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Abstract. Infrared small target detection (IRSTD) encounters challenges due to 

the tiny sizes of targets and interference from complex backgrounds. To over-

come these issues, this paper proposes a novel Frequency Domain Feature En-

hancement Network (FDFE-Net). The proposed network significantly improves 

the detection accuracy and robustness for IRSTD by integrating the micro-scale 

feature encoder (MSF Encoder) and frequency domain feature enhancement 

(FDFE) module. Specifically, the MSF Encoder combines parallel feature extrac-

tion and feature enhancement modules to effectively capture multi-scale feature 

information, thus mitigating information loss. The FDFE module introduces fre-

quency domain features via the Haar wavelet transform, enhancing the semantic 

differences between targets and backgrounds, thereby improving the distinguish-

ability of small targets. Experimental results on three public datasets, NUAA-

SIRST, NUDT-SIRST, and IRSTD-1K, demonstrate that the proposed FDFE-

Net outperforms several state-of-the-art IRSTD methods across multiple evalua-

tion metrics. 

Keywords: Infrared small target detection, Deep learning, Frequency domain 

feature, Haar wavelet transform. 

1 Introduction 

Infrared small target detection (IRSTD) aims to detect small targets from complex in-

frared backgrounds. Currently, this technology has been widely applied in various 

fields such as maritime surveillance [1], infrared tracking [2], and military security [3]. 

Compared with visible image-based target detection, infrared small targets possess the 

following characteristics. First, they occupy extremely limited pixels, accounting for 

less than 0.15% of the entire image. For instance, in an image of 128×128 pixels, the 

sizes of these small targets typically range from 1×1 to 6×6 pixels [4]. Due to their 

small size, infrared small targets lack distinct texture and shape features. Second, infra-

red images contain complex and variable backgrounds, including diverse environments 

such as buildings, oceans, clouds, and land. Under these background conditions, infra-

red small targets frequently face challenges of low contrast, making them easily sub-

merged within complex backgrounds and difficult to detect accurately. To tackle the 

above challenges, various methods have been proposed, primarily categorized into 

model-driven and data-driven approaches. Traditional model-driven methods include 



morphological filtering-based methods [5, 6], local contrast-based methods [7, 8], and 

low-rank sparse decomposition methods [9, 10, 11]. However, these traditional meth-

ods often require manual feature selection and design, which limits their performance 

in low-contrast conditions and complex scenarios, resulting in poor generalization ca-

pability. Data-driven methods [12-15] have introduced deep learning into IRSTD, par-

ticularly U-shaped neural networks composed of encoders, decoders, and long-range 

skip connections, which have been widely adopted.  

Although deep learning methods significantly improve detection accuracy, their en-

coders typically use fixed-size convolution kernels, resulting in limited receptive fields 

and insufficient encoding of global semantic information. Additionally, due to the small 

sizes of infrared targets and interference from complex backgrounds, these methods 

may struggle to distinguish small targets from backgrounds. Furthermore, the details 

and crucial information regarding small targets is easily lost during multiple downsam-

pling operations in U-shaped neural networks.  

To address these issues in IRSTD, we propose a novel Frequency Domain Feature 

Enhancement Network (FDFE-Net). As illustrated in Fig. 1, FDFE-Net integrates two 

innovative modules: the micro-scale feature encoder (MSF Encoder) and frequency do-

main feature enhancement (FDFE) module. Specifically, MSF Encoder combines par-

allel feature extraction [16] and feature enhancement modules, effectively capturing 

multi-scale feature information to better address information loss. Additionally, the fea-

ture enhancement module employs a multi-branch convolutional structure [17], ex-

panding the receptive field via dilated convolution to extract richer contextual infor-

mation. FDFE incorporates frequency domain features via the Haar wavelet transform 

[18], which exhibits the most compact spatial support and optimal edge-matching fil-

tering properties [19]. These characteristics render it particularly suitable for IRSTD. 

Additionally, FDFE effectively integrates high-dimensional and low-dimensional fea-

tures. This architecture enables the model to better understand the relationship between 

targets and backgrounds. 

