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Abstract. In fields such as manufacturing, the Job Shop Scheduling Problem
(JSP), a classic NP-hard combinatorial optimization problem, is faced with chal-
lenges where traditional solution methods suffer from high computational com-
plexity and poor adaptability, and construction-based methods have issues of low
sample efficiency and weak generalization ability. To overcome these difficul-
ties, this paper proposes the ConDRL-JSP framework, which innovatively inte-
grates contrastive learning, reinforcement learning, and the curriculum learning
strategy. The introduction of contrastive learning aims to address the problems
of weak feature discrimination and limited data mining capabilities of traditional
reinforcement learning in JSP. It enhances the model's ability to extract key fea-
tures from complex scheduling states, enabling more efficient decision-making.
The curriculum learning strategy dynamically adjusts the task difficulty based on
the model's training performance. Starting with simple instances, it gradually pro-
gresses to complex scenarios, effectively improving the model's generalization
ability and avoiding getting trapped in local optima.

Keywords: Job Shop Scheduling Problem <Contrastive Learning, Reinforce-
ment Learning, Curriculum Learning

1 Introduction

The Job Shop Scheduling Problem (JSP) is a classic NP-hard combinatorial optimiza-
tion problem, which holds great significance in both the manufacturing and transporta-
tion industries. For example, in the production of automotive parts, reasonable JSP
scheduling can optimize the job-machine allocation, enhance resource utilization, and
reduce costs. In the transportation field, it can improve the operational efficiency of
vehicles in logistics centers. Its core objective is to minimize the makespan by allocat-
ing jobs reasonably, so as to achieve the optimal allocation of resources.

Methods for solving the JSP can be mainly classified into three categories: tradi-
tional heuristic methods, construction-based methods, and methods focusing on opti-
mization and adaptation strategies. Traditional heuristic methods rely on empirical



rules. For instance, the Shortest Processing Time (SPT) and the Most Work Remaining
(MWKRY) in the Priority Dispatching Rules (PDRs) [12] are simple and intuitive, but
their performance is unstable across different problem instances. Exact algorithms
(such as integer programming [1]) and heuristic methods (such as tabu search [10]) can
obtain better solutions, yet they suffer from high computational complexity and are not
applicable to large-scale JSP. The Efficient Active Search (EAS) strategy proposed by
Hottung et al. [13] improves the construction method of combinatorial optimization
through partial parameter updates. However, it has the issues of time-consuming search
and insufficient ability to handle complex industrial constraints.

Construction-based methods often make use of machine learning techniques. Super-
vised learning methods, such as Pointer Networks [26] and Graph Convolutional Net-
works [19], rely on costly labeled data. Early unsupervised reinforcement learning
methods (such as L2D [27]) have poor state representation and solution quality in com-
plex scenarios. Corsini et al. [7] proposed a supervised learning task of predicting the
quality of machine permutations, evaluated it using a MILP solver, and trained a deep
learning model for application in the tabu search algorithm. Nevertheless, this method
increases the algorithm's time cost, and its general applicability remains to be verified.

The construction methods based on reinforcement learning are constantly evolving.
Tassel et al. [25] modeled the JSP as a single-agent reinforcement learning problem and
constructed an environment using the Proximal Policy Optimization (PPO) algorithm.
However, the PPO is prone to getting trapped in local optima, and the performance of
the scheduling solutions is inferior to that of the optimal constraint solvers. The
DGERD Transformer proposed by Chen et al. [5] combines the attention mechanism
with disjunctive graph embedding, which can handle problems of any scale, but its
ability to deal with complex constraints is limited. The adaptive scheduling framework
proposed by Han et al. [11] based on the dueling double deep Q-network can directly
learn scheduling strategies from high-dimensional inputs, but it has extremely high re-
quirements for the quality of training data.

In terms of optimization solving and adaptation, the deep reinforcement learning
heuristic algorithm based on Graph Neural Networks (GNN) proposed by Zhang et al.
[28] relies on artificial rules, and its generalizability is limited. The NeuroLS model
proposed by Falkner et al. [9] formalizes the local search component as a Markov De-
cision Process (MDPs), and the quality of the solution is sensitive to the initial condi-
tions. The NeuRewriter model in the literature [6] is flexible in rewriting optimization
problems but relies heavily on a large amount of prior knowledge. The POMO method
proposed by Kwon et al. [16] solves combinatorial optimization problems through tech-
niques such as multi-node exploration. However, in some problems, it is difficult to
determine the optimal starting node, and its universality is insufficient. The hardness-
adaptive curriculum learning method for the Traveling Salesman Problem proposed by
Zhang et al. [30] has the defects of a single problem type, high training cost, and lack
of sufficient verification with large-scale instances. Curriculum learning [14] faces the
challenge of quantifying task difficulty in ultra-large-scale JSP, and the sample con-
struction and target alignment mechanisms of contrastive learning in JSP also need fur-
ther exploration.
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Notably, contrastive learning has demonstrated remarkable effectiveness in various
fields. For example, vanOord et al. [22] proposed Contrastive Predictive Coding (CPC),
which compresses high-dimensional data, predicts the future with an autoregressive
model, and uses InfoNCE loss for training. By maximizing mutual information between
observations, CPC enables the model to extract useful features and has achieved excel-
lent results in speech, image, natural language processing, and reinforcement learning
tasks.

