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Abstract. Visible-infrared person re-identification (VI-ReID) task aims to match  

visible and infrared pedestrian images. However, due to the modality gap, VI-

ReID task faces serious technical challenges. Existing methods have made sig-

nificant progress but still suffer from two limitations: Unsupervised image gen-

eration methods are computational intensive and may introduce additional noise; 

feature-level alignment struggles with designing effective loss functions for com-

plex and abstract features output, resulting in insufficient learning and constraint 

of the model. To address these issues, we propose a Transition Modality Network 

(TMN), which aims to construct a transitional modality between the two modal-

ities, enabling early-stage cross-modality interaction at shallow network layers, 

thereby avoiding large computations and complex loss function design. First, the 

processed visible and infrared features are input into the Visible-infrared Transi-

tion Modality Fusion module (VI-TMF) to construct the transition modality. Sec-

ondly, we embed the Grouped Spatial-Channel Excitation block (GSCE) into the 

Resnet-50 for deep feature processing and extraction. Finally, we design a cross-

modality bridging loss function to align the features of the three modalities. 

Through experiments on two benchmark datasets, TMN achieves Rank-1/mAP 

accuracy of 71.42%/65.91% on the SYSU-MM01 dataset, and 92.14%/83.25% 

on the RegDB dataset, demonstrating that transition modality construction effec-

tively bridges cross-modality discrepancies and establishes a novel paradigm for 

addressing the fundamental challenges in VI-ReID tasks. 

Keywords: Visible-infrared person re-identification, Transition Modality, Fea-

ture interaction and fusion. 

1 Introduction 

In the fundamental computer vision task of person re-identification (ReID), pedestrian 

images from non-overlapping cameras are matched in visible light. [1,2]. Many ap-

proaches have demonstrated impressive performance in feature identification capabili-

ties from RGB pictures due to the rapid growth of deep learning [3, 4, 5]. Additionally, 

Vision Transformer (ViT) and attention mechanisms has significantly increased robust-

ness to intra-modality fluctuations brought on by changes in posture and viewpoint [6, 



 

7, 8]. Some research has even outperformed humans in ReID task on several datasets 

with innovative methodologies [9, 10]. Nonetheless, it performs poorly in low-light con-

ditions [11], for traditional visible-visible ReID (VV-ReID) only relies on RGB images. 

Visible-infrared ReID (VI-ReID) can address this problem because its methodology is 

to match images across visible and infrared modalities. Thus, it innovatively leverages 

infrared cameras' ability to capture details in the darkness [12, 13, 14]. However, as 

shown in Fig. 1(a), VI-ReID still faces the challenge of the modality gap [15, 16]. 

Fig. 1. Subfigure(a) illustrates the modality gap in VI-ReID task, showing the notable differ-

ences between visible and infrared images. Specifically, in visible modality, RGB images can 

capture the texture, color and pattern details, but in infrared modality, there is only temperature 

information. Subfigure(b) shows our idea to solve the reduce the modality gap by constructing 

a transition modality and designing loss functions to align features from three modalities. 

In order to solve the modality gap problem, one approach in existing researches aims 

to extract cross-modality features by using the CNN-based structure [17, 18]. Notably, 

a dual-stream network is one of the commonly used architectures, which processes vis-

ible and infrared images through two separate networks, and then performs higher-level 

feature fusion to mitigate modality differences [19, 20]. Another approach is to alleviate 

the differences between modalities by using image generation mechanisms, such as 

GAN [21, 22]. Among them, Si et al. [21] proposed a three-modality consistency opti-

mization model (TCOM). However, feature-level methods are very difficult to design 

a suitable loss function because the features in the deep layers are complex and exten-

sive, and may also cause underfitting due to insufficient constraints. At the same time, 

most of image generation methods are based on unsupervised training, causing compu-

tationally intensive and may bring additional noise. To address these problems, our 

work is primarily inspired by the work of Dai et al. [23, 24], who proposed IDM and 

IDM++ for VV-ReID task, introducing intermediate domains between source and tar-

get domains for progressive alignment. As shown in Fig. 1(b), we aim to construct a 

transition modality between visible and infrared modalities and design loss functions 

to align features from these three modalities to improve the performance in completing 
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the VI-ReID task. 

