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Abstract. This paper focuses on challenges in heterogeneous image matching. 

The matching accuracy of heterogeneous image pairs is lower than that of ho-

mologous image pairs. Existing methods have attempted adaptive improvements 

to address the challenges in heterogeneous image matching, but the accuracy still 

needs improvement. This is because heterogeneous image pairs exhibit signifi-

cant differences, primarily due to their distinct imaging mechanisms. Regarding 

this issue, we propose an end-to-end hybrid framework that employs modality 

transformation for heterogeneous image matching. First, a modality transfor-

mation method based on style transfer is proposed to convert heterogeneous im-

age pairs into pseudo-homologous image pairs. Second, we extract multiscale 

and multilevel discriminative features from the pseudo-homologous image pairs 

to enhance the repeatability and discrimination of keypoints. Third, a unified 

matching loss is proposed to optimize the method for generating pseudo-homol-

ogous images. This loss function improves the performance of the modality trans-

formation module and even the entire network. The experiments indicate that the 

proposed MT-Net improves the mean match result by 0.9% - 3.5%. 

Keywords: Heterogeneous Images, Image Matching, Style Transfer, End-to-

end learning. 

1 Introduction 

Heterogeneous image matching focuses on matching images captured by different sen-

sors or under different imaging conditions. These images have significant differences 

in resolution, spectral response, image quality, and other aspects. The differences in 

visual features make the matching and analysis work complex and challenging. The 

goal of heterogeneous image matching is to find commonalities among these differ-

ences to achieve effective association and information fusion between images. Hetero-

geneous image matching has a wide range of applications in visual navigation, target 

search, medical imaging [1], remote sensing [2], pattern recognition, and more. How-

ever, unlike more mature homologous image matching technology, heterogeneous im-

age matching still faces many challenges due to the significant differences in heteroge-

neous images caused by different imaging mechanisms.  
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The challenges motivate us to consider alleviating the problems using a modality 

transformation method based on style transfer to generate pseudo-homologous image 

pairs. Style transfer uses neural networks to extract the content of one image and the 

style of another and then combines these two to obtain the final result. In terms of im-

plementation, we input infrared and visible images into the modality transformation 

module to generate pseudo-infrared images, thereby converting the matching problem 

between infrared and visible images into a matching problem between infrared and 

pseudo-infrared images. 

In this paper, we first implement the modality transformation between infrared and 

visible images using a Generative Adversarial Networks (GAN) [3] framework. Its pur-

pose is to generate infrared and pseudo-infrared image pairs to reduce the matching 

difficulties caused by large image differences. Then, we extract multilevel and mul-

tiscale features from the infrared and pseudo-infrared image pairs to obtain keypoints 

with high repeatability and discrimination, achieving matching of pseudo-homologous 

images. During the training process, we also optimize the performance of the modality 

transformation using a unified loss to achieve better match results. The main contribu-

tions of this paper are summarized as follows: 

─ We propose an end-to-end hybrid framework employing a modality transformation 

for heterogeneous image matching. The modality transformation method based on 

style transfer enhances the matching accuracy by converting heterogeneous images 

into pseudo-homologous images. 

─ We propose a unified loss to further optimize the performance of the modality trans-

formation and the entire network. This loss function includes a transfer loss and a 

matching loss. 

─ We show that MT-Net increases the matching performance by 0.9%–3.5%. Addi-

tionally, the unified loss we proposed has improved model performance by approx-

imately 0.4%. 

