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Abstract. With the rapid development of the global carbon market, the applica-

tion of consortium blockchain technology in carbon trading and carbon neutrality 

management has become increasingly widespread, ensuring the security and 

transparency of transaction data. However, as the transaction scale continues to 

expand, the on-chain storage capacity and query efficiency of blockchain systems 

have gradually become key factors limiting system performance. Although tradi-

tional off-chain storage solutions have alleviated the pressure on on-chain storage 

to some extent, high-concurrency access scenarios still face the challenge of high 

query latency. While in-memory caching methods can improve query speed, they 

are often limited by memory capacity, making it difficult to meet the query re-

sponse time requirements when dealing with large amounts of data. To address 

these issues, this paper proposes a cache optimization strategy based on transac-

tion access prediction, combining Graph Convolutional Networks (GCN) and 

Extreme Gradient Boosting (XGBoost). The method first constructs a relation-

ship graph of transaction data using GCN and extracts the structural features of 

transaction nodes. It then combines the XGBoost model to predict access fre-

quency and dynamically adjusts the cache replacement strategy. Experimental 

results show that, compared to traditional algorithms, the proposed method sub-

stantially increases cache hit rates and reduces query latency under high-concur-

rency conditions. This study provides an intelligent optimization solution for 

cache management in blockchain trading systems, which is of great significance 

for improving the operational efficiency of the carbon trading market. 

Keywords: Blockchain, Cache Optimization, Graph Convolutional Networks. 

1 Introduction 

As global carbon emission targets continue to progress, carbon trading and carbon neu-

trality management have gained increasing attention worldwide. Blockchain technol-

ogy, with its characteristics of decentralization, immutability, and transparency, has be-

come an important tool to ensure the trustworthy flow of data across various stages of 



the carbon market. A consortium blockchain is a blockchain network maintained by 

multiple trusted entities, featuring permission control and data privacy protection, suit-

able for scenarios requiring collaboration and trust, and commonly used by enterprises 

or governments. Consortium blockchain can effectively record every transaction in car-

bon emission trading, ensuring the authenticity and transparency of carbon credit trans-

actions while improving the efficiency and trust of carbon market trading. By utilizing 

consortium blockchain technology, each carbon trading transaction can be recorded in 

a distributed ledger in real-time and in an open manner, effectively addressing data 

tampering and trust issues that may arise during the trading process. 

However, with the continued expansion of the carbon market, especially with the 

large-scale on-chain storage of carbon measurement data, the storage capacity and ac-

cess efficiency of blockchain systems have become one of the bottlenecks limiting its 

application in carbon trading and carbon neutrality management. Traditional block-

chain systems face the problem of limited storage space [1], and the on-chain storage 

capacity cannot support the large-scale uploading of carbon data, leading to access de-

lays and low query efficiency, which in turn affects the overall operational efficiency 

of the carbon market. These storage and performance issues pose a significant challenge 

to the deep integration of blockchain technology with carbon trading and carbon neu-

trality management. 

To alleviate the pressure on on-chain storage and improve performance, many re-

searchers[1, 2, 3, 4] have proposed solutions to transfer large amounts of data to off-

chain storage. Off-chain storage uses traditional database systems to store blockchain 

transaction data. This method reduces the storage burden on the blockchain and im-

proves data processing efficiency. Especially in blockchain networks with limited stor-

age capacity, off-chain storage provides greater flexibility and scalability. However, 

off-chain storage systems still face performance bottlenecks, such as high query la-

tency, in high-concurrency access scenarios, particularly when dealing with large-scale 

transaction requests and uneven data access frequencies. Traditional databases often 

fail to meet the real-time and efficiency requirements.  

