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Abstract. With the rapid proliferation of IoT devices, network security threats 

have intensified. Federated Learning (FL) has been applied to anomaly-based 

Network Intrusion Detection Systems (NIDS) to identify malicious traffic and 

mitigate risks. However, traditional FL struggles to handle Non-IID data, and 

while Personalized FL (PFL) improves adaptability, it remains insufficient in ad-

dressing the dynamic nature of time-series data. To address these issues, this pa-

per proposed an IoT Intrusion Detection System based on Federated Meta-Learn-

ing and Adaptive Temporal Clustering (FMLTC-IDS). The method combines 

Model-Agnostic Meta-Learning (MAML) to optimize the initialization of the 

global model, enhancing personalized adaptation. It also introduces adaptive 

batch adjustment and gradient-weighted sampling strategies to improve local 

training efficiency. Additionally, Principal Component Analysis (PCA) is used 

for dimensionality reduction, and a time-series-based dynamic weighted DBA-

K-Means clustering method is employed to optimize model clustering quality, 

enhancing the system's ability to handle spatiotemporal non-IID data. Experi-

mental results show that FMLTC-IDS achieves excellent performance on 

CICIDS2017, BoT-IoT, and real IoT traffic datasets, outperforming existing 

methods (e.g., Fed-ANIDS, SSFL) by more accurately adapting to data hetero-

geneity, improving Accuracy, Recall, and F1-score, and accelerating model con-

vergence. Furthermore, ablation experiments validate the effectiveness of dy-

namic batch adjustment, PCA dimensionality reduction, and time-series cluster-

ing strategies, demonstrating significant advantages in enhancing personalized 

detection capabilities and overall detection accuracy for FMLTC-IDS. 

Keywords: IoT Security, Personalized Intrusion Detection, Federated Learning, 

spatial-temporal non-IID problem. 

1 Introduction 

The Internet of Things (IoT) is composed of information sensing devices, communica-

tion technologies, and intelligent computing systems, enabling deep integration be-

tween the physical and digital worlds through sensors, radio-frequency identification 

(RFID), and smart terminals. By facilitating extensive interconnectivity, IoT enables 

real-time communication and collaborative computing between devices, driving digital 
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transformation in various domains such as smart homes and Industry 4.0 [1,2]. Within 

the IoT ecosystem, heterogeneous devices generate multimodal data streams (e.g., en-

vironmental parameters, device states, and user behaviors), which are integrated by 

edge computing nodes to form valuable data assets. However, the traditional centralized 

data processing paradigm faces significant security challenges during data transmis-

sion: data aggregation points may become attack targets, privacy breaches are exacer-

bated by ambiguous data-sharing boundaries, and unclear data ownership complicates 

regulatory compliance. 

To address these challenges, Federated Learning (FL) has emerged as a core tech-

nology in privacy-preserving computing. FL is an advanced and secure distributed ma-

chine learning technique that enables multiple clients to train models locally without 

uploading raw data to a central server [3]. Under the FL framework, clients share only 

model parameter updates, while a central server aggregates these updates to optimize 

the global model. However, in real-world IoT systems, client data is often non-inde-

pendently and identically distributed (non-IID). This Non-IID nature primarily stems 

from multiple factors, including differences in device deployment environments, user 

behavior patterns, and data collection times. For example, security checkpoint cameras 

in airports monitor both passengers and luggage inspections, causing significant traffic 

fluctuations, while boarding gate cameras primarily track passenger queues, resulting 

in more stable data. 

Since the introduction of federated learning, addressing the non-IID data distribution 

problem has remained one of the core challenges and a fundamental characteristic of 

real-world FL scenarios. As non-IID issues arise due to heterogeneous client data, one 

potential solution is to personalize models for each client. Meta-learning is a powerful 

approach to achieving personalization, as it optimizes the global model to better adapt 

to diverse client data distributions, enabling fast adaptation across heterogeneous envi-

ronments [4]. 

Moreover, IoT networks exhibit non-IID characteristics not only in the spatial do-

main (i.e., data across different clients) but also in the temporal domain. In the spatial 

domain, variations in network environments, device types, and traffic patterns across 

clients lead to significant distribution shifts. In the temporal domain, even for the same 

device, network dynamics (e.g., signal interference, bandwidth contention) and TCP 

retransmission mechanisms cause fluctuations in traffic patterns over time. 