2 Related Work 

2.1 Image Matching 

Image matching methods include traditional approaches and learning-based ap-

proaches. Hand-crafted methods such as SIFT [4] and SURF [5] are classic traditional 

image matching methods. With the development and application of deep learning, Jah-

rer et al. [6] introduce two trainable models for the extraction of descriptors. Both are 

based on convolutional neural networks. MatchNet [7] adds a metric learning network 

to improve performance and reduce the size of the learned descriptors. L2-Net [8] ad-

dresses the problem of negative samples being several orders of magnitude more nu-

merous than positive samples in patch matching. Building on this, HardNet [9] uses a 

hard negative sampling scheme to ensure that the distance between the selected nega-

tive samples is minimized. LF-Net [10] based on a Siamese network processes the re-

sponse maps to produce three dense maps, respectively representing the saliency, scale 

and orientation of keypoints. Based on the modifications to the structure of LF-Net, 

RF-Net [11] constructs receptive feature maps to achieve more effective keypoints 
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detection. CS-Net [12] proposes a concurrent multiscale detector network, which con-

sists of several parallel convolutional networks to extract multiscale and multilevel dis-

criminative information for keypoint detection. However, these methods do not adapt 

well to heterogeneous images with significant differences. We add a modality transfor-

mation module base on style transfer to convert the challenging problem of matching 

heterogeneous images into a pseudo-homologous image matching problem. 

2.2 Modality Transformation 

The method of modality transformation we proposed is based on style transfer. MBS-

GAN [13] proposes a novel Multi-Branch Semantic GAN designed to synthesize infra-

red images with different semantic information using multiple generators. Additionally, 

a classifier based on ResNet [14] is utilized to determine which generator's output is 

most appropriate for a specific input image. InfraGAN [15] utilizes a Conditional GAN 

[16] to generate conditional thermal images for a given visible image, and incorporates 

the Structural Similarity Index Measure (SSIM) [17] in the generator's loss function to 

ensure that the generated infrared images are structurally similar to the input visible 

images. However, when they are applied to heterogeneous image matching, they can 

be further optimized by the results of downstream tasks. Therefore, we propose a uni-

fied matching loss to optimize the method for generating pseudo-homologous images. 

This loss function improves the performance of the modality transformation module 

and even the entire network. 

3 Methods 

Our proposed MT-Net consists of two parts: modality transformation and image match-

ing, as shown in Fig. 1. We use MT-Net to match visible and infrared images. First, we 

employ modality transformation based on a GAN framework to generate pseudo-ho-

mologous images for subsequent matching. Then, the image matching module extracts 

multiscale and multilevel discriminative features. We jointly train the modality trans-

formation and image matching parts, using a unified loss to further optimize the results 

of the modality transformation. 

3.1 Pseudo-homologous Image Generator 

In the modality transformation stage, we use GAN [3] to generate pseudo-homologous 

images. GAN consists of two networks, generator and discriminator, which compete 

against each other. The generator tries to generate samples that resemble the original 

data distribution, whereas the discriminator tries to detect whether samples are real or 

generated. The discriminator is also a neural network, similar in structure to the gener-

ator. Its purpose is to distinguish between real data and fake data produced by the gen-

erator. The task becomes image-to-image transformation when the GAN architecture is 

conditioned on an input image. 



 

Fig. 1. Framework of our proposed end-to-end matching network with a modality transformation 

module. The modality transformation module with a discriminator and generator is used to gen-

erates pseudo-infrared images. Then, multiscale and multilevel discriminative features are ex-

tracted from the pseudo-homologous image pairs. During the training process, the modality trans-

formation module is optimized not only with the losses from the generator (𝐿𝐺) and discriminator 

(𝐿𝐷) but also with the detector loss and descriptor loss (𝐿𝑑𝑒𝑡 and 𝐿𝑑𝑒𝑠) from the matching stage. 

In our network, similar to InfraGAN [15], the generator improves the quality of in-

frared images by employing 2D convolutional layers with a stride of 2 for downscaling. 

It utilizes deconvolutional layers for upsampling without incorporating skip connec-

tions, relying on learned parameters to refine the image quality within each generator 

block. Additionally, since the input images are normalized to a range between -1 and 

1, the generator concludes with a hyperbolic tangent activation function to produce 

pixel values that fall within the same input range. 

