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Abstract.  Drug-target affinity (DTA) prediction remains a critical challenge in 

AI-driven drug discovery yet suffers from severe scarcity of experimentally val-

idated data due to the prohibitively high costs and time-intensive nature of bio-

chemical assays. This data limitation not only amplifies overfitting risks but also 

compromises model generalizability under real-world distributional shifts. While 

existing approaches predominantly rely on molecular docking simulations and 

generative models—capable of producing synthetic data—they inadequately ex-

ploit available information due to inherent prior biases. To address these chal-

lenges, we propose MTS-DTA, a semi-supervised multi-task framework integrat-

ing co-training strategies with cross-task representation alignment. The frame-

work introduces two core innovations: (1) multi-task synchronization, which en-

hances feature generalizability through joint optimization of representation and 

prediction tasks; (2) correlation-guided pseudo-labeling, dynamically generating 

pseudo-labels via inter-task dependencies to leverage unlabeled data while miti-

gating noise propagation. Benchmark evaluations confirm the framework’s im-

proved robustness against distributional biases, establishing a viable strategy to 

address data scarcity in drug discovery. 

Keywords: Drug–Target Affinity Prediction, Multi-task Learning, Semi-

supervised Learning, Masked Language Modeling 

1 Introduction 

With advancements in pharmacological sciences and biotechnology, drug-related prop-

erties, including drug-drug interactions, adverse drug reactions, therapeutic synergies, 

and drug-target interactions (DTIs)—have emerged as critical determinants of thera-

peutic outcomes, garnering substantial research attention. Among these, drug-target af-

finity (DTA) prediction holds pivotal importance for drug development success, as it 

directly governs pharmacodynamic mechanisms and serves as the fundamental basis 

for elucidating drug action principles. 

Computational DTA prediction methodologies have evolved through three distinct 

phases: 1) early-stage molecular docking constrained by manual feature engineering 

[1], 2) machine learning-driven virtual screening limited by shallow feature represen-

tations [2,3], and 3) post-2018 deep learning paradigms leveraging graph neural net-

works and Transformers, enabled by advancements in GPU acceleration and large-scale 
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biochemical databases [4,5]. Although contemporary architecture automates molecular 

interaction modeling, persistent challenges arising from data scarcity and distributional 

biases continue to motivate methodological advancements in the field. 

However, the efficacy of deep learning models in drug-target affinity (DTA) predic-

tions remains critically dependent on the availability of substantial labeled training data 

requirement challenged by the prohibitively high costs and protracted timelines associ-

ated with experimental data acquisition. For instance, while the widely adopted Bind-

ingDB dataset comprises approximately 2 million drug-target binding records [6], only 

~10% meet high-confidence standards due to inherent data heterogeneity caused by 

variable experimental protocols and inconsistent validation criteria. This scale starkly 

contrasts with the billion-sample datasets driving breakthroughs in natural language 

processing and computer vision, fundamentally constraining model predictive capacity. 

Under such data scarcity, the chemical space coverage of existing labeled datasets 

(e.g., PDBbind and Davis [7]) likely represent <1% of pharmacologically relevant drug-

target combinations. This disparity forces models to prioritize target-specific feature 

extraction over universal interaction pattern discovery, severely degrading performance 

on low-resource targets. Consequently, pharmaceutical R&D exhibits structural deriv-

ative bias—preferential synthesis of compounds with established scaffolds—which 

amplifies data distribution skewness and exacerbates generalizability limitations in 

novel chemical spaces. 

Such data paucity not only amplifies overfitting risks but also severely constrains 

model generalizability to novel targets or unexplored chemical scaffolds, establishing 

a critical bottleneck for both DTA prediction accuracy and de novo drug development. 

Current methodologies addressing severe data scarcity predominantly rely on mo-

lecular docking simulations and generative architectures (e.g., GANs [8], diffusion 

models), which artificially augment training data through two inherently limited ap-

proaches: (1) reliance on empirical force fields or predefined generative priors intrinsi-

cally restricts chemical diversity exploration; (2) generated molecular candidates ne-

cessitate validation via reliable affinity prediction models, paradoxically intensifying—

rather than alleviating—the demand for experimentally verified labeled data. 

