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Abstract. This paper introduces a personalized crop recommendation system us-

ing ensemble learning and collaborative filtering algorithm to tackle traditional 

cultivation’s reliance on experience and low economic returns. A soft voting en-

semble model combining KNN, SVM, and RF boosts recommendation accuracy 

to 99.13%, and alleviates the cold start issue. An Intelligent Integrated Scoring 

Mechanism merges collaborative filtering scores with market price scores in a 

1:1 ratio, producing a ranked crop list and an Intelligent Integrated Recommen-

dation Score, further increasing accuracy to 99.27% and achieving Pareto opti-

mality between yield and economic benefits. Experiments show the system im-

proves the F1 score by 7.2% and 2.1% over KNN and SVM baselines, respec-

tively, and raises the NDCG metric by 16% compared to collaborative filtering 

algorithm, enhancing recommendation quality and farmers’ economic outcomes. 

Keywords: Crop Cultivation Recommendation, Soft Voting Ensemble Model, 

Intelligent Integrated Scoring Mechanism, Cold Start, Pareto Optimal Cultiva-
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1 Introduction 

Currently, planting decisions largely rely on the experience and judgment of farmers, 

which tend to be highly subjective, with insufficient scientific and intelligent support 

[1]making it difficult to meet the demands of modern agriculture, especially in terms 

of economic benefits. The rapid development of machine learning and recommendation 

algorithms [2] has provided new technical paths for building data-driven crop-cultiva-

tion decision-making systems. In particular, crop cultivation recommendation systems 

[3], by integrating multi-dimensional data such as soil and market information, offer 

reliable technical support for planting decisions, improving crop yields and economic 

benefits. 
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2 Related Work 

In recent years, crop cultivation recommendation methods have gradually become a 

research hotspot in agriculture. In 2020, Jaiswal et al. [4] proposed a hybrid recommen-

dation system combining KNN and collaborative filtering algorithm. It predicts plant-

ing interests by analyzing farmers’ data and recommends crop plans. Experiments 

showed that KNN outperformed SVM with 78% accuracy, offering effective planting 

support. However, the system didn’t address the cold start issue for new users and relied 

solely on personal data, neglecting economic benefit considerations. 

In 2021, Hui et al. [5] developed a collaborative filtering model integrating user fea-

tures, using geographic location and primary crops to create initial profiles. They 

merged user feature and rating matrix similarities into a weighted overall similarity, 

employing the Top-N method for personalized crop recommendations. The model 

boosted accuracy by 2-7%, recall by 2-9%, and achieved a 71% F1 score over tradi-

tional methods, effectively tackling the cold start problem and improving recommen-

dation quality. However, it relied solely on user data, neglecting external factors like 

soil and climate, limiting its comprehensiveness and practicality. 

In 2022, Gopi et al. [6] proposed a new crop cultivation recommendation and yield 

prediction technique based on multimodal machine learning. This technique used a 

KELM-based balanced optimizer for crop cultivation recommendations and RF for pre-

cise crop yield prediction. Experimental results showed that the MMML-CRYP method 

significantly outperforms comparison methods, achieving a maximum accuracy of 

97.91%. However, the recommendation logic of this model relies solely on soil and 

climate features. It lacks consideration for farmers’ differentiated economic benefit 

needs, leading to recommendation results that may not meet farmers’ demands for prof-

its in practical applications. 

In 2023, Aryaman et al. [7] introduced a crop-cultivation decision support method 

using key features to aid farmers in making informed planting choices. They combined 

four classifiers—Extra Tree, RF, Naïve Bayes, and QDA—in pairs, evaluating the ac-

curacy, F1 scores, and other metrics to build a voting ensemble framework with RF and 

QDA for decision-making. However, the study prioritized algorithm optimization over 

farmers’ profitability preferences, lacking personalized recommendations to address di-

verse farmer needs. 