Based on AGW [16] by Ye et al., we propose a novel method named Transition Mo-

dality Network (TMN). As shown in Fig. 2, We firstly use separate modules to extract 

shallow RGB and IR features. Then, we construct a Visible-infrared Transition Modal-

ity Fusion module (VI-TMF) to dynamically blend dual-stream features, enabling fea-

tures smoothly transit along geodesic paths, avoiding abrupt alignment. We design a 

Grouped Spatial-Channel Excitation block (GSCE) and embed it into the Resnet-50 

backbone to improve feature extraction performance. Lastly, we use identity classifica-

tion loss and a designed cross-modality bridging loss function to balance intra-class 

compactness and inter-class separation. Experiments on SYSU-MM01 and RegDB 

show the advanced performance our method, proving transition modality effectively 

harmonize modality gaps and intra-modality variations. 

Fig. 2. The framework of TMN. Pedestrian images are first extracted by visible and infrared 

modules, and are fed into VI-TMF module to construct a transition modality. The GSCE mod-

ule is embedded into Resnet-50 backbone for deeper feature processing and interaction. Finally, 

the feature alignment of the three modalities is carried out through the designed loss functions. 

The key contributions of our work can be summarized as follows: 

• We propose a method for constructing transition modality (TMN) between the visi-

ble and infrared modality to achieve progressive cross-modality alignment of the 

model, notably reducing the modality gap in cross-modality VI-ReID task.  

• We design Visible-infrared Transition Modality Fusion module (VI-TMF) for tran-

sition modality construction, Grouped Spatial-Channel Excitation block (GSCE) for 

global feature extraction and cross-modality bridging loss function to constrain the 

feature alignment process. These components work together to enhance feature in-

teraction and fusion, ensuring effective cross-modality alignment. 

• We have conducted experiments on the two benchmark datasets. The experimental 

results demonstrate TMN achieves Rank-1/mAP accuracy of 71.42%/65.91% on the 

SYSU-MM01 dataset, and 92.14%/83.25% on the RegDB dataset, which reaches 

the advanced level of accuracy in prediction, providing a new theoretical insight for 

cross-modality VI-ReID task. 



 

2 Related Works 

2.1 Visible-visible ReID (VV-ReID) 

In the early stages of VV-ReID research, global feature extraction evolved into local 

feature extraction. A Part-based Convolutional Baseline (PCB) was a symbolic method 

for aligning local features using Refined Part Pooling (RPP) without pose priors as sug-

gested by Sun et al. [25], and Bai et al. [26] proposed using LSTM for capturing local 

feature sequences. In addition, Zhu et al. [27] introduced AAformer, which demon-

strated the transition from rigid partitioning to adaptive learning using learnable "Part 

tokens" and optimal transport for unsupervised semantic clustering, demonstrating the 

shift from rigid partitioning to adaptive learning. Researchers have also explored new 

learning strategies as well as designed loss functions to improve feature discriminabil-

ity. For example, Yan et al. [28] designed FIDI Loss with exponential penalties for fine-

grained differences to address sensitivity to subtle variations; semi-supervised strate-

gies like LSRO (Zheng et al. [3]) leveraged GAN-generated data and label smoothing. 

Zhang et al. [10] attempted to combine the CNN-Transformer architecture with depth-

supervised aggregation (DSA) to enable hierarchical feature fusion at multiple lev-

els. To address occlusion and lighting issues, Zeng et al. [29] suggested the IID network 

using adversarial training to separate identity and illumination variables. Further, Zhao 

et al. [30] developed IGO, which progressively generates occlusion and suppressed in-

terference. Ge et al. [31] developed a FD-GAN framework which distilled pose-invari-

ant features by using Siamese GANs. However, these methods are still limited to single-

modal information, reducing their ability to overcome inherent data source limitations. 