Our discriminator uses bilinear interpolation for upsampling and maxpooling layers 

for downsampling, which helps reduce the number of learnable parameters and memory 

consumption. A fully connected layer with a single neuron is used as a normalization 

layer to constrain the output values between 0 and 1. Within the discriminator, two 

types of residual blocks are utilized: one for downsampling the input and the other for 

upsampling the input. Each of the residual blocks is equipped with 2D convolutional 

layers with 3 × 3 and 1 × 1 kernels, and they both apply the same size of padding. The 

upsampling block performs interpolation to increase the size of its input before apply-

ing the convolutional layers, while the downsampling block applies average pooling to 

decrease the size of the input after applying the convolutional layers. Finally, both 

blocks sum their two parallel paths on a per-channel basis and then pass the result along 

to the next block in the sequence. 

We apply the GAN structure for modal transformation to match heterogeneous im-

ages. This method transforms the challenging problem of heterogeneous image match-

ing into a problem of pseudo-homologous image matching. Our MT-Net further opti-

mizes the effects of the modality transformation stage by using the loss from the image 

matching stage in a two-stage joint training process. 
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3.2 Keypoint Detector 

The construction of scale-space response maps, denoted as {ℎ𝑛} where 1 ≤ 𝑛 ≤ 𝑁 and 

𝑁 is the total number of layers, is fundamental to keypoint detection. We use convolu-

tional kernels of different sizes to extract multilevel feature maps. This approach en-

dows the feature maps with discriminative capabilities at different hierarchical levels 

and provides them with receptive fields of different sizes. 

To achieve this purpose, we employ 𝑁 hierarchical convolutional layers to generate 

feature maps, each with several different sizes of receptive fields, with this range ex-

panding as the convolution progresses. We then apply a 1 × 1 convolution to each fea-

ture map to produce multiscale response maps {ℎ𝑛}. In our implementation, 𝑁 is set to 

10. Shortcut connections are added between each layer to facilitate network training 

without changing the receptive fields of the feature maps. In addition, we use a 1 × 1 

kernel followed by instance normalization to generate the multiscale response maps, 

with all convolutions zero-padded to ensure the output size matches the input. This 

method uses both the abstract feature maps extracted from ResNet and the hierarchical 

structure to improve the scale space representation for keypoint detection. 

In our approach, we identify keypoints based on high-response pixels from mul-

tiscale response maps {ℎ𝑛}, constructing a keypoint score map accordingly. The key-

point detection process utilizes receptive feature maps to form these response maps. 

We employ two softmax operations to refine the score map 𝑆: 

─ The initial softmax enhances the response maps ℎ̂𝑛 by operating on a 15 × 15 × 𝑁 

window with zero padding. 

─ The subsequent softmax integrates these maps into the final score map 𝑆 using the 

formula: 

 𝑆 =  ∑ ℎ̂𝑛
𝑛 ⊙ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑛(ℎ̂𝑛), (1) 

where ⊙ denotes the Hadamard product. 

For orientation estimation, we apply 1 × 1 convolutions to feature maps to generate 

orientation maps 𝜃𝑛 reflecting the sine and cosine of the orientations, and compute the 

angles using the arctan function. The final orientation map Θ is merged as 

 Θ =  ∑ 𝜃𝑛
𝑛 ⊙ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑛(ℎ̂𝑛). (2) 

Similarly, the scale map 𝑆̅ is derived by 

 𝑆̅  =  ∑ 𝑠̅𝑛
𝑛 ⊙ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑛(ℎ̂𝑛), (3) 

where 𝑠̅𝑛 corresponds to the receptive field size of each feature map. 

3.3 Descriptor Extraction 

Our descriptor extraction module is designed with a series of convolutional layers. 

There are a total of seven layers involved. Each layer, except the last, is equipped with 

batch normalization to stabilize the learning process and ReLU activation functions to 



introduce nonlinearity. This helps the network learn complex patterns within the data. 

After passing through these layers, the output feature vectors are L2-normalized and 

have a dimension of 128. As for the loss function that guides the learning in this process, 

more details will be provided in the following sections. This structured approach allows 

us to effectively extract robust descriptors from the images. 