Current research in crop cultivation recommendations still faces limitations such as 

insufficient personalization, the cold start problem, and inadequate consideration of 

economic benefits. To address these limitations, this paper designed a personalized crop 

recommendation system integrating ensemble learning and collaborative filtering algo-

rithms. The main contributions include: 

• Constructing a soft voting ensemble model based on KNN, SVM, and RF: Fully 

leveraging the sensitivity of KNN to local structures, the excellent generalization 

ability of SVM, and the robustness of RF. Using the soft voting mechanism com-

bines the advantages of these models, improving crop recommendation accuracy. 
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• Integrating the soft voting ensemble model’s recommendations with a user-based 

collaborative filtering algorithm to achieve personalized crop cultivation recommen-

dations. 

• Designing the Intelligent Integrated Scoring Mechanism that combines the crop cul-

tivation recommendation score generated by the collaborative filtering algorithm 

with the market price score in a 1:1 ratio, providing a weighted fusion to generate a 

crop cultivation recommendation list and an Intelligent Integrated Recommendation 

Score, supporting decision-making for maximizing farmers’ economic benefits. 

3 Algorithm Design and Experiment  

3.1 Model Architecture 

This paper designed and implemented a personalized crop cultivation recommendation 

system, as shown in Fig. 1. A soft voting ensemble model based on KNN, SVM, and 

RF was constructed. Through the soft voting mechanism, the advantages of the three 

classifiers were combined, significantly improving the overall crop recommendation 

performance. The recommendation prediction probabilities generated by the soft voting 

ensemble model were converted into classification scores and integrated with the user-

based collaborative filtering algorithm, effectively alleviating the cold-start problem for 

new users. Additionally, this paper incorporated crop market prices into the recommen-

dation system and designed an Intelligent Integrated Scoring Mechanism that merges 

collaborative filtering scores with market price scores in a 1:1 ratio, producing a ranked 

crop list and an Intelligent Integrated Recommendation Score. This strategy ensures 

that while crop cultivation recommendation yields are safeguarded, the economic ben-

efits for farmers are also improved. 

 

Fig. 1. Framework of Personalized Crop Cultivation Recommendation System 



3.2 Feature Selection  

The crop cultivation recommendation system uses feature selection to ensure accurate 

and applicable recommendations. Key features must represent the ecological and pro-

duction conditions for crop growth, providing reliable data. This study identified seven 

core features based on essential growth factors: nitrogen, phosphorus, potassium, soil 

pH, temperature, humidity, and precipitation. These features capture the crop’s ecolog-

ical environment across soil and climate dimensions. By analyzing these multi-dimen-

sional features, the system offers scientific and practical planting recommendations, 

aiding farmers in precise decision-making. 

3.3 Dataset Selection  

In this study, the publicly available dataset from the Kaggle [8] platform was used, 

which includes 2,200 data samples. Each data entry consists of variables related to soil 

features as well as the type of crop best suited for planting. The dataset comprises 22 

distinct crop types, including cotton, coffee, and others. For the experimental process, 

70% of the dataset was designated as the training set, while the remaining 30% was 

used for testing purposes. To prevent the impact of differences in data ranges among 

different features on model performance, the dataset was normalized using equation (1) 

before model training. A portion of the normalized data is presented in Table 1. 

𝑋𝑛𝑜𝑟 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
(1)  

where 𝑋𝑛𝑜𝑟  represents the normalized data, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 denote the minimum 

and maximum values of the soil features, respectively. 

Table 1. Normalized Dataset Example 

N P K PH Temperature Humidity Rainfall Crop Type 

-0.462 -0.241 -0.537 -0.227 0.496 0.505 -1.191 Mung Bean 

-0.678 0.830 -0.598 -1.126 -1.271 -2.169 0.0364 Kidney Beans 

1.612 -0.761 -0.435 0.599 0.413 -0.312 1.629 Coffee 

-0.381 -0.088 -0.496 0.082 0.788 0.770 -0.847 Mung Bean 

-1.351 0.707 -0.618 -0.576 0.545 -0.871 0.802 Pigeon Peas 

3.4 Feature Correlation Analysis  

Pearson Correlation Coefficient.   

The Pearson correlation coefficient measures the strength and direction of the linear 

relationship between two features, ranging from [−1, 1]. A value closer to 1 indicates a 

stronger linear correlation, while the sign denotes the relationship’s direction.  

𝜌(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋∙𝜎𝑌
(2)  
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where Cov (X, Y) represents the covariance between features X and Y in soil character-

istics, and 𝜎𝑖  denotes the standard deviation of the feature data. 