In summary, the contributions of this paper can be summarized as follows: 

• We propose FDFE-Net, which introduces frequency domain features via the FDFE 

module to effectively enhance the semantic differences between targets and back-

grounds, thereby improving detection performance and robustness. 

• We design an MSF Encoder that integrates parallel feature extraction and feature 

enhancement modules to effectively capture both local and global contextual infor-

mation, further enhancing the representation capability for small target features. 

• We evaluate the proposed FDFE-Net on three publicly available single-frame infra-

red image datasets, demonstrating its significant advantages over multiple state-of-

the-art IRSTD methods. 

2 Related Work 

First, we briefly review IRSTD techniques based on traditional methods and deep learn-

ing methods. Next, we discuss the application of wavelet transform in image processing. 
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Fig. 1. Overview of the proposed FDFE-Net for infrared small target detection. It is built upon 

the U-Net architecture and consists of several key modules: MSF Encoder and FDFE module. 

2.1 Traditional Methods 

IRSTD algorithms can be broadly categorized into model-driven and data-driven meth-

ods. Early model-driven algorithms were primarily designed based on prior knowledge 

to construct filters or modules. For example, Deshpande et al. [5] investigated the max-

imum mean and maximum median filters to enhance the target regions. TopHat [6] 

estimates the background using different types of filters. Additionally, inspired by the 

human visual system, several local contrast-based methods have been proposed. For 

instance, Wei et al. [7] introduced a multi-scale block-based contrast measurement ap-

proach. Aghaziyarati et al. [8] proposed a local contrast measurement method based on 

the mean absolute gray difference to reduce the missed detection rate. Low-rank sparse 

decomposition methods have been proposed to handle complex and rapidly changing 

backgrounds. Examples include Gao et al. [9], who addressed IRSTD using low-rank 

matrix recovery techniques. Wang et al. [10] integrated variational regularization and 

principal component pursuit to model background characteristics. However, these mod-

els rely on prior knowledge and are sensitive to model parameters and scene variations, 

resulting in limited generalization capability, particularly in complex environments and 

low-contrast conditions. 

2.2 Deep Learning Methods 

In recent years, with the development of deep learning in the field of computer vision, 

researchers have introduced deep learning into IRSTD to enable automatic feature ex-

traction and efficient detection. These include methods based on Generative Adversar-

ial Network (GAN) and encoder-decoder architectures. GAN-based methods employ 
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adversarial learning between the generator and discriminator. For example, Wang et al. 

[12] formulate image segmentation as an optimization problem within the framework 

of GAN. However, due to the difficulty in achieving an optimal balance during the 

training process, methods based on GAN are prone to model collapse. On the other 

hand, encoder-decoder-based methods have gained increasing attention due to their 

simple structure and training process. For example, asymmetric contextual modulation 

(ACM) network [13] achieves semantic exchange between high-level and low-level 

features. Similarly, DNA-Net [14] achieves multi-level feature fusion and adaptive fea-

ture enhancement through its dense nested interaction module and spatial attention 

module. Additionally, Wu et al. [15] modeled IRSTD as a semantic segmentation prob-

lem and proposed a straightforward IRSTD framework called U-Net in U-Net (UIU-

Net). Compared with traditional methods, the above deep learning approaches have 

achieved satisfactory performance. However, these algorithms still have some limita-

tions. CNN-based encoders typically use fixed-size convolution kernels, resulting in a 

limited receptive field that cannot fully capture the global correlation. Moreover, in 

long-range skip connections, simple skip connections and dense nested modules prove 

insufficient to enhance the favorable responses of features to the decoder. 

2.3 Wavelet Transform in Image Processing 

Wavelet transform is a fundamental technique in digital signal processing. It converts 

images into the frequency domain through a set of spatial filters [20]. This approach 

has been widely employed to improve the feature representation of image signals, such 

as in denoising, compression, and super-resolution tasks [21, 22, 23]. In the field of 

image segmentation, recent studies have investigated wavelet transform applications 

[24, 25]. In IRSTD tasks, small targets have small sizes, weak thermal signals, and 

blurry contours, which are often difficult to clearly identify. Therefore, introducing fre-

quency domain features to complement the deficiencies of spatial features and improve 

the distinguishability of small targets is crucial. 