Furthermore, IoT intrusion detection systems (IDSs) often have stringent latency re-

quirements. For example, in smart grids, a detection delay exceeding 10ms can lead to 

severe consequences, whereas maintaining a response time within 5ms significantly 

enhances security [5]. However, traditional Clustered Federated Learning (CFL) ap-

proaches struggle to meet the real-time demands of IoT environments due to their high 

computational and communication overhead. Specifically, CFL requires transmitting 

full high-dimensional model parameters (e.g., PointNet++), making a single clustering 

operation computationally expensive and inefficient for low-latency IoT applications. 

To address the above issues, we propose an innovative Federated Meta-Learning and 

Adaptive Temporal Clustering framework (FMLTC-IDS). This approach integrates 

Federated Learning (FL), Meta-Learning, and Unsupervised Learning techniques to 
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effectively handle cross-device and cross-temporal Non-IID data while preserving data 

privacy. 

Our key contributions are as follows: 

⚫ Global Generalization and Edge Personalization: By leveraging Model-Agnostic 

Meta-Learning (MAML) to optimize the global model initialization, FMLTC-IDS 

can rapidly adapt to different edge device data distributions, improving personal-

ized detection accuracy. Additionally, we introduce adaptive batch adjustments 

and gradient-weighted sampling strategies to dynamically optimize local training, 

reducing communication overhead and accelerating model convergence. 

⚫ Spatiotemporal Non-IID Data Handling: We integrate Principal Component Anal-

ysis (PCA) to remove redundant information, enhancing clustering efficiency. 

Furthermore, we propose a time-series-based dynamic weighted DBA-K-Means 

clustering method to effectively group clients, optimizing personalized model ag-

gregation and improving the adaptability and generalization of the global model. 

⚫ Experimental Validation and Performance Superiority: Extensive experiments on 

CICIDS2017 [6], BoT-IoT [7], and real IoT traffic datasets demonstrate that 

FMLTC-IDS consistently outperforms state-of-the-art methods (e.g., FedAvg [8], 

FedProx [9], Fed-ANIDS [10], and SSFL [11]) in highly heterogeneous environ-

ments in terms of accuracy, recall, and F1-score, while achieving faster conver-

gence with fewer communication rounds. Ablation studies further validate the ef-

fectiveness of adaptive batch adjustments, PCA-based dimensionality reduction, 

and time-series clustering strategies. 

2 Related Work 

In recent years, Federated Learning (FL) has gained widespread attention in the field 

of Intrusion Detection Systems (IDS), as researchers aim to improve the generalization 

ability and robustness of detection models while ensuring data privacy. Mothukuri et 

al. [12] proposed a distributed FL architecture, utilizing GRU networks for time-series 

feature modeling in IoT networks and combining a random forest decision mechanism 

for multi-source information fusion to improve traffic classification accuracy. Tahir et 

al. [13] designed a decentralized FL framework with a hierarchical attention aggrega-

tion mechanism, achieving breakthrough results in false data injection detection tasks 

within the IEEE 39-node power system. Aouedi et al. [14] introduced a semi-supervised 

autoencoder (AE)-based FL scheme, which effectively extracts intrusion patterns and 

improves detection accuracy under low-labeled data conditions through distributed fea-

ture reconstruction. Chen et al. [15] proposed the FDAGMM model, optimizing 

DAGMM for detection capabilities in small sample environments by using deep auto-

encoders (DAE) and Gaussian Mixture Models (GMM), enhancing adaptability for 

anomaly traffic detection. Zhao et al. [16] introduced a FL and transfer learning-based 

network anomaly detection method to address the scarcity of training data in network 

anomaly detection. Their model achieved a 97.23% detection success rate for vulnera-

bility attacks on the UNSW-NB15 dataset. 



FL protects privacy and reduces communication costs through local training and pa-

rameter sharing. However, statistical heterogeneity limits the adaptability of global 

models. Personalized Federated Learning (PFL), combining global sharing with local 

optimization, allows IoT devices to adjust models to perform better in Non-IID envi-

ronments. Lu et al. [17] proposed a self-labeling mechanism to address the labeling 

dependency problem in IoT intrusion detection for PFL, significantly reducing com-

munication overhead and achieving traditional PFL detection performance without 

manual labeling. He et al. [18] introduced the FedLGS framework, which combines 

gradient masking and personalized model updates to solve the client drift problem in 

Non-IID data by dynamically allocating weights, ensuring efficient privacy protection. 