3.4 Loss Function 

We propose a unified loss to optimize our entire network which is calculated as follows: 

 𝐿total = 𝜆1𝐿trans + 𝜆2𝐿match, (4) 

where 𝜆1  and 𝜆2  are hyperparameters, and 𝐿trans  and 𝐿match  correspond to the loss of 

pseudo-homologous image generator and the loss of matching.  

Transfer Loss. Our proposed transfer loss includes a generator loss and a discriminator 

loss. 

Generator loss, denoted as 𝐿𝐺, is a composite of three terms: the standard conditional 

GAN loss (𝐿𝑐𝐺𝐴𝑁), an L1 loss (𝐿𝐿1), and a loss based on the structural similarity index 

(𝐿𝑆𝑆𝐼𝑀). The generator's loss is formulated as follows: 

 𝐿𝐺 = L𝑐𝐺𝐴𝑁 + λ3 ⋅ L𝐿1 + λ4 ⋅ L𝑆𝑆𝐼𝑀, (5) 

where λ3 and λ4 are hyperparameters. The conditional GAN loss is given by 

 L𝑐𝐺𝐴𝑁 = −𝐸𝑥 [∑ log ([𝐷𝑑𝑒𝑐(𝑋, 𝐺(𝑋))]
𝑖,𝑗

)𝑖,𝑗 ] − 𝐸𝑥 [log (𝐷𝑒𝑛𝑐(𝑋, 𝐺(𝑋)))]. (6) 

The SSIM loss is calculated as 

 L𝑆𝑆𝐼𝑀 =
1

𝑚
∑ (1 − SSIM(𝐺(𝑋𝑖), 𝑌𝑖))𝑚−1

𝑖=0 , (7) 

where 𝑚 is the batch size, and SSIM measures the similarity between the generated 

image 𝐺(𝑋) and the ground truth image 𝑌. Further details on the calculation of SSIM 

can be found in [17]. The generator's loss is computed assuming that the generated 

images are classified as real by the discriminator, thus driving the generator to produce 

more realistic images. 

Discriminator Loss. The discriminator is trained with two loss terms. It captures the 

image-level discrimination loss while addressing the pixel-level discrimination loss. 

𝐿𝐷𝑒𝑛𝑐
 represents the loss based on the image in the encoder output and 𝐿𝐷𝑑𝑒𝑐

 represents 

the loss based on pixels in the decoder output. The decoder output of the discriminator 

provides the probability that each pixel is real or fake. The loss function of the discrim-

inator is expressed as 

 𝐿𝐷 = 𝐿𝐷𝑒𝑛𝑐
+ 𝐿𝐷𝑑𝑒𝑐

, (8) 
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where 𝐿𝐷𝑒𝑛𝑐
 and 𝐿𝐷𝑑𝑒𝑐

 are both based on cross-entropy loss, used for training the dis-

criminator to distinguish between real and generated infrared images. 

Matching Loss. In order to further optimize the modality transformation module for 

generating pseudo-infrared images based on the results of image matching, we propose 

a loss 𝐿𝑚𝑎𝑡𝑐ℎ: 

 𝐿match = 𝐿det + 𝐿des, (9) 

where 𝐿𝑑𝑒𝑡 and 𝐿𝑑𝑒𝑠 correspond to the detector loss and description loss. The impact of 

using 𝐿𝑚𝑎𝑡𝑐ℎ on the final matching results is discussed in Section 4.3. 

Detector Loss. The primary objective of detector training is to ensure the repeatability 

of keypoint detection. The detector is trained once by 

 𝐿det = 𝐿score + 𝐿patch, (10) 

where 𝐿𝑠𝑐𝑜𝑟𝑒 combines both RC-S-loss and RC-SD-loss followed by CS-Net [12] and 

𝐿𝑝𝑎𝑡𝑐ℎ is used to minimize the distance between matching descriptors. Specifically, we 

calculate the average distance between descriptor pairs of all keypoints as the loss func-

tion, a distance metric that is based on the similarity between descriptors. 