Table 1. Comparison of Query Concurrency Performance 

Name Query Concurrency (Requests/sec) Model 

Hyperledger Fabric 100 - 1,000 
Peer-to-peer,  

Consensus-based 

MySQL 1,000 - 10,000 
Multi-threaded,  

SQL-based 

Redis 10,000-1,00,000 
Single-threaded, 

Event-driven 

 

As shown in Table 1, traditional consortium blockchain Hyperledger Fabric and tra-

ditional database MySQL exhibit low efficiency when handling high-concurrency que-

ries [5]. Therefore, this paper proposes the introduction of a caching layer placed be-

tween the database and the user. Since the cache is memory-based, it can put significant 

pressure on memory when dealing with large amounts of transactional data. Existing 
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cache replacement strategies, such as Least Recently Used (LRU) and Least Frequently 

Used (LFU), although improving cache performance to some extent, still exhibit limi-

tations in complex data interactions and dynamic access patterns. LRU relies on recent 

access records, while LFU replaces based on access frequency, but neither can effec-

tively handle the dynamic changes in transaction data and diverse access patterns. 

Therefore, predicting the access frequency of transaction data and dynamically adjust-

ing the cache strategy based on access frequency has become a key issue in optimizing 

blockchain transaction systems. 

To address this issue, this paper proposes an efficient cache optimization technique 

based on the combination of Graph Convolutional Networks (GCN) and Extreme Gra-

dient Boosting (XGBoost). By constructing a relationship graph model of transaction 

data, GCN captures the complex correlations between transaction data, enabling accu-

rate prediction of access frequency. The GCN model aggregates feature information 

from neighboring nodes to discover potential associations and patterns, improving the 

accuracy of future access frequency predictions. Combined with the XGBoost model, 

the prediction accuracy is further enhanced, dynamically adjusting the cache replace-

ment strategy. This prediction result not only facilitates intelligent cache replacement 

but also effectively improves cache hit rates and reduces query latency. Compared to 

traditional cache replacement strategies, the GCN and XGBoost-based method can ef-

fectively enhance system responsiveness in high-concurrency scenarios and avoid per-

formance bottlenecks caused by uneven access frequencies. 

2 Related Works 

In recent years, blockchain storage scalability and architecture optimization have be-

come hot research topics. Liu et al. [1] proposed dynamic sharding technology, which 

first achieved off-chain storage scalability, laying the foundation for distributed load 

balancing. Qian et al. [2] developed middleware for database tamper detection, enhanc-

ing off-chain data integrity through blockchain notarization. Many researchers im-

proved the data consistency verification mechanism by integrating the IPFS protocol, 

significantly enhancing the reliability of distributed storage [3, 4, 6]. Maheshwarkar et 

al. [7] strengthened storage disaster recovery capabilities through a distributed redun-

dancy architecture. Yang et al. [8] developed the ChainMaker Storage System (CMSS), 

which innovatively integrates block storage workflows with a meta-file system. Liu et 

al. [9] further designed an auxiliary storage solution using cache prefetching technology 

to optimize blockchain query efficiency. 

In the field of index optimization and query enhancement, key technologies have 

made diverse breakthroughs. Zhou et al. [10] developed the MSTDB technology, which 

pioneered the Merkle Semantic Dictionary Tree, achieving secure and efficient linkage 

between on-chain and off-chain data. Rosoon et al. [11] proposed a dynamic trusted 

verification mechanism that achieves a dynamic balance between query speed and data 

trustworthiness in hybrid architectures. Pandita et al. [12] combined PCA and Isolation 

Forest algorithms to establish a real-time anomaly detection framework for blockchain 

databases. Wang et al. [13] designed a cooperative storage scheme based on a timeline 



adaptive reading mechanism, optimizing the access performance of lightweight block-

chains through redundant caching strategies. Cai et al. [14] proposed a dual-chain ar-

chitecture with data type separation strategies, providing theoretical support for dy-

namic resource scheduling. Li et al. [15] developed the EtherQL abstraction query 

layer, which first supports advanced query functions for blockchain systems. El-Hindi 

et al. [16] validated a smart contract-driven sharding strategy, revealing the deep col-

laborative technological path between blockchains and distributed databases. Yu et al. 