Deng et al. [19] presented the FedASA framework, which achieves high accuracy, low 

communication cost, and fairness in cross-location resource-constrained scenarios by 

adaptive architecture partitioning, modular aggregation, and mixed label optimization, 

providing efficient solutions for industrial IoT. Zhang et al. [20] proposed a model-

layered and local perturbation dual mechanism, dividing the model into global and local 

layers, and introduced three types of gradient perturbations (zeroing gradients, random 

noise, and noise addition) to enhance defensive flexibility and improve the security and 

personalized adaptability of federated learning. This paper adopts meta-learning to im-

plement personalized federated learning, enabling the model to quickly adapt to new 

tasks based on existing knowledge, enhancing learning ability and adaptability, while 

maintaining flexibility and accuracy in heterogeneous environments. 

3 The Proposed Method 

3.1 FMLTC-IDS Workflow 

The proposed FMLTC-IDS framework consists of two main entities: edge nodes and 

the server, integrating federated learning (FL), meta-learning, and variational autoen-

coder (VAE) [21]to achieve efficient and personalized intrusion detection. 

Edge Nodes: Responsible for local data training, gradient-adaptive sampling, and 

personalized optimization, and upload model parameters for global aggregation. 

Server: Performs global model aggregation, feature extraction, time-series cluster-

ing, and dynamic adjustments, optimizing the personalized model update strategy. 

The workflow of the FMLTC-IDS framework can be divided into four main stages: 

(1) Local Dataset Creation: Collecting data using a layered simulation experiment 

platform and balancing low-traffic periods through ADWIN-based dynamic time 

window segmentation and SMOTE-TS, forming a series of temporal evolution 

subsets {D1, …, D10}. 

(2) System Initialization: The central server trains the base model 𝑀𝑔 using public 

datasets and optimizes it via the MAML framework, ensuring that the initial pa-

rameters 𝑊0have strong generalization capabilities. 

(3) Feature Extraction and Dimensionality Reduction: The server collects the final 

layer parameters from each device to construct a parameter matrix, applies PCA 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

for dimensionality reduction to extract key features, and utilizes sliding window 

analysis to track feature evolution trends, optimizing subsequent clustering. 

(4) Time-Series-Based Clustering: Using the features after PCA dimensionality reduc-

tion, a dynamically weighted DBA-optimized K-Means clustering method is em-

ployed to determine the optimal number of clusters using the elbow method. Fe-

dAvg is then used for model aggregation within each cluster. 

During the FL iterations, IoT devices and the server continuously interact, with de-

vices adjusting their models locally while the server aggregates updates to form a global 

model. By integrating diverse data from various clients, the global model enhances 

generalization. The server dynamically adjusts feature allocation and clustering, ensur-

ing personalized optimization and ultimately generating a stable and accurate intrusion 

detection model. The FMLTC-IDS framework is shown in Fig. 1. 
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Fig. 1. Overall Flowchart of FMLTC-IDS 

3.2 Personalized Federated Meta-Learning in Edge Nodes 

We draw inspiration from MAML and train a base model 𝑀𝑔 on the central server 

using a public dataset, optimizing the initial parameters 𝑊0 to provide a generalized 

initialization. This enables the global model to quickly adapt to local tasks on different 

edge devices. 

In federated meta-learning, fixed batch sizes can strain resource-limited devices or 

underutilize those with little data. To overcome this, we propose a gradient-based adap-

tive sampling strategy that adjusts batch size dynamically based on each device's com-

putational capacity and data volume, improving training efficiency and personalization. 



We dynamically adjust the batch size using device-specific factors such as compu-

tational capacity (GPU/CPU specifications, memory) and data volume. The formula is 

as follows: 

  (1) 

Where: Bi is the batch size used by device 𝑖. 𝐵min and 𝐵max are the predefined mini-

mum and maximum batch sizes (e.g., 16 and 128). ∣Di∣ represents the local dataset 

size of device 𝑖. c is a control factor to prevent excessively large batch sizes. Ri denotes 

the computational resource score of the device (e.g., GPU computing power) with a 

range of 0<𝑅𝑖≤10 

This mechanism ensures that devices with higher computational capacity and larger 

datasets can utilize larger batch sizes for training, while resource-constrained or data-

limited devices adopt smaller batch sizes. This improves overall training efficiency and 

reduces computational burden. 

To further optimize the training process, we introduce Gradient-Based Weighted 

Sampling, which prioritizes samples that contribute more significantly to model up-

dates. The specific steps are as follows: 

Step1: For model parameters 𝑊 and loss function 𝐿, compute the gradient for each 

sample 𝑥: 

  (2) 

Where 𝑔(𝑥) represents the L2 norm of the gradient for sample 𝑥, measuring its impact 

on model updates. 