3 Method 

3.1 Overall Architecture 

As illustrated in Fig. 1, the overall architecture of FDFE-Net follows a U-shaped en-

coder-decoder architecture. For the given infrared image, FDFE-Net initially utilizes 

the MSF Encoder and max pooling layers to extract hierarchical features. Then, the 

output from the encoder is processed by the FDFE module which performs frequency 

domain feature enhancement and multi-scale feature fusion. Detailed descriptions of 

the MSF Encoder and FDFE module are provided in Section 3.2 and 3.3, respectively. 

Subsequently, we employ Channel-wise Cross Attention (CCA) [26] to fuse high-level 

and low-level features, followed by two CBL blocks for decoding. Finally, the deep 

supervision strategy [27] is implemented to compute the loss between the overall sali-

ency map and the ground truth label Y , as detailed in Section 3.4. 
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Fig. 2. The structure of the MSF Encoder. This module primarily consists of two components: 

parallel feature extraction and feature enhancement. 

3.2 Micro-scale Feature Encoder 

In the IRSTD task, multiple downsampling operations often lead to the loss of fine 

details and critical target information. Moreover, complex infrared backgrounds can 

cause false alarms with similar features, exacerbating detection challenges. To address 

these issues, we propose the MSF Encoder, which combines parallel feature extraction 

and feature enhancement modules. This architecture enables the MSF Encoder to ef-

fectively preserve hierarchical semantic representations across scales, thus better miti-

gating information loss.  

Parallel Feature Extraction. As shown in Fig. 2, the MSF Encoder employs a parallel 

feature extraction method inspired by HCF-Net [16]. The difference lies in the fact that 

we introduce the depthwise over-parameterized convolutional layer (DO-Conv) [28] in 

the sequence convolution process, which further enhances the feature representation 

capability. This parallel architecture effectively extract multi-scale features of the tar-

get, thereby improving the accuracy of small target detection. Specifically, this pro-

posed method performs feature extraction through two parallel branches: the patch-

aware and sequence convolution branch. For the input feature map H W CI  R , it is 

initially adjusted through pointwise convolution to obtain H W CI
 R . Subsequently, 

through these two branches, patch

H W CI  R  and 
conv

H W CI  R  are computed sepa-

rately. Finally, the two results are combined to obtain H W CI  R . 

First, we apply unfolding and reshaping operations to partition I  into a set of con-

tiguous patches ( , / , / , )p p H p W p C . Next, channel-level averaging is performed 

on these patches to obtain ( , / , / )p p H p W p , which is then transformed linearly 

through a feed-forward network (FFN) [29]. Subsequently, we apply an activation func-

tion to introduce non-linearity to the spatial dimensions of the feature map, producing 

a probability distribution of the features, which optimizes the final result by adjusting 

corresponding weights. 
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Then, we employ feature selection [30] to select task-relevant features from the to-

kens and channels. Specifically, let 
H W

d
p p


=


, and represent the previously weighted 

output as 
1( )C

i ix


=
, where d

ix   denotes the i -th output token. Feature selection is 

performed on each token, yielding ˆ ( , )i i ix Q sim x x=   , where C


  and 

C CQ
   are task-specific parameters, and sim( , )   denotes the cosine similarity 

function with a value ranging from 0 to 1. Here,   serves as the task embedding, indi-

cating the relative importance of each token. Each token 
ix  is weighted according to 

its correlation with the task embedding   (measured by cosine similarity), thereby 

mimicking the token selection process. Next, a task-specific linear transformation ma-

trix Q  is applied for channel selection of each token. Subsequently, reshaping and in-

terpolation operations are performed to obtain the final feature patch

H W CI  R . 