This paper used equation (2) to calculate the correlation coefficients of soil features 

for each crop. The results showed that all correlation coefficients are below 0.2, indi-

cating no significant correlation between these features. Thus, they are suitable as input 

variables for crop planting recommendations. Fig. 2 illustrates the distribution of soil 

feature correlation coefficients for typical crops such as rice, watermelon, and cotton. 

 

Fig. 2. Soil Feature Correlation Distribution 

Variance Inflation Factor (VIF) 

VIF assesses multicollinearity among soil features, occurring when they are highly 

linearly correlated, potentially destabilizing model parameter estimation and reducing 

recommendation accuracy. It quantifies a feature’s linear dependence on others, with 

higher values indicating stronger correlations and potential multicollinearity. 



𝑉𝐼𝐹(𝑋𝑗) =
1

1 − 𝑅𝑗
2

(3) 

where 𝑉𝐼𝐹(𝑋𝑗)represents the variance inflation factor for soil feature 𝑋𝑗, and 𝑅𝑗
2 is the 

coefficient of determination obtained by regressing 𝑋𝑗against the other soil features. 

According to formula (3), this paper calculated the VIF values for the seven soil 

features. As shown in Table 2, the VIF values for each soil feature are relatively small, 

indicating no significant linear correlation among the features. This result showed that 

the selected soil features are suitable as conditions for crop planting recommendations. 

Table 2. VIF of Soil Features 

Feature N P K PH Temperature Humidity Rainfall 
VIF 1.09 2.63 2.79 1.05 1.11 1.36 1.03 

3.5 Ensemble Model Design 

RF Classification Model.  

RF [9] uses multiple independent decision trees, employing bootstrap sampling to 

create new training subsets and randomly selecting features for node splitting. For each 

new soil sample, each tree predicts the best crop category, with the final recommenda-

tion determined by majority voting. RF Algorithm steps: (1) Split the dataset into train-

ing set S and test set T, and set the number of trees t. (2) Perform bootstrap sampling N 

times from S with replacement to generate subset S(i). Randomly select soil features as 

root node samples to train a decision tree. (3) Repeat step (2) t times to build a random 

forest of t trees. (4) For each soil sample in T, RF using equation (4) calculates the 

predicted recommendation probability for each crop category. 

𝑃((𝐶𝑖|𝑥)) =
𝑛

𝑇
(4)  

where T represents the total number of decision trees;  𝐶𝑖 represents the i-th crop cate-

gory in the dataset.; 𝑛𝑖  represents the number of times 𝐶𝑖  appears in the classification 

results output by all decision trees. 

SVM Classification Model 

The core idea of SVM [10] is to find an optimal hyperplane separating crop catego-

ries, influenced by key soil data points called support vectors. For non-linear data, the 

kernel trick maps it to a higher-dimensional space. SVM-based Crop Recommendation 

steps: (1) Transform soil features using the Radial Basis Function kernel shown in equa-

tion (5). (2) Reformulate the optimization into a convex quadratic problem with La-

grange multipliers. (3) Solve the dual problem via Sequential Minimal Optimization to 

identify support vectors. (4) Build a decision function using support vectors and La-

grange multipliers to compute crop recommendation probabilities. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

𝐾(𝑥, 𝑦) = exp (−
∥𝑥−𝑦∥2

2𝜎2 ) (5)  

where x represents the soil feature vector, y denotes the crop category label, and σ is 

the standard deviation of soil features. 

KNN Classification Model 

The core idea of KNN [11] is to measure the distance between an unclassified soil 

sample and labeled crop samples, identify the K nearest neighbors, and use majority 

voting for crop recommendation. KNN Algorithm Steps: (1) Create a training dataset 

containing soil features and corresponding crop labels. (2) Choose an appropriate K 

value, representing the number of nearest neighbors considered. (3) Calculate the Eu-

clidean distance between the new soil sample and all samples in the training set using 

equation (6), where x and y represent two soil samples in the dataset. (4) Identify the K 

nearest neighbors, analyze the crop category distribution, and compute the recommen-

dation probability for each crop category. 