These observations motivate two principled strategies to address data scarcity in 

DTA prediction: 

First, we posit that heterogeneous affinity measurements can be unified across ex-

perimental protocols. While individual label-specific datasets (e.g. 𝑘𝑑 , 𝐼𝐶50) suffer 

from critical scarcity, numerous experimentally measured variants exist across different 

validation methodologies. Joint utilization through multi-task learning enables syner-

gistic optimization across labels, thereby exposing latent interaction patterns inaccessi-

ble to single-task frameworks. 

Second, we recognize that unlabeled chemical data—constituting >99% of available 

chemical space—exhibits inherently lower distributional bias compared to sparse la-

beled counterparts. Current DTA models predominantly exploit this resource through 

unsupervised pretraining yet fail to harness its full discriminative potential. Inspired by 

virtual screening workflows, we propose controlled pseudo-label assignment via semi-

supervised co-training, enabling noise-resilient extraction of latent pharmacological 

patterns while maintaining training stability. 
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To address these challenges, we propose MTS-DTA—a semi-supervised framework 

integrating co-training paradigms with multi-task optimization. The innovation of our 

approach manifests in two principal dimensions: 

(1) Joint Representation Learning: Simultaneous optimization of molecular and pro-

tein characterization tasks enhances feature specificity for improved predictive accu-

racy. 

(2) Dynamic Pseudo-label Optimization: A boosting-enhanced pseudo-label gener-

ation mechanism enforces multi-task consistency by leveraging biochemical correla-

tions among affinity metrics (Ki, Kd, IC50). 

We evaluated MTS-DTA on three benchmark datasets: BindingDB[6], DAVIS[9], 

and KIBA[10]. For comparative analysis, baseline models spanning machine learn-

ing[11] and deep learning[12] paradigms were selected, including KronRLS[13], Sim-

Boost[14], DeepDTA[7], and WideDTA[15]. Detailed implementation protocols for 

these baseline comparators are elaborated in Section 2. 

2 Related Work 

Unlike the DTI prediction task based on binary classification, the prediction goal of the 

DTA prediction task is the drug-target affinity value of the combination to measure the 

strength of the binding interaction between the drug and the target, which is usually 

regarded as a regression problem. In recent years, many methods have emerged in the 

field of drug-target affinity prediction, including traditional methods based on machine 

learning [11] and methods based on deep learning [12].  

In the past few decades, traditional machine learning methods have become common 

in DTA prediction tasks. In early studies, machine learning methods were mainly used 

for DTA prediction, and regression modeling was achieved by artificially designing the 

characteristics of molecules and targets. Typical methods include: KronRLS [13] is 

based on the nuclear regularization least squares method, which uses the similarity ma-

trix of compounds and proteins for prediction. SimBoost [14] predicts affinity by inte-

grating molecular fingerprints with protein sequence similarity and gradient boosting 

tree regression. Such methods rely on expert experience to design features (such as 

molecular fingerprints and amino acid composition), which have problems such as lim-

ited feature expression ability, poor generalization across targets, and difficulty in cap-

turing complex molecular-target interactions.  

At the same time, deep learning methods can extract task-specific features from raw 

data without human intervention, and many deep learning methods can significantly 

improve model performance by automatically learning the characterization of mole-

cules and targets. According to the type of input data, it can be divided into two cate-

gories: 

• Sequence information-driven: Extract features through sequence modeling using 

molecular smiles and protein amino acid sequences as inputs. Representative Methods: 

DeepDTA [7] uses two CNNs encoding compound and protein sequences, respectively, 

for regression prediction by the fully linked layer (FC). WideDTA [15] introduces pro-

tein domain annotation and molecular physicochemical properties as additional 



 

features. SimCNN-DTA [16] combines sequence similarity matrix with deep feature 

fusion.  

•  Structural information-driven: Directly leverage 3D molecular maps or protein 

structure information to model spatial interactions. Representative Method: GraphDTA 

[17] represents molecules as graph structures, encoded by graph neural networks 

(GNNs).  FusionDTA [18] enhances binding site perception by fusing molecular and 

protein contact maps.  AttentionDTA [19] greatly optimizes the model effect by intro-

ducing a cross-modal attention mechanism to align the molecular substructure and pro-

tein binding domain. AttentionMGT-DTA [20] uses a graph transformer and attention 

mechanism for multimodal drug target affinity prediction. TransVAE-DTA [21] com-

bines Transformer and variational autoencoder (VAE) to fuse drug and target coding 

features.  