[17] developed the FabricSQL system, which innovates relational query paradigms 

through encryption verification mechanisms, while Miyachi et al. [18] constructed a 

privacy-enhanced modular off-chain storage framework, promoting the application of 

blockchain in healthcare and other fields. 

However, these methods still face some usability issues when handling high-concur-

rency access, making the introduction of off-chain caching necessary to improve block-

chain's off-chain performance. Tu et al. [19] proposed an optimization scheme based 

on Redis caching and B+ tree indexing to address the retrieval efficiency bottleneck in 

consortium blockchains with multiple transaction modes. However, since Redis is an 

in-memory caching middleware, it may cause excessive memory pressure when dealing 

with large-scale transaction data, making it necessary to research an intelligent cache 

optimization algorithm in the blockchain domain. 

In other fields, machine learning-based cache optimization methods have gradually 

gained attention. For example, Narayanan et al. [20] used LSTM encoder-decoder mod-

els to predict content popularity, improving traditional cache strategy performance. Shi 

et al. [21] designed a low-overhead Glider replacement strategy by lightweighting the 

LSTM model through interpretability analysis. Hou et al. [22] applied graph neural 

networks (GNN) to cache performance optimization in Named Data Networking 

(NDN), demonstrating its potential in modeling complex data correlations. Compared 

to the general GNN, Graph convolutional networks (GCN) [23], as a key branch of 

GNN, explicitly defines neighborhood information propagation mechanisms through 

graph convolutional layers, thereby making it more suitable for structured feature ex-

traction. It has achieved significant results in fields like social network analysis and 

recommendation systems. 

3 Proposed Method 

3.1 System Architecture 

This system addresses the high-concurrency transaction query challenge in consortium 

blockchain environments by constructing an efficient storage architecture comprising 

a blockchain layer, an off-chain database layer, and an off-chain cache layer, and by 

introducing a predictive mechanism that integrates GCN with XGBoost to optimize 

cache management strategies—thereby improving data access efficiency and reducing 

query latency. 
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Fig. 1. System Architecture Diagram 

Fig. 1 illustrates the three-tier storage and caching architecture. The blockchain layer 

serializes and packages each transaction validated by the consensus mechanism, storing 

only the transaction hash and essential metadata on-chain to guarantee data integrity 

and traceability via smart contracts. Beneath this, the off-chain database layer employs 

high-performance relational databases or distributed storage systems to store complete 

transaction details (including sender, receiver, amount, timestamp, etc.), supporting 

large-scale data queries and access but potentially suffering performance bottlenecks 

under surges in transaction volume, frequent access, and complex queries. To mitigate 

these bottlenecks, the off-chain cache layer is introduced above the database layer: it 

first analyzes users’ transaction access histories and constructs a transaction relation-

ship graph, then uses GCN to extract node embeddings that capture inter-transaction 

relationships and access patterns. These embeddings are concatenated with the original 

transaction features and fed into an XGBoost model to predict future access frequen-

cies. Based on these predictions, the cache content is dynamically adjusted—high-fre-

quency transactions are preferentially retained, while low-frequency transactions are 

evicted when cache space is constrained—thus effectively relieving database pressure 

and significantly reducing query latency. 

This architecture maintains the security and immutability of transaction data while, 

through the efficient coordination of the blockchain, off-chain database, and off-chain 

cache layers, markedly enhancing query efficiency for high-frequency transactions. In 

scenarios involving large-scale transaction volumes and high-concurrency requests, it 



effectively mitigates database query pressure, shortens access latency, and optimizes 

the user experience in complex business environments such as carbon trading. 

3.2 Characteristics of Consortium Blockchain Transaction Data 

In the consortium blockchain environment, transaction data exhibits characteristics that 

differ from those of public blockchains, which directly impact storage architecture, 

query methods, and cache management strategies. Permissioned blockchains are main-

tained by multiple trusted entities, such as enterprises, institutions, or government de-

partments, and their transaction data access patterns and storage requirements are more 

regular compared to public blockchains. Additionally, there are higher demands for 

privacy protection and performance optimization. The access control of transaction data 

in permissioned blockchains ensures that data access patterns remain relatively stable, 

with certain transactions occurring frequently between institutions, while others may 

rarely be queried. This predictable access pattern provides an opportunity to optimize 

cache management strategies. 