𝐿(𝑥, 𝑦) = (∑ ‖𝑥𝑖 − 𝑦𝑖‖2𝑛
𝑖=1 )

1
2⁄ (6)  

Ensemble Classification Model 

In this study, grid search was employed to optimize the parameters of the three base 

learners mentioned earlier. The optimal parameters obtained for each model are pre-

sented in Table 3. 

Table 3. Optimal Parameters of KNN, RF, and SVM 

Model KNN RF SVM 

Parameter k=3 ples_leaf=3 ax_features='sqrt' 

min_samples_split=2 min_samK=2 

probability=True c=10 

kernel='rbf' degree=3 

From Table 4, it can be observed that compared to using default parameters, the crop 

recommendation accuracy of KNN improved from 97.12% to 97.27%; RF improved 

from 99.09% to 99.24%; and SVM improved from 98.18% to 98.24%. RF performed 

the best in overall recommendation accuracy. 

Table 4. Optimized KNN, RF, and SVM Model Comparison 

Algorithm 

Parameter 

KNN RF SVM 

Default Parameter 97.12% 99.09% 98.18% 

Optimal Parameter 97.27% 99.24% 98.24% 

However, Significant accuracy differences were observed among RF, SVM, and 

KNN for specific crops. ROC curve in Fig. 3. further analyzed their performance. For 

Watermelon, all classifiers performed similarly. SVM excelled in Banana classifica-

tion, RF in Orange, and KNN in Lentil. Combining KNN, RF, and SVM into an en-

semble model could improve crop recommendation accuracy. 



 

Fig. 3. ROC Curve Comparison for Different Crop Classifications 

Ensemble algorithms [12] combine multiple weak learners to create a strong learner, 

enhancing prediction performance and reducing bias and variance. Voting, a type of 

ensemble method, generates multiple training subsets via bootstrap sampling. Different 

base learners are trained on these subsets, and their predictions are integrated through 

averaging or voting. Due to the independence of base learners, voting supports parallel 

computing, boosting efficiency. Voting methods include hard and soft voting, as illus-

trated in Fig. 4. For example, if KNN predicts Crop A while SVM and RF predict Crop 

B, Hard Voting: The crop with the most votes (Crop B) is recommended. Soft Voting: 

Prediction probabilities are weighted, and the crop with the highest probability (Crop 

A) is recommended. Due to its flexibility, this study adopts a soft voting ensemble 

model, integrating KNN, RF, and SVM. 

 

Fig. 4. Soft Voting vs Hard Voting Mechanisms 
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Experimental Results 

Experimental results showed that the KNN model performs weakly across various 

metrics, especially with complex non-linear data, leading to lower recommendation ac-

curacy. As shown in Fig. 5, its accuracy, recall, and F1 scores are 93.42%, 92.39%, and 

91.8%, respectively, with a precision of 92.37%. While acceptable, KNN is weaker 

than other models, indicating limited applicability in complex data environments. The 

SVM model performs better with 97.62% accuracy, 97.06% recall, 96.89% F1 score, 

and 96.32% precision. Though superior to KNN, its precision is still lower than RF. 

The RF model excels with 99.11% accuracy, 99.02% recall, 98.99% F1 score, and 

99.14% precision, demonstrating strong performance and stability as the best-perform-

ing model. The Soft Voting ensemble model performs the best in all metrics, with a 

recommendation accuracy of 99.13%, recall of 99.09%, F1 score of 99.03%, and crop 

recommendation precision of 99.19%. This model slightly outperforms all other single 

models in recommendation precision, recall, F1 score, and accuracy, validating the ef-

fectiveness of ensemble learning methods in enhancing classification accuracy and 

model robustness. Therefore, the Soft Voting ensemble model was ultimately selected 

for score transformation to obtain more precise soil sample scores. 