2.2 Visible-infrared person ReID (VI-ReID) 

Visible-infrared person re-identification (VI-ReID) has advanced through dataset con-

struction, generative alignment and feature fusion. The foundation was laid by Wu et 

al. [12], who took the first step as a pioneer and introduced the SYSU-MM01 dataset 

and demonstrated the potential of single-stream networks with deep zero-padding to 

implicitly bridge modality gaps. Early generative methods, like cmGAN [32] and 

AlignGAN [33], used adversarial training for pixel-to-feature alignment. Qi et al. [21] 

later improved these methods with contrastive learning and channel attention (GC-IFS), 

achieving 85.63% Rank-1 on SYSU-MM01. Feature fusion methods evolved with 

Cheng et al.’s TFFN [20] and Liu et al. [34]'s parameter-sharing dual-stream networks 

which optimized via Hetero-Center Triplet Loss (HCT), reaching 91.05% Rank-1 on 

the RegDB dataset. The View-decoupled Transformer (VDT) by Zhang et al. [35] and 

EDITOR [36] were two examples of dynamic architectural innovations. The former 

employed hierarchical tokens to distinguish between view and identification infor-

mation, while the latter employed spatial-frequency selection to mitigate background 

noise. Additionally, as for the design of loss functions also made significant progress. 

Ye et al. [19, 37] combined cross-modality constraints with hierarchical metrics and 

BDTR, while Ren and Zhang's IDKL [38] achieved the then-current SOTA on RegDB 

dataset by distilling modality-specific discriminative knowledge into shared features 
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via triplet graph alignment. 

3 Methodology 

3.1 GCSE Module 

As shown in Fig. 3, Ye et al. incorporate the Non-local block from Wang et al. [39] 

which aims to capture global feature dependencies, thus addressing the limitations of 

traditional local operations. It computes a weighted sum of features across all positions: 

 𝑧𝑖 = 𝑊𝑧 ∗ 𝑓(𝑥𝑖) + 𝑥𝑖   (1) 

where 𝑊𝑧  is a learnable weight matrix and 𝑓(⋅) denotes the non-local operation.  

Fig. 3. The structure of Non-local Block in AGW (baseline) [16], which applies a single 

1 × 1 convolution to generate 𝜃(𝑥), 𝜙(𝑥), and 𝑔(𝑥), the block also adds the input 𝑥 

to form the residual connection. 

We enhance the Non-local block with the a Grouped Spatial-Channel Excitation block 

(GSCE), improving former method in terms of grouping and channels. The structure of 

GSCE block is shown in Fig. 4 GSCE employs grouped convolutions to partition the 

input features into parallel interaction branches. Each branch independently computes 

spatial correlations through: 

 𝐴(𝑔) = Softmax ((𝜃(𝑔)(𝑥))
𝑇

𝜙𝑔(𝑥)) (2) 

where 𝑔 = 1,2, … ,N   denotes the group index. Each group is then formulated as: 

 𝑦(𝑔) = 𝐴(𝑔) 𝑔(𝑔)(𝑥) (3) 

The outputs from all groups are concatenated along the channel dimension and a final  

1 × 1 convolution maps the output back to the original channel dimension. We keep 

the residual connection to the input, forming the intermediate output 𝑧 = 𝑊(𝑦) + 𝑥.  



 

Fig. 4. The structure of our Grouped Spatial-channel Excitation block (GSCE). By leveraging 

grouped convolution, GSCE captures global spatial dependencies while flexibly learning fine-

grained information across different feature subspaces. Softmax activation function can avoid 

the extreme values of the weight matrix, while the introduction of SE block can enhance the ex-

pressive ability of the block. 

SE Block. Refer to [50], to further enhance the model’s sensitivity to feature channels, 

we also integrate an SE Block (Squeeze-and-Excitation). As shown in Fig. 4, the SE 

block recalibrates the feature through two phases: Squeeze and Excitation. In the 

Squeeze stage, SE Block uses global average pooling (GAP) to aggregate spatial infor-

mation into a vector 𝑠𝑐  : 

 𝑠𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑧𝑐(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1 ,  ∀𝑐 ∈ {1,2, … , 𝐶} (4) 

In the Excitation stage, it generates channel-wise weight calibration by flowing 

through two fully connected layers with ReLU and Sigmoid activation functions: 

 𝑤 = σ(𝑊2δ(𝑊1𝑠)) (5) 

Here 𝑊1 ∈ 𝑅
𝐶

𝑟
×𝐶  and 𝑊2 ∈ 𝑅𝐶×

𝐶

𝑟   represent two FC layers, the final weight 𝑤 is ex-

panded to match the input feature dimensions and applied to reweight the feature map: 

 𝑧 ′ = 𝑤 ⋅ 𝑧 (6) 

By integrating the GSCE and SE blocks, the model captures global dependencies 

across different orientations and channels, accentuating essential regions and sup-

presses less significant features, ultimately enhancing its representational capacity. 