Transaction access patterns follow a long-tail distribution [24], where a few high-

frequency transactions account for most of the query traffic, and many low-frequency 

transactions are seldom accessed. The Zipf distribution is widely used to describe the 

long-tail distribution of data access patterns. The relationship between frequency 𝑓 and 

rank 𝑟 is given by the following formula:  

                                                            𝑓(𝑟) =
𝐶

𝑟𝑠
                                                                (1) 

Where 𝑓(𝑟) represents the frequency of the 𝑟-th ranked item, 𝐶 is a constant, and 𝑠 

is the exponent of the distribution, controlling the steepness of the curve. 

Traditional cache management strategies like LRU and LFU fail to fully utilize 

cache resources in such cases. Therefore, accurately predicting transaction access fre-

quencies and dynamically adjusting cache strategies becomes key to improving query 

performance. Transaction queries have strong real-time requirements, especially in 

high-concurrency scenarios, where query requests are numerous and response time de-

mands are high. Relying solely on off-chain databases for transaction queries may lead 

to access bottlenecks. Thus, efficient cache management is necessary to reduce data-

base access pressure while ensuring data timeliness and consistency. 

In summary, the characteristics of transaction data in consortium blockchains neces-

sitate storage and query optimization strategies that are efficient, dynamically adapta-

ble, and precise.  



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

3.3 Transaction Access Frequency Prediction and Cache Optimization 

Strategy Based on GCN and XGBoost 

 

Fig. 2. Query Flowchart 

Fig. 2 illustrates the overall workflow for processing user transaction queries. Upon 

receiving a query via the interface, the system first checks the cache for the requested 

data. If the cache hit occurs, the result is returned immediately; if the cache miss occurs, 

the off-chain database is queried and the retrieved result is written back to the cache. 

Concurrently, the system continuously records users’ transaction access histories and, 

together with the complete transaction data set, constructs a relationship graph within 

the GCN module to extract node embeddings. These embeddings are concatenated with 

the original transaction attributes and fed into the XGBoost module to predict each 

transaction’s future access frequency. Based on these predictions, the cache is dynam-

ically updated. High frequency transactions are preferentially retained and low fre-

quency transactions are evicted, thereby substantially improving the cache hit rate, al-

leviating the database load and reducing query latency. 

In this paper, GCN is used to extract the structural features of transaction data. First, 

we construct a relationship graph of transaction data, where each transaction corre-

sponds to a node in the graph, and the relationships between transactions (such as the 

same sender or receiver) are represented as edges in the graph. To represent these rela-

tionships, we construct the adjacency matrix 𝐴 , where each element 𝐴𝑖𝑗  indicates 

whether there is a transaction relationship between node 𝑖  and node 𝑗 . For graph 



processing, we normalize the adjacency matrix, obtaining the normalized adjacency 

matrix 𝐴̂, defined as: 

𝐴̂ = 𝐷−1/2  × 𝐴 × 𝐷−1/2                                                  (2) 

where 𝐷 is the degree matrix, with elements 𝐷𝑖𝑖 = ∑  𝑗 𝐴𝑖𝑗 , representing the degree of 

node 𝑖. 
The core of GCN is the graph convolution operation. Graph convolution updates 

node features by aggregating information from neighboring nodes. The formula is: 

𝐻(𝑙+1) = ReLU(𝐴̂𝐻(𝑙)𝑊(𝑙))                                             (3) 

where 𝐻(𝑙) is the feature matrix of nodes at the 𝑙-th layer, representing the feature rep-

resentations of all nodes; 𝐴̂ is the normalized adjacency matrix, indicating relationships 

between nodes; 𝑊(𝑙) is the weight matrix at the 𝑙-th layer; and ReLU is the activation 

function, introducing non-linearity. 