Although the structural information-driven method has better results, the acquisition 

of training data is also more constrained due to the difficulty of obtaining structural 

information, and the consumption of computing resources is relatively larger. Although 

the above methods have made breakthroughs in feature extraction, their performance is 

still limited by the scarcity of labeled data, and their performance is significantly re-

duced in cold-start scenarios (new targets/new compounds), and the generalization of 

the model is still insufficient.  

In order to alleviate the problem of data scarcity, some studies have tried to optimize 

representation learning using unlabeled data: SSM-DTA [22] improves prediction ac-

curacy by enhancing the characterization of drugs and targets with unlabeled data 

through MLM tasks.However, these unlabeled data are only used for training with pre-

trained models, and have limited effect on the generalization of the model. 

In summary, the existing studies have not made full use of the unlabeled data and 

dissimilar labeled data in the vast chemical space, in view of this situation, our model 

proposes the idea of joint representation learning and dynamic pseudo-label optimiza-

tion, which can make full use of the data with different unlabeled data and labeling 

systems, which has not been mentioned in the current research. 

3 Methods 

To efficiently optimize protein and molecule representations, and to take advantage of 

the huge amount of unlabeled data, we propose our semi-supervised multi-task DTA 

prediction architecture, MTS-DTA, which has a rough structure as shown in Figure 1. 
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Fig. 1. The overall architecture of the MTS-DTA. (A) Enter the standardization module, where 

we convert the data for drugs and proteins into a format that we can use. (B) and (C) Molecular 

and protein encoder modules, we use two Transformer to encode molecules and proteins sepa-

rately to extract features. (D) Cross-attention module, we utilize three different cross-attention 

mechanisms to generate a joint characterization of drug-target pairs. (E) Joint optimization 

module, where we will jointly optimize the characterization task and the prediction task. (F) 

Pseudo-label data generation module, where we generate high-confidence pseudo-label data ac-

cording to certain rules and re-iterate the model. 

In terms of overall structure, our model architecture can be divided into three major 

parts, namely the Generation of drug-target pair joint characterization, the multi-task 

joint optimization, and the High-quality pseudo-label data generation. This division is 

described in more detail below. 

3.1 Generation of drug-target pair combination characterization 

The data in this study consists of three parts: labeled drug-target pair data, unpaired 

drug molecule data, and unpaired protein sequences. After the unpaired data are gener-

ated by embedding, the potential drug-target pairs are expanded by using a combination 

strategy of molecule and protein, and since most of the combinations are low-activity 

pairings, the design can reduce the interference of pseudo-label noise by enhancing the 

data differentiation. 

Input Normalization  

To achieve efficient characterization of protein sequences and drug molecules, a dif-

ferentiated data cleaning and embedding framework was designed in this study. 

For the protein FASTA sequence, the description line (starting with >) and non-

standard amino acid characters were removed first, and only 20 standard amino acids 

were retained. Then, the sequence was truncated to a maximum length of 1,024 



 

characters, and the ultra-long sequence (accounting for <5%) was encoded in a sliding 

window segment to balance the computing resource consumption. Finally, a single-

letter token sequence (such as "M A G V") is generated through character-level seg-

mentation, which preserves the natural order of amino acids and adds vacancies to assist 

in parsing.  

For drug molecule SMILES, RDKit-based chemical compliance verification 

screened legal molecules, SMILES was broken down into atomic, bond, and ring mark-

ers (e.g., "Cl C = O") by regularization tokenization strategy, and the maximum length 

was limited to 512 tokens, and short sequences were aligned by filler characters.  

Molecule Encoder and Protein Encoder 

In the embedding generation stage, two independent RoBERTa-base [23] encoders 

were used in this study. The input layer maps tokens to 768-dimensional space and 

constructs learnable position coding matrices for adapted proteins (up to 1,024) and 

molecules (up to 512), respectively. Through dynamic masking language modeling 

training (masking 15% of the input token), the model learns biological and chemical 

semantic features. During feature extraction, a 768-dimensional global sequence em-

bedding vector is generated by time-series average pooling based on the token-level 

latent state output by the last layer of Transformer. The framework optimizes compu-

tational efficiency through differentiated sequence truncation strategies (sliding win-

dow vs. fixed length), while enhancing data robustness with a large amount of unla-

beled data..  