Step2: Compute the gradient norm for all samples and sort them in descending order, 

prioritizing samples with larger gradients: 

  (3) 

Normalize the gradient norms of all samples to ensure their sum equals 1: 

  (4) 

Where 𝑝𝑖 represents the sampling probability of sample 𝑖; samples with larger gra-

dients have a higher probability of being selected. 

Step3: Based on the computed batch size, perform weighted random sampling using 

a multinomial distribution: 

  (5) 

Where 𝑆 is the selected subset of data samples, 𝐵𝑖 is the adaptive batch size, and 𝑝(𝑥) 

represents the sampling probability of each sample. 
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Through this approach, we ensure that the batch size adapts to the device's compu-

tational capacity while prioritizing samples that contribute more significantly to the loss 

function, thereby accelerating model convergence. 

To further enhance convergence efficiency and stability, we employ the Adam opti-

mizer for local gradient updates and incorporate a learning rate decay strategy. As train-

ing progresses, the learning rate gradually decreases to prevent oscillations, allowing 

the model to converge more smoothly. 

After local updates, devices upload their results to the server, where the global model 

is aggregated and optimized. Through multiple training rounds, each device fine-tunes 

the model based on its local data, forming a personalized model that better adapts to the 

local data distribution. 

3.3 Feature Extraction Method 

The server extracts key features by analyzing the model updates uploaded by each client 

to gain a more comprehensive understanding of the differences between clients and 

their data distribution characteristics. Specifically, the server focuses on the parameters 

of the final layer (i.e., the output layer) in client 𝑗's model. The weights in this layer 

directly reflect the relationship between the neurons and the output categories. 

Assume that the connection weight between the 𝑖-th neuron and the 𝑟-th output unit 

in the final layer of client 𝑗's model is W i,r
 j

.The server collects the final layer parameters 

from all clients and constructs the parameters for each client 𝑗 into the following matrix:  

  (6) 

Where: M represents the number of neurons in the final layer, R represents the num-

ber of output classes, 𝑊𝑗 records the weight parameters of the final layer for client 𝑗. 
By constructing such matrices, the server can systematically gather features from 

each client, laying the groundwork for subsequent feature processing and dimensional-

ity reduction. However, since 𝑊𝑗 has high dimensionality, using it directly may lead to 

significant computational overhead and be susceptible to noise. Therefore, on the server 

side, we perform Principal Component Analysis (PCA) on the collected client parame-

ter matrices to extract more representative features. 

To reduce data redundancy and improve computational efficiency, the server first 

computes the covariance matrix 𝐶: 

  (7) 

Where 𝑊̅ represents the mean of the parameters across all clients. Next, the covari-

ance matrix 𝐶 is subjected to eigenvalue decomposition, and the principal components 



that together explain 95% of the cumulative variance are selected to form the dimen-

sionality reduction matrix 𝑃: 

  (8) 

Here, 𝑊𝑗
′ represents the dimension-reduced client feature vector, providing a more 

compact and efficient client feature representation that enables the server to analyze 

different client characteristics more effectively. 

The dimension-reduced feature vectors not only preserve key information but also 

significantly reduce storage and computation costs, enhancing overall system effi-

ciency and performance. By eliminating noise and redundancy, these features provide 

more reliable inputs for client clustering, classification, and personalized model gener-

ation, making federated learning more adaptive and robust. 

3.4 Time-Series Based Clustering Method 

In the time-series clustering task, we employ a dynamically weighted DBA (DTW Bar-

ycenter Averaging) optimized K-Means algorithm to enhance the processing capability 

for sequential data. Combined with PCA-reduced feature vectors—viewed as time-se-

ries data extracted from model parameters—this method produces smoother and more 

representative cluster centroids, improving clustering quality and enhancing model per-

sonalization. 

K-Means Clustering Algorithm Based on Dynamically Weighted DBA: 

Step1: Initializing Cluster Centers: On the server side, during the training of the 

MAML initial model using the public dataset, we simultaneously extract the encoder 

output feature vectors as meta-cluster centers. Leveraging prior knowledge of feature 

distributions obtained through meta-learning, we initialize the cluster centers of DBA-

K-Means to better align with the real data's temporal evolution patterns. 