The feature matrix 𝐻(0) is used to represent all relevant information for each trans-

action and serves as the input to the Graph Convolutional Network (GCN) model. The 

initial feature matrix is composed of three parts: sender embeddings, receiver embed-

dings, and transaction numerical features. The construction process is as follows: 

To convert the discrete user IDs into continuous feature vectors, we use an embed-

ding layer. Assuming there are 𝑈 users and the embedding dimension is 𝑑, each user 

ID is mapped to a 𝑑-dimensional vector. Through the embedding layer, the sender and 

receiver IDs are mapped to the following embedding vectors: 

𝐞𝑖
(𝑠) = Emb(𝐬𝑖) ∈ ℝ𝑑                                                      (4) 

𝐞𝑖
(𝑟)

= Emb(𝐫𝑖) ∈ ℝ𝑑                                                      (5) 

where 𝐬𝑖 and 𝐫𝑖 are the sender and receiver IDs for the 𝑖-th transaction, respectively, 

and Emb(⋅) denotes the embedding operation, outputting a 𝑑-dimensional embedding 

vector. The sender and receiver embeddings are represented by 𝐞𝑖
(𝑠)

 and 𝐞𝑖
(𝑟)

, respec-

tively. Other numerical features in the transaction data (such as transaction amount) are 

normalized. To ensure uniform scaling of the features, we use Min-Max normalization 

to map the original numerical feature vector 𝐱𝑖 to the range [0,1]. The normalized fea-

tures are: 

                                        𝐱̃𝑖 =
𝐱𝑖 − min(𝐱)

max(𝐱) − min(𝐱)
∈ [0,1]𝑚                                    (6) 

where 𝑚 is the dimensionality of the numerical features, representing the normalized 

feature matrix 𝐱̃𝑖 ∈ ℝ𝑚. 

The final initial feature matrix 𝐻(0) is obtained by concatenating the sender and re-

ceiver embedding vectors and the normalized numerical features. The initial feature 

vector 𝐡𝑖
(0)

 for each transaction consists of the following three parts: 

                                      𝐡𝑖
(0)

= [𝐞𝑖
(𝑠)‖𝐞𝑖

(𝑟)
‖𝐱̃𝑖] ∈ ℝ2𝑑+𝑚                                    (7) 
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where ‖ denotes the concatenation operation, and 2𝑑 + 𝑚 is the dimensionality of each 

transaction's feature vector. 

The feature matrix 𝐻(0) is then constructed by stacking the feature vectors of all trans-

actions: 

𝐻(0) =

[
 
 
 
 𝐡1

(0)

𝐡2
(0)

⋮

𝐡𝑁
(0)

]
 
 
 
 

∈ ℝ𝑁×(2𝑑+𝑚)                                          (8) 

where 𝑁 is the number of transactions, and 2𝑑 + 𝑚 is the length of each feature vector. 

This matrix 𝐻(0) will be passed as input to the Graph Convolutional Network (GCN) 

for further processing. 

To better learn higher-order relationships between nodes, GCN updates node fea-

tures progressively through multiple layers of convolution. The output of each layer 

serves as input for the next, enabling the model to learn more abstract feature represen-

tations. At the final layer of the GCN model, the feature vector of each node not only 

contains its own information but also incorporates features from its neighboring nodes, 

allowing the model to capture more complex relationships between nodes. 

The training of GCN is conducted by minimizing a loss function. For classification 

tasks, we use the cross-entropy loss function, defined as: 

                                                    ℒ = −∑  

𝑖

𝑦𝑖 log(𝑦̂𝑖)                                                   (9) 

where 𝑦𝑖 is the true label of node 𝑖, and 𝑦̂𝑖 is the predicted probability by the model. 

By modeling the relationship graph of transaction data using GCN, we obtain em-

bedding vectors for each transaction node. These embeddings effectively capture the 

complex relationships between transaction nodes and provide more expressive features 

for the subsequent prediction of access frequencies. In this study, the node embeddings 

learned by GCN, along with other transaction features (such as transaction amount, 

timestamp, etc.), are input into the XGBoost model to further optimize the prediction 

of access frequencies.  