3.2 VI-TMF Module 

To address modality gap in VI-ReID task, we design a Visible-infrared Transition Mo-

dality Fusion module (VI-TMF). As shown in Fig. 5, dual-stream backbone extracts 

visible and infrared features as inputs. To capture both global and local details, the 

module applies adaptive average pooling and max pooling and concatenate the output 

along the channel dimension, forming aggregated representations for both modalities: 
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 𝐹𝑣𝑖𝑠 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃𝑎𝑣𝑔(𝑓𝑣𝑖𝑠), 𝑃𝑚𝑎𝑥(𝑓𝑣𝑖𝑠)) ,  𝐹𝑖𝑟 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃𝑎𝑣𝑔(𝑓𝑖𝑟), 𝑃𝑚𝑎𝑥(𝑓𝑖𝑟)) (7) 

Next, we define the operation of generating the transition modality by adding the 

𝐹𝑣𝑖𝑠 and 𝐹𝑖𝑟 and feed it into MLP and Softmax activation functions, ensuring dynamic 

weighting of each modality: 

 𝑎𝑣𝑖𝑠 , 𝑎𝑖𝑟 = Softmax(MLP(𝐹𝑣𝑖𝑟 + 𝐹𝑖𝑟)) (8) 

 𝑓𝑡𝑟𝑎𝑛 = 𝑎𝑣𝑖𝑠𝑓𝑣𝑖𝑠 + 𝑎𝑖𝑟𝑓𝑖𝑟 (9) 

In this way, the entire VI-TMF module can not only adaptively learn the importance 

of features in different modalities but also achieve feature fusion through weight ad-

justment, making the cross-modality features more consistent and thereby enhancing 

the matching capability. 

Fig. 5. The structure of VI-TMF module. The module fuses visible and infrared features by 

generating two combination factors, allowing the model to obtain modality-specific representa-

tions while dynamically constructing a transition modality. 

3.3 Loss function 

Identity Classification Loss. A cross-entropy loss is applied on both the visible-infra-

red and transition modality features. For an input batch of RGB–IR image 

pairs {𝑥𝑖
𝑅𝐺𝐵 , 𝑥𝑖

𝐼𝑅}𝑖=1 
𝑁 with identity labels 𝑦𝑖 , the identity loss is defined as: 

 ℒ𝑖𝑑 = −
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 log 𝑝 (𝑦𝑖|𝑥𝑖) (10) 

Additionally, a transition modality identity loss ℒ𝑖𝑑
𝑡𝑟𝑎𝑛 is also used to enforce hierar-

chical feature learning, its calculation method is basically the same. 

 ℒ𝑖𝑑
𝑡𝑟𝑎𝑛 = −

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 log 𝑝 (𝑦𝑖|𝑥𝑖

𝑡𝑟𝑎𝑛) (11) 

Cross-modality Bridging Loss. Additionally, to bridge the gap between different mo-

dalities, we introduced a bridging loss function based on maximum mean discrepancy 



 

(MMD). It minimizes the statistical distance between feature distributions in a repro-

ducing kernel Hilbert space (RKHS) from different modalities. As an illustration, we 

first discuss the bridging loss for the visible and infrared modality. We first map the 

visible feature 𝑓𝑣𝑖𝑠 and the infrared feature 𝑓𝑖𝑟  into the RKHS using a mapping func-

tion 𝜙(⋅), thereby obtaining their means respectively： 

 𝜇𝑣𝑖𝑠 =
1

𝑁
∑ 𝜙(𝑓𝑣(𝑥𝑖))𝑁

𝑖=1 ,  𝜇𝑖𝑟 =
1

𝑁
∑ 𝜙(𝑓𝑖(𝑥𝑖))𝑁

𝑖=1  (12) 