Step2: Computing DTW Distance: We introduce gradient importance weights at 

each time step, prioritizing the alignment of time periods that contribute more signifi-

cantly to model updates. 

  (9) 

Where,𝑔(𝑄𝑖(𝑝)) represents the L2 norm of the gradient of the sample at time point 

p, which is calculated during local training on the client and then uploaded. 

Step3: Dynamic Feature Fusion: On the server side, we concatenate the PCA-

reduced feature vector hj with the gradient statistics uploaded by the client (e.g., gradi-

ent mean and variance) to form an enhanced feature representation: 

  (10) 

The enhanced features not only capture the temporal patterns of the time-series data 

but also incorporate dynamic information from the model updates, thereby improving 

the clustering's discriminative power. 
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Step4: Dynamic Weighted DBA to Compute New Cluster Centroids: To obtain 

more stable and representative cluster centroids, we use the dynamically weighted DBA 

method to update the center sequence of each cluster. For each centroid time step t∈

[1,Tmax], we calculate the client contribution weight: 

  (11) 

Where, the gradient term: An exponential decay function with a normal distribution 

is used. If 𝑔𝑖(𝑡) deviates from the global mean g, the weight is reduced. Batch term: 

Linear normalization is applied to ensure that the weights of larger batch clients domi-

nate, exceeding 50%. Then, perform a weighted average update of the centroid. 

  (12) 

Where, ϵ=10⁻⁸ is used to prevent division by zero. Numerator: The sum of the 

weighted observations of all clients at time step t. Denominator: The sum of all weights, 

achieving normalization. 

Step5: Iterate until convergence: 

Repeat steps 2-4 and compute the centroid change. 

  (13) 

The algorithm terminates when Δμ<10⁻⁴ or the maximum number of iterations (usu-

ally 50) is reached. 

To determine the optimal number of clusters K, we use the Elbow Method. First, 

calculate the Sum of Squared Errors (SSE) for different values of K. 

  (14) 

The K-SSE curve tracks the sum of squared errors (SSE) as cluster numbers (K) rise. 

Initially, SSE drops sharply with higher K, but at the "elbow point," the decline rate 

slows, signaling optimal K. This balances precision and computational cost, preventing 

overfitting. Clusters beyond this yield marginal gains. Servers then employ FedAvg 

within each cluster, aggregating local models to harmonize parameters and enhance the 

global model’s generalization across varied data patterns, optimizing federated learning 

efficiency and cluster utility. 



4 Experiment 

4.1 Experimental Setup and Datasets 

Current research on IoT intrusion detection predominantly relies on limited datasets, 

which exhibit significant limitations. On one hand, attack samples are confined to sim-

plistic scenarios with static patterns, failing to reflect the dynamic evolution of real-

world network traffic. On the other hand, the absence of complex background traffic 

(e.g., concurrent normal operations and attack scenarios) leads to insufficient model 

generalization capabilities. 

For evaluation, we first train an initial model on the server using a public dataset 

(CICIDS2017) to capture cross-domain attack features and universal traffic patterns, 

establishing foundational detection capabilities. This model is then deployed to local 

clients and fine-tuned with our collected real-world dataset to adapt to time-sensitive 

network environments and traffic heterogeneity. 

To construct a high-quality temporally evolving dataset, we developed a hierarchical 

simulation experimental platform (Fig 2), comprising firewalls, smart routers, traffic 

acquisition systems, and IoT terminal devices (e.g., smart cameras, sensors, and smart 

plugs). 

Our preprocessing pipeline includes missing value imputation, outlier detection, 

PCA dimensionality reduction, and standardization to ensure data accuracy and con-

sistency. Additionally, we employ the ADWIN algorithm for dynamic time window 

segmentation (1-hour windows with 30-minute sliding steps) and integrate SMOTE-TS 

oversampling to balance low-traffic periods, partitioning the dataset into temporally 

evolving subsets {D1,…,D10}. During federated learning, the model is incrementally 

updated in the order from D1 to D10, effectively capturing the dynamic evolution and 

personalized characteristics of IoT traffic. 

We implement our method using the Flower federated learning framework, which 

offers scalable server and client support for flexible architectures. Experiments are con-

ducted on Ubuntu 20.04.3 LTS with an NVIDIA GeForce RTX 3090 GPU. 