XGBoost is an ensemble learning method based on decision trees, known for its 

efficient training speed and strong predictive capability. In this study, XGBoost is used 

to predict transaction access frequency, which in turn optimizes the cache replacement 

strategy. The core idea of XGBoost is to build a series of decision trees and modify 

each tree based on the residuals from the previous round, thereby gradually improving 

the model's predictive accuracy. 

In XGBoost, the goal of model training is to minimize the weighted loss function. 

Specifically, the loss function includes the loss for each sample as well as a regulariza-

tion term, as shown in the following formula: 

 ℒ = ∑  

𝑛

𝑖=1

ℒ𝑖 + 𝛾𝑇 +
1

2
𝜆 ∑  

𝑇

𝑗=1

𝑤𝑗
2                                      (10) 



where ℒ𝑖 is the loss for each sample, typically using mean squared error or log loss; 

Ω(𝑓) is the regularization term, which includes the number of trees 𝑇, the weight 𝑤𝑗  of 

each leaf node, and regularization parameters 𝛾 and 𝜆 to control the complexity of the 

model and prevent overfitting. 

The training process of XGBoost involves progressively building decision trees and 

optimizing the model using gradient boosting methods. In each iteration, XGBoost cal-

culates the error between the current predictions and the true values, and adjusts the 

model accordingly, gradually reducing the prediction error. This process uses regulari-

zation techniques to prevent the model from becoming overly complex, thereby en-

hancing the model's generalization ability. 

In this study, the XGBoost model is used to predict the transaction access frequency 

based on the features extracted by GCN. First, the node embedding vectors extracted 

by GCN are combined with the original transaction features to form a complete feature 

matrix. Then, XGBoost is trained on the combined features to learn the access fre-

quency patterns of the transaction data. The model's performance is optimized by tuning 

several key hyperparameters, including learning rate, number of trees, maximum depth, 

and subsample ratio. The learning rate controls the contribution of each tree, with a 

value of 0.1 chosen based on empirical tests. The number of trees is set to 100, and the 

maximum depth of each tree is set to 6 to balance model complexity and overfitting. 

To address class imbalance, the scale_pos_weight is set to 10, and both subsample 

and colsample_bytree are set to 0.8 to introduce randomness and prevent overfitting. 

These hyperparameters are selected through cross-validation and tuned to achieve the 

best balance between model complexity and prediction accuracy. 

After training, the XGBoost model outputs the predicted access frequency for each 

transaction, which serves as the basis for the intelligent cache replacement strategy. 

This combined prediction method using GCN and XGBoost can more accurately pre-

dict the access frequency of transaction data, optimize cache management strategies, 

and improve the query performance of the system. 

3.4 Cache Replacement Method 

In this study, the core of the cache replacement strategy is to use the predicted transac-

tion access frequencies to compute a cache replacement score for each transaction, 

thereby dynamically determining which data should be prioritized for caching. Specif-

ically, for each transaction 𝑡𝑖, we define the cache replacement score 𝑆𝑡𝑖
 as follows: 

𝑆𝑡𝑖
= 𝐹𝑡𝑖

× 𝑊𝑡𝑖
                                                      (11) 

where 𝐹𝑡𝑖
 represents the access frequency after time decay and 𝑊𝑡𝑖

 denotes the weight 

corresponding to the transaction category, reflecting the caching priority of different 

transaction types. 

The time-decayed access frequency 𝐹𝑡𝑖
 is computed using an exponential decay 

model: 

𝐹𝑡𝑖
= 𝐹𝑡𝑖

𝑝𝑟𝑒𝑣
× 𝑒−𝜆Δ𝑇 + 1                                          (12) 
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𝐹𝑡𝑖

𝑝𝑟𝑒𝑣
 is the previous access frequency of transaction 𝑡𝑖, 𝜆 is the time decay factor, and 

Δ𝑇 is the time interval between the current time and the last access time. This model 

assigns higher weights to recently accessed data while diminishing the influence of 

older accesses on cache replacement decisions. 