In view of the above problems, this paper proposes the ConDRL-JSP framework,
which integrates contrastive learning, reinforcement learning, and curriculum learning.
The contrastive-reinforcement learning integration module enhances the feature repre-
sentation in complex scenarios, and the dynamic curriculum adjustment module based
on the RASCL strategy [14] optimizes the learning process for problems of different
scales. This framework overcomes the problems of poor generalization and low effi-
ciency of existing methods. Experiments on the Taillard and Demirkol benchmark da-
tasets show that the ConDRL-JSP framework can significantly shorten the makespan,
improve the scheduling quality, obtain solutions close to the optimal, and has strong
generalization ability, providing an effective solution for the practical application of
JSP.

2 Model

In this section, we elaborate on the constraints of the problem and the principles of the
method. We model the solution process of the Job Shop Scheduling Problem (JSP) as
a Markov Decision Process (MDP). In this process, the solution is gradually constructed
based on the inferred scheduling decisions, and contrastive learning continuously opti-
mizes the state representation of samples during the training process. Finally, the train-
ing algorithm is introduced. The model schedules operations according to the schedul-
ing policy =y, which is parameterized by a neural network and optimized through rein-
forcement learning.

The Job Shop Scheduling Problem (JSP) is a well-known combinatorial optimization
challenge [23]. It involves assigning jobs ((J={J;,J,,...,J,,}) with specific processing
sequences and durations to machines (M={M;,M,,...,M,}), aiming to minimize the
makespan and achieve other optimization goals. Each job J; is composed of multiple
operation O;;—0,,—...—0,, , Where the processing time of operation Oy is P;, and
the operations must be processed on a specific machine without interruption.

ij

2.1 Mathematical Symbols

Table 1. Mathematical Symbols and Their Meanings. summarizes the mathematical
symbols used in this paper and their corresponding meanings. This table serves as a
quick reference for readers when encountering these symbols in the subsequent sections
that describe the methods.



Table 1. Mathematical Symbols and Their Meanings.

Symbol Meaning
J={1,d5, T Set of jobs in JSP
M={M;.M,,...M,,} Set of machines in JSP
0y Jj-th operation of job J;
p; Processing time of O;;
S State at decision-making moment ¢ in MDP
a, Action at time t in MDP
A, Action space at time t in MDP
T Transition function in MDP (s, ;=T(s,a,))
C,(x,s,a,) Cost function at time ¢ in MDP
my(a,ls,) Policy network outputting a, probability given s, (0 pa-
rameter)
J(0) Objective function for policy z (6 parameter)
E Expectation operator
X Set of all scheduling instances
7 Gradient w.r.t. 4
B Training batch size
¢ ,(x.5,) Baseline by critic network (¢ parameter)
Ly, Contrastive learning loss
Lot Model’s total loss function
A Contrastive loss weight in total loss
Licior Actor network policy gradient loss
Leyisic Critic network value evaluation loss
y Discount factor for R,
A a;) Advantage function for s;, a;
0G;a;) Action-value function for s;, a;
L Set of curriculum learning difficulty levels
(L={1y,....Ix})
/ Current curriculum learning difficulty level
o Curriculum learning optimal gap threshold
Makespan,, ., Model-obtained makespan
Makespan, , Optimal makespan

2.2  Constraints

Precedence Constraints: Operations within each job must be executed in the prede-
termined order. That is, only when the previous operation O, ;; of job J; is completed



July 26-29, Ningbo, China

(9) 2025 International Conference on Intelligent Computing
\ e A9
— https://www.ic-icc.cn/2025/index.php

can the subsequent operation O;; start processing. Each job J; must undergo operations
in the order of 0;,—0,,—...—0,,.. This precedence constraint, as shown in Fig. 1 in

the flow of operation processing, has been extensively studied and is fundamental in
JSP research [2,4].