We defined the cross-modality bridging loss as the Euclidean distance between them: 

 ℒ𝑏𝑟𝑖
𝑣−𝑖 = ‖𝜇𝑣𝑖𝑠 − 𝜇𝑖𝑟‖2 (13) 

Practically, we describe the similarity between every pair of samples in a Gaussian 

kernel as 𝐾(𝑧𝑖 , 𝑧𝑗) .Therefore, the calculation of the bridging loss is partitioned into 

three components according of the modality: within the visible modality (XX), within 

the infrared modality (YY), and the cross-modality (XY). Their average values are cal-

culated to get the empirical assessment of the cross-modality bridging loss: 

 ℒ𝑏𝑟𝑖
𝑣−𝑖 =

1

𝑁2
∑ [𝐾 (𝑓𝑣(𝑥𝑖), 𝑓𝑣(𝑥𝑗)) + 𝐾 (𝑓𝑖(𝑥𝑖), 𝑓𝑖(𝑥𝑗)) − 2𝐾 (𝑓𝑣(𝑥𝑖), 𝑓𝑖(𝑥𝑗))]𝑁

𝑖,𝑗   (14) 

As shown in Fig. 6, in order to ensure the consistency between the three modes, the 

entire cross-modality bridging loss covers the bridging loss between every two modal-

ities, and finally consists of three parts: 

 ℒ𝑏𝑟𝑖 = ℒ𝑏𝑟𝑖
𝑣−𝑖 + ℒ𝑏𝑟𝑖

𝑣−𝑡+ℒ𝑏𝑟𝑖
𝑖−𝑡 = ℒ𝑏𝑟𝑖(𝑓𝑣, 𝑓𝑖) + ℒ𝑏𝑟𝑖(𝑓𝑣 , 𝑓𝑡𝑟𝑎𝑛) + ℒ𝑏𝑟𝑖(𝑓𝑖 , 𝑓𝑡𝑟𝑎𝑛) (15) 

The final loss function is formulated as: 

 ℒ = ℒ𝑖𝑑 + λ1ℒ𝑖𝑑
𝑡𝑟𝑎𝑛 + λ2ℒ𝑏𝑟𝑖 (16) 

where λ1, λ2 are the weighs to balance losses.  

Fig. 6. Cross-modality bridging loss function diagram. We use three bridging losses to repre-

sent the Euclidean distance between the features of different modalities in RKHS, and realize 

the cross-modality features alignment. 
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4 Experiments 

4.1 Datasets and Evaluation Metrics 

We conduct comprehensive validation of our model on two cross-modality (visible-

infrared) benchmarks: SYSU-MM01 (Wu et al. [12], 2017) and RegDB (Nguyen et al. 

[40],2017). The SYSU-MM01 dataset consists of 34,166 multimodal images (22,257 

visible and 11,909 infrared samples) and includes 395 training identities and 96 test 

identities. The dataset offers two evaluation modes: all-search mode (hybrid indoor-

outdoor scenarios) and indoor-search mode, capturing images using four visible and 

two infrared cameras under different illumination and conditions. The RegDB dataset 

has 8,240 paired images across 412 identities, with 206 identities for training and the 

rest for testing. We perform bidirectional cross-modality retrieval (visible↔infrared) 

for evaluation. In our experimental setting, referring to the evaluation approach pro-

posed by [16], we used two key metrics to evaluate the performance of two datasets: 

mean Average Precision (mAP) and cumulative matching features (CMC), which cen-

ters on ranking precision, assessing a model's capability to correctly position true 

matches within ordered candidate lists. In particular, we select the Rank-1 accuracy as 

the one of evaluation metrics of our method. 