The frequency weight 𝑊𝑡𝑖
 is determined based on the predicted access frequency 

𝐹𝑡𝑖

𝑝𝑟𝑒𝑑
predicted by XGBoost, and is defined as: 

𝑊𝑡𝑖
= 𝜔(𝐹𝑡𝑖

𝑝𝑟𝑒𝑑
)                                                   (13) 

where 𝜔(𝐹𝑡𝑖

𝑝𝑟𝑒𝑑
)  is a preset classification function that assigns different weights to dif-

ferent transaction categories based on the predicted access frequency, categorizing 

transactions into low, medium, and high-frequency groups to determine the cache pri-

ority. 

Finally, the system makes cache replacement decisions based on the 𝑆𝑡𝑖
 values. 

When the cache capacity is reached, the system evicts the transaction with the lowest 

score and inserts new data, ensuring that high-frequency transactions are preferentially 

retained in the cache, thereby optimizing cache utilization and reducing query latency. 

4 Experiment 

4.1 Experiment settings 

Experiment Environment.  

The experiments were conducted on a machine equipped with an AMD EPYC 7763 

CPU, an NVIDIA RTX 4090 GPU, and 384 GB of RAM. 

The system runs Ubuntu 18.04.6, and all code was implemented and executed using 

Python 3.8.19. 

Transaction Dataset Construction.  

The experimental data consists of synthetic transaction records generated using a Zipf 

distribution to simulate the long-tail access pattern in consortium blockchain transac-

tions. The dataset includes 10,000 transactions and 1,000 users.  

 Zipf distribution is used to select a subset of users as high-frequency users, assigning 

them a higher probability of being chosen as senders and receivers; transaction amounts 

are generated from a uniform distribution, and timestamps are created at one-minute 

intervals.  

Access frequencies are generated using a Zipf distribution are appropriately in-

creased for transactions involving high-frequency users or high transaction amounts.  

Finally, a transaction dataset containing transaction IDs, senders, receivers, transac-

tion amounts, timestamps, and access frequencies is constructed for subsequent exper-

iments on cache optimization and access frequency prediction. By reading the transac-

tion dataset and based on the access frequency of transactions, construct a uniformly 

distributed transaction access flow. 



This synthetic dataset simulates a long-tail access pattern between a small number 

of high-frequency traders (large carbon emission groups) and many low-frequency trad-

ers (small and medium enterprises or individuals), accurately reproducing the charac-

teristics of carbon trading markets where a few large-volume transactions generate fre-

quent queries. At the same time, the uniformly distributed timestamps and access flows 

align with carbon trading platforms’ requirements for historical data auditing and real-

time monitoring, making it particularly suitable for evaluating cache optimization and 

access frequency prediction strategies in carbon trading systems. 

Experiment Design.  

This experiment consists of three main parts. First, we evaluate the effectiveness of 

different models in predicting transaction access frequency by comparing our GCN + 

XGBoost approach against three widely used baselines. XGBoost is included both as 

the canonical gradient-boosted decision tree and as an ablation baseline to isolate the 

benefit provided by the GCN-derived embeddings. Notably, prior work [25] has suc-

cessfully applied XGBoost to classify content popularity for cache updates, demon-

strating its effectiveness in cache optimization tasks and further validating its role as a 

strong baseline in our study. Decision trees have also been used as baselines in the 

paper, so we additionally employ the common tree-based models LightGBM and Ran-

dom Forest. LightGBM is selected for its optimized leaf-wise tree growth and histo-

gram-based binning, which deliver dramatically faster training and reduced memory 

consumption on large transaction logs. Random Forest serves as a robust ensemble of 

bagged decision trees, chosen for its ability to mitigate overfitting and capture hetero-

geneous patterns across multiple features without extensive hyperparameter tuning. By 

benchmarking all four methods on accuracy, F1 score, and recall rate, we clearly quan-

tify how graph-enhanced features improve prediction precision over these classical ma-

chine-learning models. 