For the sake of later description, we define 𝐷 as a sequence of a tagged drug mole-

cule, then |𝐷| is the length of its sequence, in the same way, 𝑀 represents an untagged 

drug molecule, 𝑇 denotes a tagged protein target sequence, and 𝑃 denotes an untagged 

protein sequence.Then we named the two encoders used for molecular code generation 

and protein code generation, respectively 𝐸𝑚𝑜𝑙  and 𝐸𝑝𝑟𝑜𝑡。We mark the beginning of 

the division sequence with [cls], so we get 𝐻𝐷 , 𝐻𝑀 , 𝐻𝑇 , 𝐻𝑃 four groups of hidden states 

which are shown in equations 1,2,3,4. 

 𝐻𝐷 = {ℎ[𝑐𝑙𝑠]𝐷
, {ℎ𝑑𝑖

}
𝑖=1

|𝐷|
} (1) 

 𝐻𝑀 = {ℎ[𝑐𝑙𝑠]𝑀
, {ℎ𝑚𝑖

}
𝑖=1

|𝑀|
} (2) 

 𝐻𝑇 = {ℎ[𝑐𝑙𝑠] 𝑇
, {ℎ𝑝𝑖

}
𝑖=1

|𝑇|
} (3) 

 𝐻𝑃 = {ℎ[𝑐𝑙𝑠]𝑃
, {ℎ𝑝𝑖

}
𝑖=1

|𝑃|
} (4) 

Where ℎ[𝑐𝑙𝑠] represents the beginning mask of each embedding and ℎ𝑖 represents the 

bit of the embedding. 

Cross-attention mechanisms 
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The core of the DTA prediction task is to predict binding affinity by modeling the 

interaction between drug and target, and the key is to efficiently characterize the inter-

action process of drug molecule intercalation and target protein intercalation. The tra-

ditional method uses a pairwise interaction mechanism to generate an interaction matrix 

by traversing all the positions of the two sequences. While this fully ligated approach 

covers potential sites, it is computationally expensive when dealing with long se-

quences. 

Since the actual drug-target effect usually occurs only in the observation of a few 

key groups (the rest of the sequences are mostly responsible for structural functions), 

we introduce a cross-attention module to replace the traditional mechanism. By focus-

ing on key interaction areas, the attention mechanism significantly reduces computa-

tional complexity while maintaining the prediction effect. 

In order to obtain a more comprehensive interactive information, we use three dif-

ferent cross-attention modes [24] to focus on different drug-target forms of action, 

which correspond to the drug-to-target mode of action, the target-to-drug mode of ac-

tion, and the overall binding mode of the target-drug conjugate. First we perform a 

cross-attention mechanism between 𝐻𝐷. 𝑜𝑟, 𝐻𝑀.  And 𝐻𝑇 . 𝑜𝑟, 𝐻𝑃.  respectively, where 

Query is ℎ[𝑐𝑙𝑠]𝐷
(ℎ[𝑐𝑙𝑠]𝑀

)  or ℎ[𝑐𝑙𝑠] 𝑇
(ℎ[𝑐𝑙𝑠]𝑃

)，and the Key & Value are 𝐻𝑇(𝐻𝑃) or 

𝐻𝐷(𝐻𝑀)，Taking the combination of 𝐷 and 𝑇 as an example, we can get the results in 

equations 5 and 6. 

 ℎ𝐷→𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
(ℎ[𝑐𝑙𝑠]𝐷

𝑊1)(𝐻𝑇𝑊2)𝑇

√𝑑
)(𝐻𝑇𝑊3) (5) 

 ℎ𝑇→𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
(ℎ[𝑐𝑙𝑠]𝑇

𝑊4)(𝐻𝐷𝑊5)𝑇

√𝑑
)(𝐻𝐷𝑊6) (6) 

where d is the dimension of the hidden layer, and 𝑊𝑠 . is the parameter matrix.  

In addition to these two, the third type of cross-attention is actually achieved through 

self-attention, and we hope that this characterization focuses on the local interaction 

between the protein and the drug. Therefore, we stitch together the representations of 

drugs and proteins to achieve a third cross-attention mechanism through sparse self-

attention, and each token only focuses on k positions before and after, so as to reduce 

computational complexity and supplement global cross-attention. 