Machine Exclusivity Constraints: Each machine can process only one job at a given
moment; multiple jobs cannot be processed on one machine simultaneously. This con-
straint is a basic characteristic of the JSP problem [4,20,21] and is incorporated into the
state representation and action-space definitions in our model.

Non-Preemption Constraints: Once a job starts processing, it cannot be interrupted
or preempted before completion. This ensures the continuity of job processing and pre-
vents production inefficiencies and disruptions to the production plan. This non-
preemption constraint, as illustrated in the overall scheduling process in Fig. 1, is an
important feature of JSP and has been discussed in relevant literature [4].

2.3  Markov Decision Process Formulation

In the ConDRL-JSP framework, we utilize the Markov Decision Process (MDP) to
construct the decision-making framework and define its key elements.

State: The state s, comprehensively describes the system status at the decision-mak-
ing moment. It is a multi-dimensional composite information structure that encom-
passes machine utilization M,;(2), job time J,;,,.(?), job earliest start time .J,,,,,(?), job
state J,,,..(2), and priority P(z). It can be expressed as:

S = {Mutil(t)’ Jtimes(t)’ Jearly(t)"]state(t)’ P(t)} (1)

Action and Action Space: The action a, represents the job chosen for scheduling
from the set of currently executable operations. As the number of unfinished jobs de-
creases, the size of the action space 4, diminishes. The concept of action and action
space within the Markov Decision Process (MDP) for scheduling has been explored in
related works such as [29,18]. These studies define actions based on available opera-
tions in scheduling problems and analyze the evolution of the action space, which is
similar to our approach in the ConDRL-JSP framework.

State Transition: Once the system executes action «,, it moves from state s, to
s,+, Via the transition function T as shown in the equation:

S = T(spay) 2

This transition involves job allocation and updates to machine and job states, as can
be seen in the state-processing part of Fig. 1. The state transition description aligns with
the common understanding in MDP-based scheduling applications, as discussed in
[15,27], where it forms a crucial part of the scheduling model.

Reward and Cost Function: The cost function C,(x,s,,a,) is defined as:



Ci(xspa)=t(x s, )-7(xs,) ©)

which measures the increase in completion time between consecutive states. Treat-
ing this cost as the negative of the reward helps apply the “reward-to-go” technique and
reduces the variance of the policy gradient. As studied in [17,15], such a cost function
design and the use of the “reward-to-go” technique optimize the scheduling policy
within the MDP framework.

Policy and Optimization: The policy (z,(a,/s,)) is approximated by a neural net-
work and outputs a probability distribution of actions based on the current state. We
use the Reinforce algorithm to optimize the parameter ¢ with the goal of minimizing
the expected completion time.

The objective function is:

J”(H)=EX~X0%0(,‘X,SI)[TW9(X)] (4)
where
T"(x)=%, C/(x,s,a,) ©)
The gradient of the objective function is:
T (0= S S0 (G(x5)-by(x.5)) - Vylogrmo(a|x,s)) (6)

The critic network reduces the gradient variance by calculating the baseline by(x,s,),
and its parameter ¢ is optimized by minimizing the equation:

LO=5T Y Ibyfes)-Gls)F %)
=1

The use of the Reinforce algorithm for policy optimization and the role of the
critic network in reducing gradient variance are common techniques in reinforcement
learning for scheduling problem [3,17], and are implemented in our ConDRL-JSP
model as shown in Algorithm 1.

2.4 ConDRL-JSP Basic Network Architecture

In the following sections, we'll explain the key components of the ConDRL-JSP
framework (Fig. 1). The State Representation Module captures problem states for fur-
ther operations. The Shared Feature Layer extracts and shares features for information
exchange. The Contrastive Learning Module refines state representations via contras-
tive learning to boost model performance. The Curriculum Learning Module enables
the model to adapt to complex problems during training. The Loss Function integrates
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these components, optimizing the training process for efficient and accurate learning.
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Fig. 1. ConDRL-JSP network architecture

State Representation Module The State Representation Module preprocesses job and
machine states from the Environment (ENV) and comprises two components. For the
Machine Embedding component, a linear projection is utilized to transform raw ma-
chine states, as described by the formula:

hyy=W,s,+b,, (8)

Regarding the Operation Sequence Embedding with LSTM, the LSTM is employed
to model the temporal relationships between operations, which can be expressed as:

hy? =LSTM (h;’_’j,e(O,-,t)) ?

These features derived from the two components are then fed into the shared feature
layer ¢, resulting in the formation of a comprehensive state representation, as illustrated
in Fig. 1.

