖  (%) 𝐴𝑐𝑐𝑝𝑟𝑢𝑛𝑒𝑑(%) 𝐴𝑐𝑐𝑓𝑖𝑛𝑒(%) 

          0.0 54.8 93.50 35.24 93.32 

0.1 54.8 93.50 34.40 93.17 

0.2 54.8 93.50 41.04 93.06 

0.3 54.8 93.50 41.52 93.48 

0.4 54.8 93.50 41.86 93.74 

0.5 55.4 93.50 41.67 93.10 

0.6 54.8 93.50 36.48 93.26 

0.7 55.2 93.50 37.18 93.13 

0.8 55.8 93.50 36.39 93.35 

0.9 56.7 93.50 26.57 92.98 

1.0 56.8 93.50 27.12 93.22 
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5 Conclusion 

This study addresses the limitations of magnitude-based structured pruning in sparse 

models by proposing a statistical feature-driven regularization framework. Through 

systematic analysis of parameter distributions in sparse layers, we introduce a dual-

component importance metric combining channel-wise mean and variance. The meth-

odology incorporates dependency-aware group regularization via inter-layer depend-

ency graphs, enabling adaptive parameter shrinkage while preserving critical feature 

representations. Extensive experiments on CIFAR and ImageNet benchmarks demon-

strate superior compression-accuracy trade-offs compared to existing methods. We 

hope that our work provides a new perspective for channel pruning methods and in-

spires further innovation in this field. 

Acknowledgments. This work was supported by the Postdoctoral Fellowship Program of CPSF 

(under Grant No. GZB20240113), the Sichuan Science and Technology Program (granted No. 

2024ZDZX0011 and No. 2025ZNSFSC1472), and the Sichuan Central-Guided Local Science 

and Technology Development Program (under Grant No. 2023ZYD0165). 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 

References 

1. Chen, T., Liang, L., Ding, T., Zhu, Z., Zharkov, I.: OTOv2: Automatic, Generic, User-

Friendly. (2022) 

2. Cheng, H., Zhang, M., Shi, J.Q.: A Survey on Deep Neural Network Pruning: Taxonomy, 

Comparison, Analysis, and Recommendations. IEEE Trans. Pattern Anal. Mach. Intell. 

46(12) (2024) 

3. Fang, G., Ma, X., Song, M., Mi, M.B., Wang, X.: Depgraph: Towards any structural pruning. 

In: CVPR. pp. 16091–16101 (2023) 

4. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient 

neural networks. In: NeurIPS. vol. 1, pp. 1135–1143 (2015) 

5. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft Filter Pruning for Accelerating Deep 

Convolutional Neural Networks. In: IJCAI. pp. 2234–2240 (2018) 

6. He, Y., Xiao, L.: Structured Pruning for Deep Convolutional Neural Networks: A Survey. 

IEEE Trans. Pattern Anal. Mach. Intell. 46(5), 2900–2919 (2024) 

7. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron pruning 

approach towards efficient deep architectures. In: ECCV. pp. 45–60 (2016) 

8. Lee, J., Park, S., Mo, S., Ahn, S., Shin, J.: Layer-adaptive Sparsity for the Magnitude-based 

Pruning. arXiv preprint arXiv:2007.00389 (2020) 

9. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient con-

vnets. In: ICLR (2017) 

10. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: HRank: Filter Pruning 

Using High-Rank Feature Map. In: CVPR. pp. 1529–1538 (2020) 

11. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional 

networks through network slimming. In: ICCV. pp. 2755–2763 (2017) 



 

12. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the Value of Network Pruning. 

In: ICLR (2018) 

13. Lu, Y., Guan, Z., Yang, Y., Zhao, W., Gong, M., Xu, C.: Entropy Induced Pruning Frame-

work for Convolutional Neural Networks. In: AAAI. 38(4), 3918–3926 (2024) 

14. Park, M., Kim, D., Park, C., Park, Y., Gong, G.E., Ro, W.W., Kim, S.: REPrune. In: AAAI. 

38(13), 14545–14553 (2024) 

15. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: Structured Pruning in the Kron-

ecker-Factored Eigenbasis. In: ICML. pp. 6566–6575. PMLR (2019) 

16. Wang, H., Qin, C., Zhang, Y., Fu, Y.: Neural Pruning via Growing Regularization. arXiv 

preprint arXiv:2001.10576 (2020) 

17. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural 

networks. In: NeurIPS. vol. 29, pp. 2074–2082 (2016) 

18. Wu, X., Gao, S., Zhang, Z., Li, Z., Bao, R., Zhang, Y., Wang, X., Huang, H.: Auto-Train-

Once: Controller Network Guided Automatic Network Pruning from Scratch. In: CVPR. pp. 

16163–16173 (2024) 

19. Zhang, Y., Lin, M., Lin, C.W., Chen, J., Wu, Y., Tian, Y., Ji, R.: Carrying out CNN channel 

pruning in a white box. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7946–7955 (2023) 

20. Zou, H., Hastie, T.: Regularization and Variable Selection Via the Elastic Net. J. R. Stat. 

Soc. Series B Stat. Methodol. 67(2), 301–320 (2005) 

 