Finally, the weight matrix of the cross-attention mechanism is transformed into a 

diagonal matrix to realize the transformation of the three cross-attention mechanisms 

into the same output dimension, and the final encoder output is obtained through the 

weighted summation mechanism, as shown in Equation 7. 

 𝐻𝑓𝑖𝑛𝑎𝑙 =  𝛼 ∙ ℎ𝑚𝑜𝑙→𝑝𝑟𝑜𝑡 +  𝛽 ∙ ℎ𝑝𝑟𝑜𝑡→𝑚𝑜𝑙 + 𝛾 ∙ 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛 (7) 

where the weights 𝛼，𝛽，𝛾 are learnable parameters. 

For different prediction heads, we will initialize with different gating parameters, 

and iterate the gating parameters with different components of the loss function to 

achieve the differentiation of the encoder output. 



 

3.2 Multi-task joint optimization 

The data with the largest stock of DTA label data are three kinds of labels 

𝑘𝑖 ,  𝑘𝑑  𝑎𝑛𝑑 𝐼𝐶50, and considering the problem of data volume, we choose the regres-

sion tasks of these three labels as our three main prediction tasks. At the same time, 

considering that the quality of representation in deep learning is often directly related 

to the effect of downstream tasks, we also regard the loss of representation tasks as part 

of our multi-task joint optimization.  

After obtaining the encoder output suitable for subsequent regression tasks, we need 

to use three convolutional neural networks (CNNs) as the regression prediction heads, 

and at the same time, the three prediction tasks of 𝑘𝑖 ,  𝑘𝑑  𝑎𝑛𝑑 𝐼𝐶50 are jointly opti-

mized with the representation tasks of MLM to obtain representations that are more 

suitable for downstream tasks, so as to improve the prediction effect of the model. 

The joint optimization of the four tasks is realized by the weighted sum of the loss 

function, and the prediction task is the mean square error (MSE) due to the character-

istics of the regression task, and its calculation method is as follows in Equation 8. 

 𝐿𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1  (8) 

 In order to make the downstream prediction task more compatible with the upstream 

representation task, we also used the MLM task [25] to optimize the representation 

model on the basis of using the existing pre-trained model. For the sequence of the drug 

molecule and the sequence of the protein, we randomly replace some Tokens according 

to Bert's idea, by replacing them with some proportions of [MASK]Token, and then 

trying to restore the original sequence by the mask sequence, we can get a loss of pre-

dicted original sequence from the mask sequence, as shown in Equation 9. 

 𝐿𝑀𝐿𝑀
𝐷 = −

1

MD
∑ log 𝑃(𝑑𝑘||𝐷′), 𝐿𝑀𝐿𝑀

𝑇𝑀𝐷
𝑘=1 = −

1

MT
∑ log 𝑃(𝑡𝑘||𝑇′)𝑀𝑇

𝑘=1   (9) 

where 𝑑𝑘  𝑎𝑛𝑑 𝑡𝑘 are the mask tokens,𝑀𝐷 and 𝑀𝑇 are the number of mask markers. 

This loss measures the ability to predict the replaced part from the context of the se-

quence, i.e., the representation of the encoder. 

During the training process, the total loss function is the weighted sum of the loss 

function of the three prediction tasks and the loss function of the MLM task [26], as 

shown in Equation 10. 

 𝐿𝑡𝑜𝑡𝑎𝑙 =  ∑ (
1

2𝜎𝑖
2 𝐿𝑀𝑆𝐸𝑖

+ log 𝜎𝑖) + (
1

2𝜎𝑀𝐿𝑀
2 𝐿𝑀𝐿𝑀 + log 𝜎𝑀𝐿𝑀)3

𝑖=1  (10) 

where 𝜎 is the task-specific noise figure, which is the learnable parameter.  