In the sequence convolution branch, the input features undergo three consecutive 

3×3 DO-Conv [28]. DO-Conv first applies a depthwise convolution kernel 
mul( )H W D C

D
  

  to the input feature map, followed by a standard convolution kernel 
out mulC D C

W
 

 , where 
mulD H W=   and 

outC C= . Finally, three separate convolu-

tion outputs 
conv1

H W CI  R , 
conv2

H W CI  R , and 
conv3

H W CI  R  are obtained and 

then summed to produce the final sequence convolution output  
conv

H W CI  R . 

Feature Enhancement. Due to the complexity of infrared images, false alarms with 

similar features frequently occur in IRSTD tasks. To address this challenge, after fea-

ture extraction, we introduce a multi-branch convolutional structure integrated with at-

tention mechanisms to enhance the features of small targets, establishing feature inter-

actions between local and global contexts, thereby reducing the false alarm rate. Each 

convolutional branch applies a 1 × 1 convolution operation on the input feature map 
H W CI  R  to preliminarily adjust the channel dimensions required for subsequent 

processing. The final branch implements a residual structure, which forms an equiva-

lent mapping, thereby preserving critical information about small targets. The remain-

ing three convolutional branches perform cascaded convolution operations, including 

standard convolution and dilated convolution with a dilation rate of 5, producing out-

puts 
1Y , 

2Y , and 
5Y . In the third and fourth branches, I  is processed through efficient 

channel attention [31] and spatial attention mechanisms [32], producing a one-dimen-

sional channel attention map 1 1 C

cM  R  and a two-dimensional spatial attention map 
1H W

sM  R , thereby enhancing the model’s feature representation capability in both 

spatial and channel dimensions. Subsequently, the calculation proceeds according to 

the following formulas: 

 3 4( ) ,  ( )c sY M I IYI IM= =   (1) 
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Fig. 3. The structure of the FDFE Module. 

 1 2 3 4

1 1

5(Cat( , , ) ( ))convY Y Y Y f I Y Y=     (2) 

 ( (dropout( )))Y Y = B  (3) 

where k k

convf   represents the standard convolution operation with a kernel size of k k . 

( )Cat   denotes the feature map concatenation operation,   represents element-wise 

addition of feature maps, and   denotes element-wise multiplication. H W C

cY  R  

and H W C

sY  R  represent the features after channel and spatial selection, respec-

tively. ( )  and ( )B represent the rectified linear unit (ReLU) and batch normalization 

functions, respectively. H W CY   R is the final output of the MSF Encoder. 

3.3 Frequency Domain Feature Enhancement Module 

Due to weak thermal signals, indistinct contours of small targets, and the limited gray-

scale dynamic range and low contrast of infrared images, small targets are easily over-

whelmed by complex backgrounds. As shown in Fig. 3, To address these issues, we 

propose the FDFE module. FDFE enhances the skip connections within U-Net and em-

ploys the Haar wavelet transform [18] to extract frequency domain features. The Haar 

wavelet transform, owing to its the most compact spatial support and optimal edge-

matching filtering properties, efficiently extracts local contour features of small targets 

while suppressing background noise [19]. Its extracted high-frequency components em-

phasize edge delineation and detailed features of small targets, whereas the low-fre-

quency components preserve global contextual information of the background. This 

multi-scale representation effectively compensates for spatial feature limitations, 

thereby enhancing the model's target-background discrimination capability. 
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Subsequently, FDFE effectively integrates high-dimensional and low-dimensional fea-

tures, retaining detailed information of small targets and providing sufficient contextual 

information. Finally, the Mix Structure Block [33] is employed to further extract and 

enhance features after multi-scale fusion. 