Internet

防火墙

Firewall Router

Network Traffic Acquisition System

IoT device

Attacking data Benign data General data  

Fig. 2. Layered Simulation Experiment Platform Architecture 
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4.2 Personalized Performance of FMLTC-IDS 

We evaluated the personalized detection capability of FMLTC-IDS on the 

CICIDS2017, BoT-IoT, and real IoT traffic datasets, comparing it with baseline meth-

ods including FedAvg, FedProx, Fed-ANIDS, and SSFL. To comprehensively assess 

model performance, we used Accuracy, Recall, and F1-Score as evaluation metrics. 

The real IoT traffic dataset follows the same construction method as the dataset in 

Section 4.1 (without being divided into subsets) and contains 10,000 instances of nor-

mal and attack traffic. All experimental datasets were configured with α values of [0.5, 

1.0, 10] to control data heterogeneity, where smaller α values indicate highly imbal-

anced distributions, while larger α values approximate an IID setting. The test nodes 

followed the same distribution parameters to ensure evaluation consistency. 

The experimental results (Fig 3) show that as the α value increases, the accuracy of 

each model improves, and the convergence speed accelerates. Notably, FMLTC-IDS 

not only converges faster but also achieves higher accuracy, particularly performing 

well on the real IoT traffic dataset. For example, when α=0.5, FMLTC-IDS converges 

in just 5 communication rounds, and after 10 rounds, the accuracy reaches 74.7%, out-

performing FedAvg, FedProx, Fed-ANIDS, and SSFL by 4.6%, 4.5%, 2.9%, and 2.6%, 

respectively. 

Fig. 3. Accuracy comparison of different models on the CICIDS2017, BoT-IoT, and Real IoT 

datasets with α values of 0.5, 1.0 and 10. 

 
   (a) 

 
   (b) 

 
   (c) 

 
   (d) 

 
   (e) 

 
   (f) 

 
   (g) 

 
   (h) 

 
   (i) 



FMLTC-IDS achieves higher accuracy in high-heterogeneity environments due to 

two main optimizations: First, the initial parameter optimization based on MAML en-

hances the generalization ability of the global model, and combined with gradient-

weighted sampling, it prioritizes training on data that contributes more to the model. 

Second, we optimized the dynamic weighted DBA and K-Means clustering method, 

which integrates time-series features and gradient information to optimize the cluster-

ing centers, allowing the model to better adapt to the traffic patterns of each edge node. 

When approaching IID (α=10), the performance gap among methods narrows, but 

FMLTC-IDS still maintains a significant advantage in convergence speed, demonstrat-

ing stronger personalized adaptation capabilities. Additionally, before personalized 

training (i.e., at round 0), the model already achieves an accuracy of 50%-60%, thanks 

to the introduction of public data during the initial training phase, which allows the 

model to have high detection capability even before personalization. 

Tables 1 and 2 show the experimental results on the BoT-IoT and Real IoT datasets. 

FMLTC-IDS consistently outperforms in terms of Recall and F1-score, achieving the 

best overall performance. On the Real IoT dataset, when α=0.5, FMLTC-IDS achieves 

Accuracy, Recall, and F1-score of 74.7%, 72.5%, and 73.5%, respectively; when α=10, 

these metrics improve to 86.7%, 85.5%, and 86.1%. Although FMLTC-IDS's Accuracy 

increases by 2.9% compared to SSFL when α=0.5, the more stringent decision bound-

ary reduces false positives (increasing Precision), which leads to a rise in missed detec-

tions and a slight decrease in Recall and F1-score. 

The advantage of FMLTC-IDS in high-heterogeneity (low α) scenarios comes from 

its time-series clustering and gradient-weighted mechanisms, which allow it to better 

adapt to the traffic patterns of different edge devices. However, when α=10, the data 

distribution becomes more balanced, diminishing the personalized differences in time-

series data, and other methods also achieve high performance, thus narrowing the per-

formance gap. 

Table 1. Experimental Results on the BoT-IoT Dataset. 

Method 
α=0.5 α=1.0 α=10 

Acc Rec F1 Acc Rec F1 Acc Rec F1 

FedAvg 0.678 0.652 0.664 0.771 0.742 0.755 0.878 0.863 0.870 

FedProx 0.685 0.661 0.672 0.781 0.753 0.766 0.876 0.858 0.866 

Fed-ANIDS 0.740 0.718 0.728 0.819 0.795 0.805 0.877 0.862 0.869 

SSFL 0.735 0.712 0.722 0.824 0.802 0.812 0.878 0.864 0.871 

FMLTC-IDS 0.772 0.772 0.761 0.836 0.816 0.825 0.882 0.868 0.875 

Table 2. Experimental Results on the Real IoT Dataset. 