 

Fig. 5. Soft Voting Ensemble vs Individual Model Performance  

3.6 Soil Sample Scoring 

Since nitrogen, phosphorus, and potassium levels in soil can be effectively adjusted 

through fertilization measures, and the rainfall required for crop growth can be supple-

mented through irrigation, while other features such as soil temperature, pH, and hu-

midity are more difficult to adjust—especially soil humidity, which is closely related 



to local climate conditions and is hard to manipulate—this study adopted interval over-

lap as an evaluation metric to quantify the degree of matching between soil character-

istics and crop growth conditions. A matching scoring system was designed: 0 points 

represent a complete mismatch, and 4 points represent a complete match. Based on the 

crop recommendation results from the ensemble model, the planting recommendation 

probability for each crop on different soil samples can be derived. Scoring rules were 

established based on these probabilities, as shown in Table 5. 

Table 5. Soil Scoring Rule Table 

Recommendation Probability 0 0-0.25 0.25-0.5 0.5-0.75 0.75-1 

User-Score 0 1 2 3 4 

According to the scoring rules, all soil samples were quantified, and the soil sample 

scoring data was obtained. A portion of the scores is shown in Table 6. 

Table 6. Partial Soil Sample Scoring Table 

N P K PH Temperature Humidity Rainfall Soil Sample Scoring 

76 60 39 6.76 20.04 80.34 208.58 Rice：4 Mize:1 

35 58 20 5.76 29.39 63.48 90.05 Chick Pea：3 Pigeon Peas：2 

13 7 43 7.01 18.20 91.12 109.66 Pomegranate：4 Lentil：2 

3.7 Intelligent Integrated Scoring Mechanism 

Planting Recommendation Scoring 

In collaborative filtering algorithms, new soil samples without crop planting records 

introduce a cold-start problem, making it difficult to generate effective recommenda-

tions. This study used the ensemble model to generate new soil sample scores as a so-

lution for new user data. During the experiment, soil samples in the test set were treated 

as new users, representing newly encountered soil conditions. When new soil feature 

data is input, the ensemble model can generate corresponding soil sample scores based 

on the features. These scores were added to the user-crop rating matrix as initial data 

for new users, avoiding the limitations of relying entirely on historical rating data. This 

effectively alleviates the cold-start problem and provides reliable crop planting recom-

mendations for new soil samples. Some experimental results are shown in Table 7. 

Table 7. Partial User-Crop Planting Score Overview 

Crop 

User 

Apple Banana Papaya Watermelon Jute Kidney Beans Lentil 

User1 0 3 0 0 0 1 0 

User2 0 0 3 2 0 0 1 

User3 0 2 2 0 1 1 0 

User4 2 0 1 0 0 0 3 

User5 1 0 1 0 2 1 0 
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This study treated each soil sample as a user, with the soil feature data from the 

training set acting as existing users. The ensemble model generated corresponding soil 

sample scores, representing user preferences and forming a user-crop rating matrix. 

Using this matrix, the system applied a user-based collaborative filtering algorithm to 

provide crop planting recommendations. The soil data from the test set served as the 

target users, i.e., the soils that require crop recommendations. These soils may be newly 

cultivated land or existing land that needs planting strategy adjustments. 

Using Equation (7), the system calculated the similarity between the target user and 

other users to evaluate the resemblance of their soil features. The higher the similarity, 

the more similar the characteristics of the two soils. The system identified the 100 users 

most similar to the target user and designated them as the neighbor set. These neigh-

boring users represent soil samples whose characteristics are most similar to the target 

soil, and their planting experiences provide valuable references for recommending 

crops to the target soil. 

 cossim(𝐴,𝐵) =
𝐴∙𝐵

‖𝐴‖‖𝐵‖
 (7)  

where A⋅B is the inner product of user A and user B, and ∥A∥ is the norm of user A. 

Using equation (8), the soil user ratings for each crop in the neighbor set were 

weighted by similarity and summed to generate the target user’s planting recommen-

dation scores for each crop. If a neighbor has not rated a specific crop, that rating is 

ignored. The system ranked all crops according to the predicted scores, generating the 

target user’s crop recommendation list along with corresponding planting recommen-

dation scores. The higher the score, the greater the planting potential of that crop for 

the target soil, enabling personalized crop planting recommendations tailored to differ-

ent soil characteristics. 