Shared Feature Layer The core of the Shared Feature Layer is the component
¢:S—R“,, which integrates heterogeneous features {h,-}le. The integration process is
achieved through the following formula:

¢()=c(W.[h; &---Dh,]+b.) (10)

where W, eR?*24m™) is 3 learnable parameter, o(-) represents the activation func-
tion, and & denotes concatenation. The output of the shared feature layer, namely the
state embedding s,,,s.4, 1S Obtained as follows:

Sembed:¢(s) (11)



This state embedding s,,,,. Serves a dual purpose, being passed to both the Actor
and Critic networks, and also acting as the input for the contrastive learning module.

Decision Making Module The Decision Making Module is mainly composed of the
Actor and Critic networks. The Actor network generates a probability distribution over
scheduling actions via the policy function z(a|¢(s)). Given the state representation
¢(s) R from the shared feature layer, the Actor first computes unnormalized action
scores using the formula:

Aalg(s))=W,ReLUW,4(s)+b,)+b, (12)

Here, W, €R"*? and W,€R**" are learnable parameters, with h denoting the hidden
layer dimension and A representing the action space size. To handle the constraints of
the JSP, a binary mask vector m €/0, J}A is introduced to invalidate illegal actions. Con-
sequently, the probability distribution is calculated as:

m(a) exp (f(a|¢(s)))
5, m@)erp (f(a]s®))

7r(a|¢(s))= (13)

As depicted in Fig. 1, the Actor samples specific actions through a "sample™ opera-
tion. Subsequently, the environment executes these actions and updates its state. This
iterative process continues until all operations are scheduled, ultimately yielding a com-
plete JSP solution.

The Critic network, conversely, evaluates the state quality using the value function
V(4 (s)), which is computed as:

V(¢(s))=wIReLU(w]$(s)+c;)+c, (14)

where w, ER"*?and w, €R" are parameters specific to the Critic. The output of the

Critic is then used to compute the advantage function:

AGs.@)=R(s.a)+7V($(5))-V($()) (15)

This advantage function signal guides the parameter updates of the Actor network
via the policy gradient theorem:

I76J(49)=E[ I7glog7r(a|¢(s))'A(s,a)] (16)

Contrastive Learning Module As a key part, the contrastive learning module boosts
scheduling decision performance. Integrated into each action-selection step of the
scheduling process (Algorithm 1), it optimizes state representation via well-designed
procedures, supporting scheduling decisions.

The contrastive learning module takes as input the state embedding s.ppeq from the
state representation and shared feature layers, which describes the current scheduling
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state. When the Actor network does forward propagation for action probability distri-
bution, contrastive features are generated. s,,,;,.4 IS fed into the contrastive projection
head (a series of linear layers and activation functions), outputting the contrastive fea-
ture ¢4, as per the formula below:
Cfeat:P(Sembed) (17)
where P(-) represents the mapping operation of the contrastive projection head. As
demonstrated in Algorithm 1, these generated contrastive features form the basis for
constructing positive and negative samples and calculating the contrastive loss.

Algorithm 1 ConDRL-JSP Single Level Training Algorithm

Require: learning rates o,f, contrastive loss weight /, temperature hyperpa
rameter 7 = 0.1, difficulty level |

1: Initialize policy network e, shared feature extractor ¢

2: for each training batch do

3: for each time step t do

4: Sample action a, from zy(als,)

5: Execute action «, in state s, to get s,.; and r

6: Store (s,a,r,S.+1)

7: end for

8: Calculate cumulative discounted return R,= Y1, »*'r,
9: Calculate target advantage A4""%*

10: Calculate actor loss: Lacmr=-Ai[ZZog[Z@]zrg(ab) ALt
11: for each sample s; in the batch do

12: Set s, as positive sample and other samples as negative samples
13: end for

14: Calculate similarity matrix S;= w

15: Calculate contrastive loss: L., (see Equation 19)

16: Calculate total 10SS: L,y0/=Lacior T Leritic T4 Leon

17: Update parameters: 6,¢«<—0-0. VL,

18: end for

Positive and negative samples are constructed based on the contrastive features at
different time steps. In each scheduling cycle, contrastive features c,, at multiple time

steps are collected. Each batch of contrastive features cf, . isreshaped and normalized
to obtain ¢f, . Subsequently, the contrastive relationship is established by calculating
the cosine similarity matrix sim_matrix among different samples. If the i-th and j-th
feature vectors in ¢f,  arez; and z; respectively, then the cosine similarity is:
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sim(z,,3,)= (18)

In the constructed similarity matrix sim matrix, the diagonal elements (z,z;) are
positive sample pairs, corresponding to the features of the same state at different time
steps. The off-diagonal elements (z,,z;) (i) constitute negative sample pairs. Just as in
Algorithm 1, this method of sample construction helps the model learn the differences
between various states, thus optimizing the state representation.