Specifically, FDFE first applies a pointwise convolution to the current layer's fea-

ture H W C

ui
  , generating a new feature H

u

W CI    while preserving its original 

dimensions. Subsequently, the Haar wavelet transform is employed to decompose the 

feature map into four components: a low-frequency component A , a horizontal high-

frequency component H , a vertical high-frequency component V , and a diagonal 

high-frequency component D . The three high-frequency components ( , , )H V D  are 

then concatenated and processed through a pointwise convolution for low-dimensional 

mapping to obtain the high-frequency features. Finally, the high-frequency and low-

frequency features are combined through addition and interpolation operations to ob-

tain the frequency domain features H W C

uI    : 

 1 1 1 1, ( ) ( ( ( )),  ( (Cat( , , ))))l h w conv convI f i f A f H V DI  = = B B  (4) 

 ( )u l hI B I I =   (5) 

Here, 2 2 2 2,
H W H W

C C

l hII
   

   represent the low-frequency and high-frequency fea-

tures, respectively. ( )B  represents batch normalization, and ( )B   denotes bilinear in-

terpolation.  

Through convolution and interpolation operations, the high-dimensional feature 
h h hH W C

HI
 

  and low-dimensional feature l l lH W C

LI
 

  are aligned with the cur-

rent layer's feature H W C

uI    , resulting in H W C

HI     and H W C

LI    . The re-

sulting features are then computed according to the following formula: 

 ( )usigmoid I =  (6) 

 1 1( ( ( (1 ) )))u conv L HI f I I    =  −B  (7) 

where H W C    is obtained by applying a sigmoid activation function to uI  . The 

final enhanced feature map is denoted as H W C

uI   . 

Finally, we employ a transformer-style Mix Structure Block [33] for further feature 

extraction and enhancement of the multi-scale fused features. Specifically, the input 

feature map uI  is initially processed by batch normalization, yielding the transformed 

feature map ˆ
uI . The subsequent calculations are conducted as follows: 

 5 1

1

5 1 ˆ( ( ))conv convu uf fI I =  (8) 

 19 19 13 13 7

2 1

7

1 1( ),  ( ), )( )( DWDConv DWDConv DWDConvu u u uCat fI I I If f  =  (9) 
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 1 1 1 1

2( ( ( )))u conv conv uF I f GELU f I =   (10) 

Here, k k

DWDConvf   denotes a depthwise dilated convolution with dilation rate of 3 which 

dilated convolution kernel size of k k . ( )GELU   represents the application of the 

GELU activation function. Subsequently, we process the feature map H W CF    by 

integrating multiple attention mechanisms. After applying batch normalization to ob-

tain F̂ , pixel attention, channel attention, and simple pixel attention are sequentially 

employed to derive attention-enhanced features 
pF , 

cF , and 
sF . These three attention 

outputs are then concatenated along the channel dimension. The concatenated features 

are processed through a Multi-Layer Perceptron (MLP) to align their channel dimen-

sion with the input feature map F . Finally, the aligned features are summed with F  to 

produce the final output H W CF   . The detailed computational procedure is as fol-

lows: 

 
1 1 1 1ˆ ˆ( ( ( ( ))))conv cp onvF F sigmoid GELf U f F =   (11) 

 1 1 1 1ˆ ˆ( ( ( ( ( )))))conv conc vF F sigmoid GELU GAP Ff f =   (12) 

 3 3 1 1 1 1ˆ ˆ( ( )) ( ( ))conv con c vs v onF F sigmf oid Ff f  =   (13) 

 1 1 1 1( ( ( ( , , ))))conv con p cv sF F GELU Cat Ff f F F  =   (14) 

Here, ( )GAP   denotes global average pooling. 

3.4 Loss Function 

We integrate a deep supervision strategy [27] into FDFE-Net to enhance gradient flow 

and mitigate information loss of small targets caused by multiple downsampling oper-

ations. Specifically, for each decoder output iI , we apply 1×1 convolution followed by 

the sigmoid function to obtain saliency maps. Subsequently, these low-resolution sali-

ency maps are upsampled to the original image size, yielding prediction masks 

( 1,2,3,4)iX i = , and then all saliency maps are fused to obtain 5X . Finally, we com-

pute the binary cross-entropy (BCE) loss between the prediction masks and ground 

truth (GT) annotations Y. The total loss L  is obtained by calculating a weighted sum 

of all loss terms at multiple scales. The formula is as follows: 

 
5

0

( , ),  i BCE i i i

i

l X Y L l
=

= = L  (15) 

Here, ( 0,1,2,3,4,5)il i =  denotes the loss at each scale, and the corresponding loss 

weight for each scale is set as  ( 0,1,2,3,4,5)1i i = = . 