𝑟𝑈𝐼 =
∑ 𝑆(𝑈,𝑢)∙𝑟𝑢𝐼𝑢∈𝑁(𝑈)

∑ 𝑆(𝑈,𝑢)𝑢∈𝑁(𝑈)
(8)  

In this context, 𝑟𝑈𝐼is the planting recommendation score for crop I corresponding to the 

new soil U; N(U)is the set of similar soil samples to the target soil U; S(U, u) is the 

similarity between the target soil U, and the similar soil sample u; 𝑟𝑢𝐼is the rating given 

by the similar soil sample u for crop I. 

Market Price Scoring.  

To assess the market value and economic benefits of crops, this study collected mar-

ket price data for relevant crops over the past two years from the NCDEX website. 

Considering the impact of market price fluctuations on scoring, the average market 

price of different crops was converted into a 1-5 scoring system to intuitively reflect 

crop price levels. A score of 1-2 indicates that the crop's market price has been relatively 

low over the past two years, while a score of 3-4 suggests a moderate price range and a 

score of 5 signifies a high market price over the same period. A partial list of crop price 

scores is shown in Table 8. To ensure fairness and consistency in the data, the price 

data was standardized using equation (1), eliminating differences between different 

crops. 



Table 8. Market Price Scoring Table 

Crop Rice Maize Apple Coffee Watermelon Cotton Jute Mango 

Price Rating 2 1 4 3 5 5 3 1 

Intelligent Integrated Recommendation Scoring  

The user-based collaborative filtering algorithm captures soil characteristic similari-

ties to recommend crops suitable for cultivation, generating a planting recommendation 

score that ensures high crop yields for farmers. Introducing a market price score reflects 

the economic benefits of crops, helping farmers select more profitable crops. To bal-

ance yield and economic value, this study introduced the Intelligent Integrated Recom-

mendation Score. This score combined the planting recommendation score with the 

market price score to provide “personalized and profit-driven” crop recommendations. 

To further optimize the recommendation effect, this study compared the impact of 

different weight distributions (90:10, 80:20, 70:30, 60:40, and 50:50) on the system’s 

performance. The evaluation metrics included precision, F1 score, recall, and NDCG. 

Through testing, integrating the planting recommendation score and market price score 

in a 1:1 ratio yielded optimal results. 

The experimental results showed that recommendation accuracy reached 99.27% 

with all weight distributions, improving by 0.14% compared to the soft voting ensemble 

model. This demonstrates the system’s ability to recommend suitable crops based on 

soil characteristics. As the price weight increased, recall improved, indicating better 

alignment with farmers’ needs. The F1 score increased by 10%, highlighting overall 

model performance improvement. The NDCG value rose by 16%, suggesting better 

recommendation quality, ensuring high yields, and maximizing economic benefits. 

These results, shown in Fig. 6, validate the effectiveness of the Intelligent Integrated 

Recommendation Score in balancing yield and profitability. 

 

Fig. 6. Performance Comparison of System under Varying Weights 
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4 Conclusion and Outlook 

This study combined KNN, SVM, and RF via a soft voting strategy to build an ensem-

ble model, achieving 99.13% accuracy. By converting the model’s recommendations 

into soil scores and integrating them with collaborative filtering algorithm, the cold 

start problem for new users was effectively addressed, enhancing system practicality. 

Pareto frontier analysis determined a 1:1 ratio for collaborative filtering and market 

price scores, boosting crop recommendation accuracy to 99.27%. Experiments showed 

the system’s F1 score improved by 7.2% and 2.1% over baseline KNN and SVM mod-

els, respectively, while NDCG increased by 16% compared to traditional collaborative 

filtering algorithm. This system ensures crop yield and maximizes farmers’ economic 

benefits. 

Despite some notable achievements, certain limitations remain. The dataset used 

constrains the model’s performance, and further validation is needed to assess its gen-

eralization ability. The price scoring method only considers annual averages, failing to 

fully account for seasonal fluctuations that affect recommendation results. Addition-

ally, the linear weighting strategy may lead to suboptimal solutions when there is a 

significant disparity between yield and economic benefits. Future research will focus 

on three key areas: expanding the dataset to enhance the model’s applicability, intro-

ducing a dynamic weight allocation mechanism to better adapt to seasonal and market 

fluctuations, and incorporating additional factors influencing crop cultivation to de-

velop a multi-objective optimization recommendation system. 
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