Assuming that the prediction error of each task obeys a Gaussian distribution, the 

uncertainty of the task can be measured by its noise figure (variance 𝜎2)[27], and the 

advantage of this dynamic weight adjustment method is that if the loss of a task in-

creases, the noise 𝜎2 will increase significantly, thus reducing the weight of the loss 

function, which means that the model considers the task unreliable. With this approach, 

the weight distribution of the loss function can be dynamically adjusted to quickly adapt 

to the uncertainty of the task. 
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Considering that there is no artificial standard for MLM tasks, and the magnitude of 

loss is often greater than that of supervised regression tasks, we set its initial loss func-

tion to a larger value when the weights are initialized, so as to reduce its initial weights 

and prevent them from dominating the training. At the same time, considering that the 

joint optimization of MLM tasks is only to enhance the encoder representation ability, 

not to directly optimize downstream tasks, we also set a lower learning rate for MLM 

tasks to stabilize training. 

To avoid the conflict between the optimization direction of the MLM task and the 

downstream task, we also set the loss truncation, that is, when the MLM loss is lower 

than the threshold, the gradient backhaul is prevented. 

Combined with the above strategies, we can obtain three well-trained DTA predic-

tion models at the end of this training phase for subsequent pseudo-label generation 

tasks. 

3.3 Dynamic semi-supervised training 

After obtaining three relatively well-trained prediction models for predicting 𝑘𝑖，
𝑘𝑑，𝐼𝐶50, we can remove the votes of low-confidence data according to the relation-

ship between the three indicators according to the idea of boosting. At the same time, 

we will also use labeled data to control the generation progress of pseudo-labeled data, 

so as to avoid a large amount of untrustworthy noise data entering the training set and 

worsening the effect of the model. 

Using three prediction models, we can make predictions on the prepared data, in 

order to facilitate progress control, we randomly incorporate labeled data into the unla-

beled data at a ratio of 1:10, and predict batch by batch, when the deviation between 

the predicted result and the true value of the labeled data is greater than three percent 

of the set threshold, the batch of data is considered invalid. 

At the same time, using the typical values of the 𝑘𝑖，𝑘𝑑，𝐼𝐶50 data, we can also 

remove drug-target pairs containing outliers from the output of the three predictors, so 

as to avoid introducing excessive noise into subsequent training. 

After obtaining enough pseudo-label data, we repeat the above process until the met-

rics of the prediction model reach a desired goal, and with this method, we obtain a 

DTA prediction model that is better than the current baseline. 

The overall structure of this part is shown in Algorithm 1. 



 

 

4 Experiment 

4.1 Datasets 

The datasets we used for training and evaluation were BindingDB[6], Davis[9], and 

KIBA[10], and after cleaning the outlier samples and eliminating the duplicate samples, 

we obtained the following benchmark dataset, as shown in Table 1. 
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Table 1. Overview of the preprocessed dataset 

Datasets Drugs Proteins Interactions 

BindingDB 255328 2782 376751 

Davis 68 361 24548 

KIBA 2052 229 117178 

 

Considering that only Binding has complete 𝑘𝑖，𝑘𝑑  and 𝐼𝐶50 indicators in the three 

datasets, KIBA only has its calculated KIBA score, and DAVIS as a dataset for studying 

kinase mechanisms has only more  𝑘𝑑 data. To verify the effectiveness of our MTS-

DTA framework, we first trained it on BindingDB and compared it with other models. 

4.2 Evaluate metrics and models for comparison 

For the regression task, we used concordance index (CI), MSE, pearson correlation 

coefficient (PC) and regression toward the mean (𝑟𝑚
2 ) to evaluate the performance of 

our model.  
CI is an evaluation metric which reflects the correctness of the result, as we showed 

in Equation 11. 

 CI=∑ ℎ(𝑏𝑖 − 𝑏𝑗)𝛿𝑗>𝛿𝑖
 

 (11) 

Where ℎ(𝑥) = {
0      𝑥 < 0

0.5      𝑥 = 0
1      𝑥 > 0

. 

MSE is a commonly used index to measure error. Given N samples with correspond-

ing prediction value yi and ground truth value 𝑦𝑖̂, as we showed in Equation 12. 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1    (12) 

𝑟𝑚
2  is a metric evaluating the external predictive performance. A model was regarded 

acceptable if and only if 𝑟𝑚
2  ≥ 0.5. 𝑟𝑚

2  is defined as Equation 13. 

 𝑟𝑚
2 = 𝑟2 ∗ (1 − √𝑟2 − 𝑟0

2) (13) 

where 𝑟 denotes the squared correlation coefficients between the observed and pre-

dicted values with intercepts and 𝑟0 is the coefficient without intercepts. 