The second part evaluates cache hit rates of different methods. Experiments were 

conducted with varying cache capacities to compare our proposed method against tra-

ditional LFU caching strategy and cache hit rates under access frequency predictions 

from other machine learning models. These experiments validate the cache optimiza-

tion effectiveness of the proposed approach. 

The final section investigates the impact of different Zipf parameters on cache hit 

rates, further assessing the adaptability of our method under long-tail distributions. By 

configuring different Zipf parameters, we observe their effects on caching strategies, 

thereby evaluating the flexibility and performance of the Proposed method under vari-

ous distribution scenarios. 
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4.2 Results and analysis 

 

Fig. 3. Comparison of Performance in Predicting Transaction Access Frequency for the Pro-

posed Method and Baseline Strategies 

In Fig. 3 regarding the effectiveness of different models in predicting transaction access 

frequency, the proposed method demonstrates outstanding performance across all eval-

uation metrics. Compared with other baseline models, the Proposed Method signifi-

cantly outperforms traditional machine learning models in terms of accuracy, F1-score, 

and recall. Although XGBoost achieves competitive results in accuracy, it fails to cap-

ture potential interaction patterns between transactions like GCN. 

 

Fig. 4. Comparison of Cache Hit Rates under Varying Cache Sizes for the Proposed Method 

and Baseline Strategies 

As shown in Fig. 4, all methods show improved cache hit rates as cache capacity in-

creases. Under smaller cache capacities, the Proposed Method exhibits notably higher 

cache hit rates compared to traditional LFU and other machine learning models. As the 



cache capacity further expands, the Proposed Method demonstrates significant en-

hancement in cache hit rate. 

 

Fig. 5. Impact of Zipf Parameter (α) on Cache Hit Rate for the Proposed Method 

Finally, as shown in Fig. 5 when assessing the impact of different Zipf parameters 

on cache hit rates, the Proposed Method maintains stable adaptability as the Zipf pa-

rameter varies. Regardless of changes in the Zipf parameter (α), the Proposed Method 

sustains high cache hit rates, with gradual improvements observed as cache capacity 

increases. Particularly under larger Zipf parameters, the Proposed Method achieves op-

timal cache hit rate performance, indicating robust adaptability to access frequency dis-

tributions of varying steepness. 

In conclusion, the Proposed Method demonstrates superior effectiveness in transac-

tion access prediction and cache management, particularly excelling in high-concur-

rency environments by effectively improving cache hit rates while maintaining strong 

adaptability to diverse access frequency distributions. 

5 Conclusion 

The architecture proposed in this paper builds upon the traditional on-chain and off-

chain systems in blockchain by adding a cache module to optimize query efficiency in 

high-concurrency environments. The combination of on-chain and off-chain storage in 

blockchain effectively alleviates data storage pressure, but in high-concurrency situa-

tions, traditional cache management methods often fail to meet the demand for fast 

queries. Therefore, this study introduces an intelligent cache replacement mechanism 

with GCN and XGBoost models to optimize the cache management strategy, improve 

the accuracy of transaction data access frequency prediction, and increase cache utili-

zation through smart replacement, further reducing the database access pressure. In this 

way, the system not only improves query efficiency but also adapts to dynamically 
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changing transaction access patterns, enhancing overall performance and response 

speed. 

Experimental results show that the proposed method significantly outperforms tra-

ditional machine learning models in predicting transaction access frequency and clearly 

surpasses traditional LFU methods and other machine learning models in cache hit 

rates. Additionally, the proposed method demonstrates strong adaptability under differ-

ent Zipf parameters, maintaining stable cache hit rates regardless of the steepness of the 

access frequency distribution. 

In conclusion, the cache optimization method combining GCN and XGBoost offers 

significant advantages in improving the query performance and response capabilities 

of blockchain-based transaction systems, especially in high-concurrency and large-

scale data processing scenarios. Future research can further optimize the GCN model 

structure and explore cache management strategies in more complex scenarios. 
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