The contrastive learning loss adopts the calculation method of the INFONCE loss.
By utilizing the constructed similarity matrix sim_matrix, the cross-entropy loss func-
tion is applied for calculation. Let NV be the number of samples, and the labels labels
be the index sequence ranging from 0 to N - 1. The calculation formula for the contras-
tive learning loss L., is:

N-1
1 exp(sin(z,,2;) /7
Lcon:'ﬁz lOg p( ( ) ) (19)
i=0

jN;(I, exp(sin(zi,zj) /r)

where 7 is the temperature parameter, which is used to adjust the sharpness of the
softmax function and control the intensity of contrastive learning. By minimizing L.,,,
the model continuously optimizes the parameters of the contrastive projection head,
making the contrastive features c,,, more discriminative and enhancing the quality of
the state representation. This is also an integral part of the overall parameter update
process in Algorithm 1.

Algorithm 2 ConDRL-JSP Curriculum Learning strategy
Require: Set of difficulty levels L={1,, ...,Ix}, optimal gap threshold o Initialize the
policy network 7y,
1: Set k « 0 and the current difficulty level | «— Io
2: while k<K do
3:  Update {g(1)|l€L} (based on the optimal gap from the test set)
if max(g(l))<o,, then
ke—k+1,L—LU{1}
end if
Sample I from the distribution softmax(1/g(l))
Call ConDRL-JSP Single Level Training Algorithm with difficulty level
I
9: end while
10: return my

N gk

Curriculum Learning Strategy The ConDRL-JSP framework employs a Reinforce-
ment Adaptive Stepped Curriculum Learning (RASCL)[14] strategy to tackle the Job
Shop Scheduling Problem (JSP), as illustrated in Algorithm 2. RASCL is designed to
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manage difficulty levels dynamically and progressively introduce more complex prob-
lem instances as the model's performance improves.

The difficulty levels are defined in a set L={1,, ...,Ix}, where each level corresponds
to a different problem size or complexity. Training begins at the easiest level /, and
progresses as the model's performance improves. The optimal gap threshold J,, is used
to assess when the model has sufficiently mastered the current difficulty level. If the
model reaches this threshold, it moves on to a more challenging level.

The curriculum learning strategy helps the model learn from simple to complex
tasks, ensuring that the training process is both efficient and balanced. By using this
approach, the model avoids local optima and becomes more capable of solving larger
and more complex instances of the JSP.

Joint Loss Function The joint loss function integrates the requirements of policy opti-
mization, value evaluation, and feature contrast. It is composed of three main compo-
nents:

Policy Gradient LosS(L,¢xr) This component maximizes the cumulative discounted
return R, to optimize the scheduling strategy. The actor loss is computed as:

1
L =5, ) logmy (als) A" (20)
where 4""¢¢ is the target advantage.

Value Evaluation Loss(L...) The critic network is optimized to minimize the
squared difference between the estimated and target advantages. The loss function is:

n-m

1
Lcrm‘c:EZ Z Ihy:5)-Gis) P 21)

Contrastive Loss(L.,,) The contrastive loss is computed using the InfoNCE loss
function, which helps improve the state representation by learning from positive and
negative samples. The contrastive loss formula is shown in Equation 19, which was
presented in the previous description of the contrastive learning module.

The total loss function is a combination of these three components:

Ltotal :Lactor +Lcritic +j'Lmn (2 2)

The weight 1 adjusts the contribution of the contrastive loss, enabling the model to
optimize for both scheduling quality and generalization performanceIntroduction



3 Experiments

3.1 Dataset and Setting

In this study, multiple datasets are used to comprehensively evaluate the perfor-
mance of the model. The synthetic dataset is selected as the training set, covering the
scales from 6 x 6 to 30 x 20 (number of jobs x number of machines), which are used
for the training and optimization of the model. Two standard datasets are adopted as
the test set:

Taillard benchmark It contains 80 classic instances, with the scale ranging from
15 x 15 to 100 x 20. This benchmark has been widely used in the literature to evalu-
ate job-shop scheduling algorithm [24], providing a reliable basis for comparing the
performance of different models across various scales.

Demirkol benchmark It contains 80 instances, with the scale ranging from 10 x 10
to 30 x 20. Similar to the Taillard benchmark, the Demirkol benchmark [8] is also
commonly employed in job-shop scheduling research to test the generalization ability
of models for problems of different sizes.