4 Experiments 

4.1 Experimental Setup 

Dataset. In this study, we conducted experiments on three publicly available single-

frame infrared image datasets: NUAA-SIRST [13], NUDT-SIRST [14], and IRSTD-1k 

[34], containing 427, 1327, and 1000 labeled images respectively. To ensure experi-

mental standardization, we utilize the dataset partitioning approach proposed in [27] to 

divide the datasets into training and test sets. 

Evaluation Metrics. To comprehensively evaluate the detection performance of dif-

ferent algorithms, we adopt multiple metrics, including Intersection over Union (IoU), 

Normalized IoU (nIoU), Mean IoU (mIoU), F-measure, Probability of Detection (Pd), 

and False Alarm Rate (Fa). Specifically, IoU is a pixel-level evaluation metric defined 

as the ratio of intersection and union areas between predicted and ground-truth values. 

The F-measure evaluates missed detections and false alarms at the pixel-level. Pd is 

defined as the ratio of correctly predicted target pixels to all target pixels. In contrast, 

Fa denotes the proportion of false alarm pixels to all image pixels. 

Implementation Details. We conducted experiments for FDFE-Net on an NVIDIA 

GeForce RTX 3070 Ti GPU. Our model does not rely on any pre-trained weights for 

training. Each image is normalized and randomly cropped into 256×256 patches. To 

avoid overfitting, we augment the training data through random flipping and rotation. 

The network is optimized using the Adam optimizer [35] with an initial learning rate 

of 0.001, which is gradually reduced to 1×10⁻⁵ via the cosine annealing strategy. The 

batch size and epoch size are set as 32 and 200, respectively. 

4.2 Quantitative Results 

We compare the proposed FDFE-Net with several state-of-the-art (SOTA) methods, 

including ACM [13], ALCNet [36], DNA-Net [14], UIU-Net [15] and SCTransNet 

[27]. To ensure a fair comparison, we retrained these methods using the same training 

datasets as FDFE-Net and followed their original thresholds. Table 1, Table 2, and Ta-

ble 3 present the quantitative results of various metrics. FDFE-Net consistently outper-

forms other methods across all three public datasets in four key metrics: mIoU, nIoU, 

F-measure, and Pd. This demonstrates that FDFE-Net not only effectively preserves 

small target details, but also exhibits superior capability in distinguishing targets from 

background clutter. We also note that FDFE-Net does not achieve the optimal Fa. For 

example, DNA-Net has a 1.34% lower Fa than ours on the NUAA-SIRST dataset. How-

ever, our method surpasses DNA-Net by 2.07% in detection accuracy. This demon-

strates that FDFE-Net achieves a favorable trade-off between false alarm rate and de-

tection accuracy. Furthermore, we comprehensively compare FDFE-Net with the most 

competitive deep learning methods, UIU-Net and SCTransNet. Table 4 presents the 

average metrics of these methods across the three datasets. We observe that FDFE-Net 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

consistently outperforms the other methods. This demonstrates that FDFE-Net achieves 

a dual optimization of computational efficiency and model performance. 

Table 1. Comparisons with SOTA methods on NUAA-SIRST. 

Methods mIoU nIoU F-measure Pd Fa 

ACM [13] 68.93 69.18 80.87 91.63 15.23 

ALCNet [36] 70.83 71.05 82.92 94.30 36.15 

DNA-Net [14] 75.80 79.20 86.24 95.82 8.78 

UIU-Net [15] 76.91 79.99 86.95 95.82 14.13 

SCTransNet [27] 77.50 81.08 87.32 96.95 13.92 

FDFE-Net 78.31 83.55 88.72 97.89 10.12 

Table 2. Comparisons with SOTA methods on NUDT-SIRST. 