Description Loss. The goal of descriptor learning is to align matching patches closely 

while separating nonmatching patches distinctly. Identical to CS-Net, we utilize effec-

tive triplet loss in conjunction with hard sample mining and neighbor masking for de-

scriptor training. Triplet training samples are formed from both positive and negative 

samples. The triplet loss function is designed to ensure that there is a margin 𝑚 by 

which the distance between the descriptors of negative samples exceeds the distance 

between the descriptors of positive samples: 

 𝐿des =
1

𝑘
∑ max (0, 𝑚 + 𝐷(𝑑𝑖 , 𝑑𝑖

′) − 𝐷(𝑑𝑖 , 𝑑𝑗
′))𝑖∈keypoints , (11) 

where 𝑘 is the number of keypoints we have chosen, 𝑑𝑖
′ corresponds to the matching 

descriptor of 𝑑𝑖, and 𝑑𝑗
′ is a nonmatching descriptor. To address the limitations of ran-

domly selected negative samples, which can lead to a slow training process and subop-

timal performance, we select hard negative samples that are very close in distance. 

4 Experiments 

4.1 Datasets and Training 

We verify the image matching performance on both VeDAI dataset [18] and RGB-NIR 

Scene dataset [19] to evaluate the effectiveness of our approach. VeDAI is a dataset for 

vehicle detection in aerial imagery. The images contained in the database exhibit dif-

ferent variability such as multiple orientations, lighting/shadowing changes, 



specularities or occlusions. RGB-NIR Scene dataset consists of RGB and near-infrared 

(NIR) images captured using visible and NIR filters. The most previous work uses 70% 

of the datasets for training, 20% for validation, and 10% for testing during the training 

phase. Within the 70% of the datasets used for training, we allocate 50% to generator 

training and the remaining 50% to the entire model training to prevent the generator 

from memorizing. The entire network is validated on the 20% of the datasets and tested 

on the 10% of the datasets. 

For optimization, we use Adam [20] assigning a learning rate of 2 × 10−4 for the 

generator and 2 × 10−6 for the discriminator. We train the descriptor twice and the de-

tector once, starting with an initial learning rate of 0.1 which decreased by 0.1 every 

five epochs. Batchsize is set to 8. We assign the values of 𝜆1 and 𝜆2 to 1 and the values 

of 𝜆3 and 𝜆4 to 100. 

4.2 Evaluation Metric 

This study utilizes the matching score (MS) [21] to assess image matching perfor-

mance. The matching score is defined as 𝑀𝑆 = 𝑁𝑟  / 𝑁𝑚  where 𝑁𝑟  is the number of 

correct matches and 𝑁𝑚 is the total number of matches, with the condition that 𝑁𝑟 ≤
𝑁𝑚. A match is considered incorrect if the spatial distance between the predicted and 

ground truth points exceeds 5 pixels. The average number of correct matches, denoted 

as 𝑁𝑟, is also used to evaluate performance, with higher values indicating better match-

ing. The matching strategy has a significant effect on the results. We report MS and 𝑁𝑟 

for three strategies: nearest neighbor (NN), nearest neighbor distance threshold (NNT), 

and nearest neighbor distance ratio (NNR). In the NN strategy, a match is found by 

identifying the closest descriptor. NNT requires the closest descriptor to be within a 

distance threshold 𝑇. NNR matches if the ratio of the distances between the first nearest 

neighbor and 𝑑𝑖 to the second nearest neighbor and 𝑑𝑖 is below a threshold 𝑅𝑇. In this 

article, 𝑇 = 1 and 𝑅𝑇 = 0.7. 

Table 1. Comparison of different methods on VeDAI and RGB-NIR Scene datasets. 