These instances are widely used in the field of job-shop scheduling and can effec-
tively test the generalization ability of the model for problems of different scales.

The core task of the experiment is to optimize the job-shop scheduling scheme to
minimize the average Makespan. This indicator measures the longest time from the
start to the completion of all jobs and is a key criterion for evaluating the quality of the
scheduling strategy. To accurately evaluate the gap between the model's solution and
the optimal solution, the average optimality gap(GAP) is used as an auxiliary indicator,
and its definition is:

Makespan, .,
p={ =l

x100% 23
Makespanup ) ’ (23)

t

where Makespan,, is the optimal solution or the best known solution generated by
Google OR-Tools (with the time limit set to 1800 seconds). The smaller the Gap value
is, the closer the model's solution is to the theoretical optimal solution.

3.2 Baseline

To verify the effectiveness of the proposed method, the following comparison meth-
ods are selected:

RASCL[14]: A baseline method that adopts a reinforcement adaptive curriculum
learning strategy. It improves the robustness of the model by dynamically adjusting the
difficulty level and performs well in JSP benchmark tests. In this experiment, the results
of the RASCL method are reproduced based on its paper, and in the Taillard and
Demirkol benchmark tests, the sampling inference strategy proposed in the paper[14]
is used to ensure the consistency and fairness of the comparison.

L2D[27]: An end-to-end deep reinforcement learning method proposed by [27]. It
models JSP as a disjunctive graph, uses a graph isomorphism network (GIN) to capture
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dynamic states, and learns the scheduling strategy through policy gradient optimization.
In this experiment, the results in its paper are directly used for comparison.

Traditional Heuristic Methods[12]:

Shortest Processing Time (SPT) prioritizes jobs with the shortest processing times
to improve system throughput and reduce overall makespan.Maximum Work Remain-
ing (MWKR) focuses on jobs with the most remaining work to prevent bottlenecks and
ensure steady progress. Fast Descent/Dynamic Weighted Round-Robin (FDD/WKR)
makes greedy decisions and uses weighted rotation to adapt to different scheduling sit-
uations. Minimum Operation Processing Number Rule (MOPNR) centers on jobs with
the fewest operations to simplify scheduling and enhance resource efficiency.

Exact Solver: The CP-SAT model of Google OR-Tools is used as the exact solver,
with a time limit of 1800 seconds, to generate the optimal solution as the benchmark.

3.3 Scheduling Quality Comparison

Tables 2 and 3 show performance comparisons on Taillard and Demirkol bench-
marks.Objective indicates the average makespan for a given problem size; and Gap, the
average difference (in percent) to the upper bound known for the instances.

Table 2. Results on Taillard’s instances

Instance SPT FDD/WKR  MWKR MOPNR L2D RASCL _ ConDRL
15*15  Obj. | 1546.1 1808.6 1464.3 1481.3 1547.4 1389.5 1346.1
Gap | 25.81%  47.15% 19.15%  20.53%  25.92%  13.07%  9.54%
20*15  Obj. | 18135 2054 1683.6 1686.7 1774.7 1575.8 1533.5
Gap | 32.87% 50.57% 23.35%  23.55%  30.02%  15.45%  12.35%
20*20  Obj. | 2049.1 2387.2 1969.8 1968.3 2128.1 1860.2 1793
Gap | 26.70%  47.61% 21.81%  21.71%  31.58%  15.02%  10.86%
30*15 Obj. | 24193 2590.8 2214.8 2195.8 2378.8 2127.1 2044.3
Gap | 35.15%  45.02% 23.91%  22.83%  32.89%  18.83%  14.20%
30*%20 Obj. | 2619.1 3045 2439 2433.6 2603.9 2370.4 2269
Gap | 34.43%  56.30% 2517% 24.94%  33.65% 21.67%  16.46%
50*15 Obj. | 3441 3736.3 3240 3254.5 3393.8 3176.7 3057.6
Gap | 24.05%  34.77% 16.86%  17.37%  22.35%  14.53%  10.23%
50*20 Obj. | 3569.8 4022.1 3352.8 3346.9 3593.9 3266.6 3150.5
Gap | 25.52%  41.50% 17.95%  17.68%  26.37%  14.86%  10.78%
100*20 Obj. | 6139 6620.7 5812.2 5856.9 6097.6 5794.1 5666.5
Gap | 14.41%  23.39% 8.31% 9.15% 13.64%  7.98% 5.61%

A comprehensive analysis of Table 2 and Table 3 clearly demonstrates that the
ConDRL method significantly outperforms other methods across diverse instances. In
both the Taillard and Demirkol benchmarks, across various combinations of jobs and
machines, the ConDRL method consistently yields lower average makespan values, as
reflected by the objective values presented in the tables.