Methods mIoU nIoU F-measure Pd Fa 

ACM [13] 61.12 64.40 75.87 93.12 55.22 

ALCNet [36] 64.74 67.20 78.59 94.18 34.61 

DNA-Net [14] 88.19 88.58 93.73 98.83 9.00 

UIU-Net [15] 93.48 93.89 96.63 98.31 7.79 

SCTransNet [27] 94.09 94.38 96.95 98.62 4.29 

FDFE-Net 94.22 94.71 97.24 99.32 5.47 

Table 3. Comparisons with SOTA methods on IRSTD-1K. 

Methods mIoU nIoU F-measure Pd Fa 

ACM [13] 59.23 57.03 74.38 93.27 65.28 

ALCNet [36] 60.60 57.14 75.47 92.98 58.80 

DNA-Net [14] 65.90 66.38 79.44 90.91 12.24 

UIU-Net [15] 66.15 66.66 79.63 93.98 22.07 

SCTransNet [27] 68.03 68.15 80.96 93.27 10.74 

FDFE-Net 68.32 68.25 81.21 94.34 10.26 

Table 4. Comprehensive evaluation metrics with competitive algorithms 

Methods Params(M) FLOPs(G) mIoU nIoU F-measure 

UIU-Net [15] 50.540 54.42 78.85 80.18 87.74 

SCTransNet [27] 11.190 20.24 79.87 81.20 88.41 

FDFE-Net 10.203 18.26 80.28 82.17 89.06 



 

Fig. 4. Visual results of representative methods. White, red, and blue boxes represent correctly 

detected targets, false alarms, and missed detections respectively. 

4.3 Visual Results 

Fig. 4 illustrates the visualization results of various methods. Compared to other meth-

ods, FDFE-Net achieves superior accurate target detection and contour segmentation. 

Specifically, as shown in the first row, our method accurately detects more small tar-

gets, whereas other methods exhibit missed detections. Rows two to four indicate that 

in cluttered backgrounds, our method accurately localizes small targets while effec-

tively suppressing false alarms, which is poorly handled by other methods. This is be-

cause our approach not only learns the features of small targets but also effectively 

captures global contextual information within the image. In contrast, other methods are 

typically confined to extracting local features and fail to effectively model long-range 

dependencies, which limits their performance in complex scenarios. Additionally, the 

first and final row demonstrates that FDFE-Net provides detailed description of shape 

and texture features. 

4.4 Ablation Study 

To verify the effectiveness of the proposed MSF Encoder and FDFE module, we con-

ducted ablation studies on the NUAA-SIRST dataset. Specifically, we incrementally 

replace the encoder and long-range skip connections in the baseline model SCTransNet 

[27] with our MSF Encoder and FDFE module respectively, then perform comparative 

evaluations under identical experimental configurations to assess their performance in 

IRSTD. As shown in Table 5, the experimental results show progressive performance 

improvements with the incremental incorporation of these modules, confirming the ef-

fectiveness of both the MSF Encoder and FDFE module in enhancing detection accu-

racy and robustness.  

Ours Ground TruthALCNet DNANetUIUNetACMNetInfrared Image
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Table 5. Ablation study of the MSF Encoder and FDFE module on NUAA-SIRST. 

Baseline MSF Encoder FDFE mIoU nIoU F-measure Pd Fa 

√ - - 77.50 81.08 87.32 96.95 13.92 

√ √ - 77.67 81.49 87.42 96.99 14.11 

√ - √ 78.11 82.23 87.94 97.22 12.17 

√ √ √ 78.31 83.55 88.72 97.89 10.12 

 

5 Conclusion 

This paper proposes a novel Frequency Domain Feature Enhancement Network (FDFE-

Net) designed to improve the accuracy and robustness of infrared small target detection. 

By integrating the proposed micro-scale feature encoder (MSF Encoder) and frequency 

domain feature enhancement (FDFE) module, FDFE-Net significantly enhances small 

target detection performance, particularly under cluttered backgrounds and low-con-

trast conditions. Experimental results demonstrate that FDFE-Net outperforms several 

state-of-the-art methods across three public datasets. Overall, FDFE-Net provides an 

effective solution for IRSTD and demonstrates its powerful detection capability in com-

plex environments. 
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