The Pearson correlation coefficient between two variables is defined as the quotient 

of the covariance and standard deviation between the two variables, as shown in Equa-

tion 14.  

 𝑃𝑥,𝑦 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
 (14) 

https://baike.baidu.com/item/%E5%8D%8F%E6%96%B9%E5%B7%AE/0?fromModule=lemma_inlink
https://baike.baidu.com/item/%E5%8D%8F%E6%96%B9%E5%B7%AE/0?fromModule=lemma_inlink
https://baike.baidu.com/item/%E6%A0%87%E5%87%86%E5%B7%AE/0?fromModule=lemma_inlink


 

We used the following baseline model to compare with our model: KronRLS, Sim-

Boost, DeepDTA, WideDTA, SimCNN-DTA, GraphDTA, AttentionDTA, TransVAE-

DTA. Information about them is described in the section on related work. 

4.3 Experimental results 

Considering that some of the models used for comparison are missing the values of 

some metrics, we choose different metrics depending on the data set and the model. 

Table 2. Performance of our model and baseline methods on the IC50 part of the BindingDB 

dataset. 

Dataset Model MSE↓ PC↑ 

BindingDB KronRLS[13] 0.774 0.760 

 SimBoost[14] 0.662 0.783 

 DeepDTA[7] 0.525 0.848 

 WideDTA[15] 0.519 0.858 

 SimCNN-DTA[16] 0.562 0.860 

 GraphDTA[17] 0.574 0.817 

 AttentionDTA[19] 0.492 0.878 

 TransVAE-DTA[21] 0.453 0.882 

 Our Model 0.412 0.896 

Table 3. Performance of our model and baseline methods on the 𝑘𝑖 part of the BindingDB da-

taset. 

Dataset Model MSE↓ PC↑ 

BindingDB KronRLS 0.814 0.760 

 SimBoost 0.782 0.783 

 DeepDTA - - 

 WideDTA - - 

 SimCNN-DTA - - 

 GraphDTA, 0.574 0.817 

 AttentionDTA 0.492 0.878 

 TransVAE-DTA - - 

 Our Model 0.489 0.889 

As can be seen from Tables 2 and 3, our model is significantly better than the other 

models used for comparison on the BindingDB dataset. 

On the Davis and KIBA datasets, since only one or two labels are used for fitting, 

we modified both the multi-task training part and the semi-supervised voting part of the 

model to fit the dataset and compare it with other models under the same conditions, 

and the experimental results are shown in Tables 4 and 5. 
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Table 4. Performance of our model and baseline methods on the Davis dataset. 

Dataset Model MSE↓ CI↑ 𝑟𝑚
2↑ 

Davis KronRLS 0.392 0.869 0.512 

 DeepDTA 0.386 0.846 0.533 

 WideDTA 0.394 0.853 0.497 

 GraphDTA, 0.301 0.858 - 

 AttentionDTA 0.399 0.865 - 

 TransVAE-DTA 0.333 0.868 0.571 

 AttentionMGT-DTA 0.308 0.872 0.584 

 Our Model 0.317 0.877 0.592 

Table 5. Performance of our model and baseline methods on the KIBA dataset. 

Dataset Model MSE↓ CI↑ 𝑟𝑚
2↑ 

KIBA KronRLS 0.262 0.806 0.567 

 DeepDTA 0.472 0.782 0.521 

 WideDTA 0.425 0.791 0.525 

 GraphDTA, 0.482 0.780 - 

 AttentionDTA 0.518 0.797 - 

 TransVAE-DTA 0.278 0.822 0.632 

 AttentionMGT-DTA 0.314 0.819 0.628 

 Our Model 0.257 0.828 0.626 

4.4 Analysis of experimental results 

From the experimental results in the previous part, we can see that on the BindingDB 

dataset, our model has achieved a significant advantage over other models because it 

can use multi-task joint optimization and multi-task voting semi-supervised learning to 

obtain more information, while on the other two datasets, due to its relatively few fitting 

labels, our multi-task architecture is difficult to play an advantage, and our model is 

slightly behind those models that pay attention to representation in some evaluation 

indicators. 