Regarding solution accuracy, the ConDRL method showcases a smaller average op-
timality gap (Gap) in most instances. For instance, in the "100 x 20" instance from the
Taillard benchmark and the "20 x 20" instance from the Demirkol benchmark,
ConDRL's solutions closely approach the theoretical optimum, highlighting its ability
to achieve optimized resource allocation with high precision.

The instances covered in these two tables span a wide range of scales, and through-
out, ConDRL demonstrates consistent and excellent performance, underscoring its
broad applicability. This adaptability to different production scenarios indicates that
ConDRL is not confined to specific problem types. Moreover, regardless of the instance
size, ConDRL consistently maintains a clear edge over other methods in terms of both
makespan and relative optimal gap. Its stable performance and consistent superiority
across multiple metrics collectively showcase its outstanding comprehensive ad-
vantages.

Table 3. Results on DMU’s instances

Instance SPT FDD/WKR  MWKR MOPNR L2D RASCL  ConDRL
20*15 Obj. | 49515 4666.3 4909.9 4513.2 42153 3723 3467.4
Gap | 63.65%  54.22% 62.27%  49.16%  39.32%  23.05%  14.60%
20* 20 Obj. | 5960.5 5298.2 5489 5052.3 4804.5 4302.8 3966.8
Gap | 71.62%  52.55% 58.05%  45.47%  38.34%  23.89% 14.22%
20* 20 Obj. | 6306.2 6016.5 6252.9 5742.8 5557.9 5050.7 4804.5
Gap | 62.33%  54.87% 60.96%  47.83%  43.07% 30.01% 23.67%
30*15 Obj. | 7036 6827.3 6925 6491.9 5967.4 5510.9 5101.4
Gap | 65.28%  60.38% 62.67% 52.50%  40.18%  29.46%  19.84%
30* 20 Obj. | 7601.2 7420 7484.2 7105.5 6663.9 6220.6 5673.2
Gap | 55.80%  52.09% 53.40%  45.64%  36.59%  27.50%  16.28%
40 * 15 Obj. | 8538.1 8210.9 8460.9 7870.7 7375.8 6875.5 7228.3
Gap | 62.60% 56.37% 61.13%  49.89%  40.46%  30.93%  37.65%
40 * 20 Obj. | 8975.4 9150.2 8906 8436.5 8179.4 7655.6 7186.3
Gap | 50.57%  53.50% 49.40%  4153%  37.21% 28.43%  20.55%
50 * 20 Obj. | 10132.8 9899.6 9807 9408 8751.6 8340.8 7753
Gap | 61.94%  58.22% 56.74% 50.36%  39.87%  33.30%  23.91%

3.4  Ablation Studies

To verify the effectiveness of the contrastive learning module in the ConDRL-JSP
framework, we carried out ablation experiments. Under the curriculum learning setting,
we compared the performance of the full ConDRL-JSP model (with the contrastive
learning module) and a baseline model, which was based on the RASCL architecture
but lacked the contrastive learning module. The experiment monitored the changes in
the average makespan of the models on medium-scale (30x15, 30>20) and unseen
large-scale (5015, 50>0) instances every 100 training rounds.
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We applied exponential moving average (EMA) with a smoothing coefficient (a =
0.9) to the raw makespan data to observe model performance trends during training.
For both RASCL and ConDRL, we plotted two curves: an unsmoothed curve showing
real-time performance fluctuations and a smoothed curve to highlight long-term trends.
This EMA processing reduced training noise, allowing for an intuitive comparison of
the stability and effectiveness of different scheduling optimization methods.

Analysis of Results on Medium-Scale Instances The changes in the average
makespan of the two models with the number of training rounds on medium-scale in-
stances (3015 and 30>20) are shown in Fig. 2.

In the early training stage, all models' average makespan decreased significantly, but
method differences were minor. This is because models focused on learning basic fea-
tures and scheduling patterns, and the advantages of modules like contrastive learning
weren't fully realized.As training rounds increased, the smoothed ConDRL method
gradually showed outstanding advantages. In the 3015 instance, the downward trend
of ConDRL (Smoothed)'s average makespan became more stable, and the gap with
RASCL (Smoothed) widened, proving ConDRL's superiority in optimizing scheduling
strategies and reducing the average makespan.