Method 
α=0.5 α=1.0 α=10 

Acc Rec F1 Acc Rec F1 Acc Rec F1 

FedAvg 0.700 0.675 0.687 0.741 0.713 0.726 0.848 0.832 0.840 

FedProx 0.702 0.680 0.690 0.748 0.723 0.735 0.855 0.842 0.848 

Fed-ANIDS 0.719 0.698 0.708 0.770 0.745 0.757 0.853 0.840 0.846 

SSFL 0.718 0.764 0.740 0.764 0.735 0.749 0.855 0.843 0.849 

FMLTC-IDS 0.747 0.725 0.735 0.801 0.778 0.789 0.867 0.855 0.861 
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4.3 Ablation Study 

In this section, we evaluate the effectiveness of each component design strategy in 

FMLTC-IDS through ablation experiments, aiming to answer the following questions: 

RQ1: Does the dynamic batch adjustment strategy impact model training efficiency and 

convergence speed? RQ2: Is our dimensionality reduction strategy superior to other 

methods? RQ3: Does time-series clustering help in personalized model aggregation? 

4.3.1 Answer to RQ1 

To answer RQ1, we designed three comparison models to assess the impact of the dy-

namic batch adjustment strategy: Baseline1 (Fixed small batch, B=16): Simulates train-

ing on resource-constrained devices. Baseline2 (Fixed large batch, B=128): Simulates 

high-performance devices but lacks dynamic adjustment. Baseline3 (Random dynamic 

batch, Bi∈ [16,128]): Randomly selects batch size in each training round. 

In FMLTC-IDS, the batch size is dynamically adjusted (as shown in formula (1)) to 

adapt to the device's computing resources and data size, with the minimum batch size 

𝐵min =16 and maximum batch size 𝐵max =128. We conducted experiments on the BoT-

IoT dataset with heterogeneity parameter α=1, comparing the training time, conver-

gence speed, detection performance (Accuracy, Recall, F1-score), and convergence 

time (T_C) of different methods. 

The experimental results are shown in Table 3. Baseline1 (B=16) has the longest 

per-round training time (138.21s) due to the smaller batch size, which requires more 

parameter updates per round. However, its stable gradient estimation helps accelerate 

convergence. Baseline2 (B=128) uses a larger batch size, reducing the number of pa-

rameter updates and shortening training time, but it may introduce gradient estimation 

bias, affecting the model’s generalization ability. Baseline3 (random dynamic batch) 

introduces instability by randomly selecting batch sizes, which may impact the con-

sistency of the gradient direction, thereby affecting convergence speed and stability. 

In contrast, FMLTC-IDS optimizes the training time per round to 94.36s (a 31.8% 

reduction compared to Baseline1) through adaptive batch adjustment, requiring only 6 

rounds to converge, with total convergence time significantly lower than other methods. 

Additionally, FMLTC-IDS, combining dynamic batch adjustment with gradient-

weighted sampling, achieves a Pareto-optimal balance between gradient quality and 

computational efficiency, improving training efficiency by 2-3 times and detection ac-

curacy by 2-3%. 

Table 3. Training Efficiency and Convergence Speed of Different Models. 

Approach 
Training 

Time(s) 

Convergence 

Speed 
Acc Rec F1 T_C (s) 

Baseline1 138.21 12 0.814 0.798 0.803 1658.52 

Baseline2 85.13 19 0.801 0.774 0.787 1617.47 

Baseline3 102.62 14 0.807 0.781 0.794 1436.68 

FMLTC-IDS 94.36 6 0.836 0.816 0.825 566.2 

 



4.3.2 Answer to RQ2 

To answer RQ2, we compared our method with UMAP and selected the first layer, the 

last layer, and all layers of the model to construct different feature extraction schemes. 

We tested the impact of different feature extraction methods on clustering runtime us-

ing the BoT-IoT dataset (heterogeneity parameter α=1). The experimental results are 

shown in Fig 4. 

The results indicate that using all layers for clustering resulted in a computational 

time of 21.42s, significantly higher than the other methods, demonstrating that high-

dimensional data increases computational overhead. In contrast, our method (last layer 

+ PCA) only took 0.36s, reducing the computational time by 98.3% compared to the 

all-layer method. It was also faster by 0.09s compared to the first layer + PCA method 

(0.45s), validating the effectiveness of combining PCA with the last layer. 