Methods VeDAI RGB-NIR Scene Average 

SIFT[4] 0.492 0.462 0.477 

SURF[5] 0.494 0.458 0.476 

L2-Net[8]+SURF 0.635 0.583 0.609 

L2-Net+ORB[22] 0.713 0.643 0.678 

Hard-Net[9]+SURF 0.663 0.621 0.642 

Hard-Net+ORB 0.632 0.604 0.618 

LF-Net[10] 0.623 0.603 0.613 

RF-Net[11] 0.804 0.763 0.784 

CS-Net[12] 0.857 0.801 0.829 

Ours 0.892 0.810 0.851 
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4.3 Results and Ablation Study 

Experiments show that our proposed MT-Net achieves good results on the VeDAI and 

RGB-NIR Scene datasets, as shown in Fig. 2 and Fig. 3. To some extent, matching on 

the pseudo-homologous image pairs generated after modality transformation reduces 

the probability of false matches and increases the number of correct matches, compared 

to direct matching on heterogeneous image pairs.  

 

Fig. 2. Qualitative matching results on the VeDAI dataset, with correct matches. 

 

Fig. 3. Qualitative matching results on the RGB-NIR Scene dataset, with correct matches. 

We compare MT-Net with other methods on different datasets. As shown in Table 

1, our MT-Net achieve an average matching score that was higher than other methods 

on the VeDAI and RGB-NIR Scene datasets. This indicates that by transforming the 

heterogeneous image matching problem into a pseudo-homologous image matching 

problem through modality transformation, the effectiveness of heterogeneous image 

matching can be enhanced. Specifically, MT-Net uses the modality transformation 

method to convert input visible images into pseudo-infrared images. This approach re-

duces the challenges posed by large image discrepancies in heterogeneous image 

matching. By using the modality transformation method, MT-Net is able to take ad-

vantage of the more advanced techniques of homologous image matching, thereby en-

hancing the effectiveness of heterogeneous image matching. 

Table 1 shows that our method performs better on the VeDAI dataset than on the 

RGB-NIR Scene dataset. Upon analysis, it is found that due to the more significant 

detail differences between near-infrared and visible images in the RGB-NIR Scene da-

taset, the quality of the generated pseudo-infrared images is not as good as that on the 

VeDAI dataset, as shown in Fig. 4. Therefore, the final matching performance on the 



RGB-NIR Scene dataset is not as good as that on the VeDAI dataset. This further 

demonstrates that the results of heterogeneous image matching are influenced by the 

degree of image differences. Our approach, which focuses on reducing image differ-

ences, is therefore rational and effective. 

 

Fig. 4. The modality transformation effect on VeDAI dataset and RGB-NIR Scene dataset. 

After analyzing the ablation study as shown in Table 2, we found that the MT-Net 

with added matching loss performed better on both datasets, which further indicates 

that the optimization of the modality transformation module has a positive impact on 

the matching results. The incorporation of the unified matching loss appears to have 

effectively guided the modality transformation process for subsequent matching tasks. 

Table 2. Comparison of MT-Net with and without match loss on VeDAI and RGB-NIR Scene 

datasets. 

Methods 
VeDAI RGB-NIR Scene 

NN NNT NNR Mean NN NNT NNR Mean 

MT-Net(No 𝐿match) 0.715 0.954 0.996 0.888 0.583 0.892 0.976 0.817 

MT-Net 0.731 0.947 0.998 0.892 0.596 0.886 0.981 0.821 

5 Conclusion 

We propose an end-to-end hybrid framework employing modality transformation based 

on style transfer for heterogeneous image matching. The modality transformation 

method addresses the problem of difficulties in matching heterogeneous images due to 

their significant differences by converting them into pseudo-homologous images. 

Moreover, we propose a unified loss to further optimize the effect of the modality trans-

formation, enabling the modality transformation method to play a more effective role 

in the subsequent matching process. Our method has been proven effective through 
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experiments, enhancing the performance of heterogeneous image matching. This suc-

cess confirms the feasibility and effectiveness of applying the modality transformation 

method to such tasks. Therefore, we believe that the development of style transfer can 

add more methods and possibilities to the achievement of heterogeneous image match-

ing. 
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