4.2 Experimental Methodology  

According to the experimental setup, we use Python 3.10.16 and PyTorch 2.6.0+cu124, 

and train our model on NVIDIA GeForce RTX 4090. As for our method, we adopt the 

ResNet50 [41] pre-trained on ImageNet [42] as the backbone. All input images are 

resized to a fixed resolution of 288 × 144 pixels. For training data augmentation, we 

apply horizontal flipping, random cropping and random erasing (with an erasing prob-

ability of ρ=0.5).The architecture is optimized using the Stochastic Gradient Descent 

(SGD) algorithm, configured with a momentum parameter of 0.9 and a weight decay 

rate of 5×10−4. During training, the learning rate is initialized to 0.1, reduced by a factor 

of 0.1 after first 20 epochs, and further adjusted to a decay rate of 0.01 after 20 epochs. 

The entire model undergoes 80 training epochs. For batch sampling, we randomly se-

lect 4 identities per batch, each containing 4 visible and 4 infrared images, resulting in 

a total batch size of 32 images.  

4.3 Visualization Analysis 

Visualization of Feature Distribution. In order to visualize the training results of our 

model, the features before prediction phase were extracted and reduced to two-dimen-

sional space through t-SNE as shown in Fig. 7. The points with the same color in the 

figure indicate that the samples that belong to the same class and to ensure the discrimi-

nability of the visualization results, we randomly selected 20 samples in a batch for 

image rendering. In Fig.7(a), we compare the visual results between the AGW baseline 

and our TMN. It can be seen that for the baseline model, although it has some feature 

differentiation ability, many samples from different categories still overlap, limiting its 



 

performance in the VI-ReID task. When we gradually complete all components and 

apply the TMN method, the model can almost identify all 20 samples, indicating that 

our TMN method has strong feature differentiation ability and effectiveness. In 

Fig.7(b), we present the results for different training epochs. After several epochs of 

training, samples with the same label increasingly cluster together, further visualizing 

the feature differentiation ability and effectiveness of our method. 

Fig. 7. The feature distribution after t-SNE dimensionality reduction. Compared to the baseline, 

TMN exhibits strong performance in distinguishing different classes. Furthermore, its perfor-

mance improves as the model training progresses, confirming the effectiveness and robustness 

of our method TMN. 

Influence of hyperparameters. We evaluated the effect of the tradeoff parameters λ1 

and λ2 in Eq. (16) on TMN prediction performance. Fig. 8 shows the effect of parameter 

values on Rank-1 and mAP in the all-search mode of the SYSU-MM01 and the visible 

to infrared mode of RegDB dataset. With the other parameter fixed at 1, we gradually 

increased the values of λ1 and λ2 from 0 to 2 for independent experiments. As shown in 

Fig.8(a), the R1 and mAP of the TMN in the all-search mode of the SYSU-MM01 

dataset exhibited a trend of first increasing and then decreasing with the increase of the 

parameters. When λ1 = 0.5 and λ2 = 0.5, TMN achieved the best R1 and mAP on the 

SYSU-MM01 dataset. Using the same method, we conducted parameter analysis on the 

visible-to-infrared search mode on the RegDB dataset. Similar to the SYSU-MM01 

dataset, R1 and mAP on RegDB also showed a trend of first increasing and then 
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decreasing. However, as shown in Fig.8(b), when λ1 = 1 and λ2 = 0.75, the best R1 and 

mAP were achieved on the RegDB dataset. Therefore, during the training of the TMN 

architecture, we set the tradeoff parameters λ1 and λ2 to 0.5 and 0.5, respectively, for 

training on the SYSU-MM01 dataset, and λ1 and λ2 to 1 and 0.75 for training on the 

RegDB dataset. 

Fig. 8.  The influence of tradeoff parameters λ1 and λ2 in the TMN loss function. The red dotted 

line marks the value of the hyperparameter when the evaluation metrics is the highest. For the 

SYSU-MM01 dataset, the best parameter combination is λ1=0.5 and λ2=0.5, while for the 

RegDB dataset, the best parameter combination is λ1=1 and λ2=0.75. 