Considering that the Davis dataset contains only 68 compounds and 361 protein se-

quences, the evaluation results on the Davis dataset can effectively reflect the general-

ization performance of the model in the case of small data volume. Our model is only 

slightly lower than the best model on MSE metrics, leading both CI and 𝑟𝑚
2 , which 

shows that our architecture can alleviate the problem of insufficient generalization 

caused by data scarcity. In our analysis, the main reason why our model on Davis did 

not achieve optimal in all the selected metrics is that Davis is a small dataset with only 

more than 20,000 drug-target affinity data and does not constitute the multitasking 

mode required for our core architecture. 



 

From the experimental results, it can be concluded that the MTS-DTA framework 

we constructed can effectively improve the accuracy of model prediction with sufficient 

multi-task data, and we will conduct a series of ablation experiments to verify the ef-

fectiveness and value of each module. 

4.5 Ablation experiments 

In order to further study the impact of multi-task joint optimization and pseudo-label 

data participation training on the model performance, we conducted a series of ablation 

experiments on the BindingDB dataset. 

First, we used two sets of controlled experiments to verify the effects of three inde-

pendent cross-attention mechanisms and MLM task loss on the model, and the experi-

mental results are shown in Table 6. 

Table 6. Performance of each version of the model on BindingDB dataset 

Dataset Model MSE↓ PC↑ 

IC50 Model with only Self-Attention 0.522 0.839 

IC50 Model without Loss of MLM 0.584 0.807 

IC50 Model normal 0.412 0.896 

From the results of the ablation experiment, it can be seen that our three different 

cross-attention mechanisms can effectively improve the effect of the model, and in the 

absence of this mechanism, only self-attention is retained, and the MSE and PC of the 

model are not as good as the original model. At the same time, the loss of MLM task 

has a greater impact on the model, and the effect of the model is greatly reduced in the 

absence of MLM loss, which is even similar to the machine learning method, indicating 

that the reasonable optimization of the characterization task has an important impact on 

the downstream task. 

At the same time, since the semi-supervised training process of our model will add 

pseudo-label data to the training set, we also designed experiments to study the effect 

of the number of pseudo-labeled data on the model indicators, and the specific results 

are shown in Table 7. 

Table 7. Performance of each proportion of data on BindingDB dataset 

Dataset The proportion of labeled 

data in the training set 

MSE↓ PC↑ 

IC50 20% 0.449 0.877 

IC50 10% 0.412 0.896 

IC50 5% 0.407 0.892 

The trend is shown in the figure 2. 
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Fig. 2. The relationship between the proportion of labeled data in the training set and the model 

performance 

With the increase of the proportion of pseudo-label data, the performance of the 

model also improves to a certain extent, but when too much pseudo-label data is added, 

some indicators of the model also decrease to a certain extent. This phenomenon shows 

that the data generated by our pseudo-label data production mechanism is effective, 

which can introduce more hidden information into the learning of the model, but at the 

same time, too much pseudo-label data may amplify some systematic errors and lead 

to the decline of the model's effectiveness. The introduction of too much pseudo-label 

data into the training will also have a greater demand for computing resources, consid-

ering the efficiency and cost, our final model is a version with a 10% incorporation 

ratio. 

5 Conclusions 

Compared with the existing model, our MTS-DTA can use the unlabeled data with 

higher efficiency, thereby improving the model performance, and showing a significant 

improvement in the DTA prediction task. Through multi-task joint optimization, we 

can unify scattered data labels and uncover hidden information. In addition, utilizing a 

dynamic semi-supervised learning training framework, we are able to generate high-

confidence data and leverage it into training.  

The results show that MTS-DTA is significantly better than the existing baseline 

model in low data scenarios and new target prediction, which greatly improves the ac-

curacy of DTA prediction. For example, our model achieves a significant improvement 

of 4% on the IC50 dataset on BindingDB compared to the comparison baseline method. 

In general, the framework not only establishes the utilization paradigm of unlabeled 

biological data but also verifies the feasibility of multi-task collaborative optimization.  

The problem of overfitting and insufficient generalization performance caused by the 

scarcity of annotated data is greatly optimized. 



 

However, the current dataset only has the corresponding conditions for BindingDB, 

and the task composition may need to be optimized in the future, to improve the effect 

of our model in the case of a single task. 
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