Scale 30x15 Makespan over Epochs Scale 30x20 Makespan over Epochs

ConDRL (Original) 4500 ConDRL (Original)
3750 RASCL (Original) RASCL (Original)
—— ConDRL (Smoothed) —— ConDRL (Smoothed)
—— RASCL (Smoothed) —— RASCL (Smoothed)
3500
4000

3250

3000 3500

Makespan
Makespan

2750
3000

2500

2250 2500

0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Epoch (Tested every 100 rounds) Epoch (Tested every 100 rounds)

Fig. 2. Makespan comparison on medium-scale instances

In the 30>20 instance, after 5000 training rounds, ConDRL (Smoothed) showed a
significantly more pronounced decreasing trend in the average makespan compared to
RASCL (Smoothed), fully demonstrating that the ConDRL method can more effec-
tively optimize scheduling schemes and reduce the average makespan when dealing
with larger-scale scheduling problems.

This indicates that, although RASCL (Smoothed) performs well in some instances,
the ConDRL (Smoothed) method consistently exhibits more stable and superior sched-
uling capabilities across all instances. With the introduction of the contrastive learning
module, ConDRL is able to more effectively learn the feature differences between dif-
ferent jobs and machines, thereby generating better scheduling plans, especially show-



ing higher performance in medium-scale and large-scale scheduling problems. By en-
hancing the discriminative ability of state features, ConDRL is better able to capture
key information in job-shop scheduling, make more reasonable scheduling decisions,
and ultimately reduce the average makespan, demonstrating its significant advantage
in scheduling optimization tasks.

Analysis of Results on Large-Scale Instances For the unseen large-scale instances
(5015 and 50>0), the performance differences between the two models were more
significant, as shown in Fig. 3.

For the large-scale instances (5015 and 50>20), we observe that under the RASCL
curriculum learning strategy, ConDRL (Smoothed), integrated with the contrastive
learning module, demonstrates a significant advantage over RASCL (Smoothed).

Scale 50x15 Makespan over Epochs Scale 50x20 Makespan over Epochs
£556 ConDRL (Original) ConDRL (Original)
RASCL (Original) RASCL (Original)
—— ConDRL (Smoothed) 6000 —— ConDRL (Smoothed)
—— RASCL (Smoothed) —— RASCL (Smoothed)
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Fig. 3. Makespan comparison on large-scale instances

In the early stages of training, the average makespan of all models shows a signifi-
cant downward trend. However, as training progresses, RASCL encounters difficulties
when faced with large-scale problems. The model's ability to capture complex sched-
uling patterns gradually weakens, and as the complexity of the problem increases, the
rate of decrease in the average makespan slows down, with some fluctuations indicating
that the models are getting stuck in local optima. In contrast, ConDRL, aided by the
contrastive learning module, continuously improves its performance and becomes more
effective in distinguishing subtle differences between state features. By leveraging con-
trastive learning, ConDRL enhances the ability to learn discriminative representations
between jobs and machines, resulting in more refined scheduling solutions.

The contrastive learning module enables ConDRL to focus on learning invariant fea-
tures that remain consistent across different instances, which helps the model generalize
better to unseen data. As a result, ConDRL (Smoothed) and ConDRL (Original) demon-
strate a more stable and sustained decrease in the average makespan across the 50%<15
and 50>20 instances, surpassing the results of both RASCL (Smoothed) and RASCL
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(Original). Contrastive learning enhances the model's ability to focus on relevant fea-
tures while ignoring noise or irrelevant information, ensuring that even as the problem
complexity increases, ConDRL can continue to improve its scheduling efficiency.

This indicates that, under the RASCL curriculum learning strategy, ConDRL inte-
grated with the contrastive learning module is better suited to tackle large-scale sched-
uling problems. By generating more discriminative features, ConDRL can optimize
scheduling plans more effectively, reduce the average makespan, and demonstrate su-
perior learning and generalization capabilities in complex large-scale scenarios.Intro-
duction

4 Conclusion

This research introduced the ConDRL-JSP framework to address the NP-hard JSP in
manufacturing. The framework adopted a RASCL-inspired curriculum learning strat-
egy during training, which improved generalization across different-scale JSP in-
stances.Experiments on synthetic and Taillard & Demirkol benchmark datasets showed
the framework's superiority. It achieved lower average makespan and closer-to-optimal
solutions across scales, with strong generalization. Ablation experiments validated the
contrastive learning module's importance, especially in medium and large-scale prob-
lems.Future work will adapt the framework to more complex real-world manufacturing
scenarios and integrate emerging techniques like advanced graph neural networks or
refined self-supervised learning to enhance performance and generalization.
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