While UMAP, as a nonlinear dimensionality reduction method, can preserve richer 

local structural information, it has a slightly higher computational cost. For feature di-

mensionality reduction tasks in large-scale neural networks, PCA provides higher com-

putational efficiency while maintaining model performance, significantly reducing the 

computational burden. 

Our feature extraction method, which effectively combines PCA with the last layer 

of the neural network, greatly reduces clustering runtime. As the number of clients and 

the number of neural network layers increase, and data distribution becomes more com-

plex, the time advantage of this method will become even more significant. 

 

Fig. 4. Clustering Time under Different Feature Extraction Methods. 

4.3.3 Answer to RQ3 

To answer RQ3, we conduct experiments using the Real IoT dataset with a heteroge-

neity parameter of α = 1. The experiment included three groups: Experimental group 

(TS-Cluster): Time series-based clustering. Control group 1 (Static-Cluster): K-Means 

clustering based on static features. Control group 2 (FedAvg): No clustering, traditional 

FedAvg for global aggregation. To comprehensively assess the effectiveness of the time 

series clustering method, we measured classification performance using Accuracy, Re-

call, and F1-score, and evaluated personalization capability using ΔAcc = Acc_local - 
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Acc_global (i.e., the accuracy improvement of the local model compared to the global 

model), as shown in Table 4. 

The experimental results show that the TS-Cluster group outperformed the control 

groups in all classification performance metrics. In terms of Accuracy, TS-Cluster was 

6.3% higher than FedAvg and 2.7% higher than Static-Cluster. Recall improved by 

6.3% (compared to FedAvg) and 2.7% (compared to Static-Cluster), and F1-score in-

creased by 7.9% and 2.7%, respectively. These results demonstrate that time series 

clustering more effectively utilizes the time series features of clients, enhancing intru-

sion detection performance. Furthermore, the ΔAcc of TS-Cluster reached 4.1%, far 

exceeding that of FedAvg (0.8%) and Static-Cluster (2.3%), indicating that time series 

clustering better adapts to local data distributions and strengthens personalized detec-

tion capabilities. 

Table 4. Evaluation of Personalization Capability of Different Models. 

Approach Accuracy Recall F1-score ΔAcc 

TS-Cluster 0.801 0.778 0.789 +4.1 
Static-Cluster 0.774 0.751 0.762 +2.3 

FedAvg 0.738 0.715 0.726 +0.8 

 

We also evaluated clustering quality using Silhouette Score and intra-cluster gradi-

ent similarity. As shown in Fig 5, TS-Cluster had a Silhouette Score of 0.58, higher 

than Static-Cluster's 0.45, indicating that time series clustering forms tighter and more 

separable clusters. TS-Cluster's gradient similarity (0.84) also surpassed Static-Clus-

ter's (0.73), suggesting that clients in the TS-Cluster share more similar update patterns, 

thereby enhancing personalized optimization. 

In summary, the results indicate that TS-Cluster achieves the best performance in 

clustering quality and personalization capability, further validating the effectiveness of 

the time-series clustering strategy in optimizing personalized federated learning. 

 

Fig. 5. Comparison of Silhouette Score and Intra-cluster Gradient Similarity between TS-

Cluster and Static-Cluster. 



5 Conclusion and Outlook 

This study proposes a novel IoT intrusion detection framework (FMLTC-IDS), which 

combines federated meta-learning with adaptive time clustering techniques to enhance 

intrusion detection's personalization and generalization capabilities while ensuring data 

privacy. To optimize local training efficiency, we introduced adaptive batch adjustment 

and gradient-weighted sampling strategies, dynamically adjusting batch sizes and pri-

oritizing samples that contribute significantly to model updates. Additionally, to ad-

dress the spatial and temporal heterogeneity of IoT data, we proposed a method based 

on PCA dimensionality reduction and dynamic weighted DBA-K-Means clustering to 

improve the accuracy and adaptability of model aggregation. Experimental results 

demonstrate that FMLTC-IDS outperforms traditional methods in both detection accu-

racy and convergence speed in high-heterogeneity scenarios, offering an efficient solu-

tion for security defense in edge computing environments. 

However, challenges remain in real-time detection and pattern capturing, especially 

when facing advanced persistent threats (APT) and other covert, dynamically evolving 

attack patterns. Future research will focus on enhancing temporal feature representa-

tion, optimizing real-time detection, and upgrading defense systems to improve APT 

detection capabilities, reduce detection latency, and enhance the system’s robustness 

and privacy security against emerging attacks. 
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