4.4 Comparison with Current Advanced Methods 

As shown in Table 1, TMN showed excellent performance beyond most of the methods 

shown in the table, especially on the larger SYSU-MM01 dataset, where our TMN ob-

tained optimal results for both Rank-1 and mAP in both the all-search and indoor-search 

modes. More specifically, TMN has achieved 71.42% R1 accuracy and 65.91% mAP 

in the all-search mode, and 73.74% Rank-1 and 77.05% mAP in the indoor-search 

mode. Compared with other best-performing models that have been listed in the table, 

TMN has respectively improved Rank-1 and mAP by 1.63% and 2.41% in the all-

search mode, and 0.33% of the R1 as well as 0.38% of the mAP accuracy in the indoor-

search mode. The remarkable performance on the larger SYSU-MM01 dataset more 

convincingly demonstrates its generalization and robustness. Even when confronted 

with a wide variety of image viewpoints and pedestrian motion postures, TMN demon-

strates formidable discrimination and matching prowess. 



 

In the RegDB dataset, TMN's R1 performance in the infrared to visible retrieval 

mode is 0.15% lower than the best result of the existing methods. However, it achieves 

a best R1 result of 92.14%, 83.25% mAP in the visible to infrared mode and 81.27% 

mAP in the infrared to visible mode, demonstrating superior performance while im-

proving upon the previous best results by 4.03%, 1.59% and 0.48%. Although TMN 

does not achieve optimal results across all metrics under every search mode in the two 

benchmark datasets, its overall performance surpasses most existing models listed in 

the table, demonstrating its effectiveness in achieving progressive feature alignment by 

constructing a transition modality. 

Table 1. Comparison of TMN and current advanced methods on two benchmark datasets 

SYSU-MM01 and RegDB datasets. Our TMN has reached the current advanced level of accu-

racy on most of the evaluation metrics. 

Method 

SYSU-MM01 RegDB 

All-search Indoor-Search Vis to Ir Ir to Vis 

R1 mAP R1 mAP R1 mAP R1 mAP 

Zero-Pad ([12], 2017) 14.80 15.95 20.58 26.92 17.75 18.90 16.63 17.82 

HSME ([17], 2019) 20.68 23.12 - - 50.85 47.00 50.15 46.16 

DDAG ([15], 2020) 54.75 53.02 61.02 67.98 69.34 63.46 68.06 61.80 

AlignGAN ([33], 2021) 42.40 40.70 45.90 54.30 57.90 53.60 56.30 53.40 

AGW (baseline) ([16], 2021) 47.50 47.65 54.17 62.97 70.05 66.37 70.49 65.90 

SPOT ([43],2022) 65.34 62.25 69.42 74.63 80.35 72.46 79.37 72.26 

G2DA ([44], 2023) 63.94 60.73 71.06 68.88 73.95 65.49 69.67 61.98 

CMTR ([45], 2023) 65.45 62.90 71.46 76.67 88.11 81.66 84.92 80.79 

PRAISE ([46], 2024) 59.44 53.27 61.03 66.35 72.54 68.46 73.15 69.85 

SDCL ([47], 2024) 64.49 63.24 71.37 73.50 86.91 78.34 80.05 75.32 

NLDC ([48],2025) 57.09 51.02 58.24 65.05 84.03 78.34 80.05 75.32 

CM2GT ([49],2025) 69.79 63.50 73.41 76.63 86.72 77.99 86.47 77.51 

TMN (Ours) 71.42 65.91 73.74 77.05 92.14 83.25 86.32 81.27 

4.5 Ablation study 

As shown in Table 2, by gradually introducing a combination of different modules and 

loss functions, we verify the contribution of each component to the performance of 

TMN. In the experiment, AGW is used as the baseline, and the initial performance are 

Rank-1 (R1) 47.50% and average precision mean (mAP) 47.65%. Subsequently, we 

introduced GSCE and SE modules, and R1 is further increase to 51.45% (+3.95%) and 

mAP to 49.51% (+1.86%), indicating that global dependency modeling enhanced the 

ability to capture global features such as pedestrian posture and contour. On this basis, 

we add VI-IMF module and introduce transition modality identity loss ℒ𝑖𝑑
𝑖𝑛𝑡𝑒𝑟 , further 

push R1 to 57.85% (+10.30%), mAP to 55.39% (+7.74%). The introduction of visible-
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infrared bridging loss ℒ𝑡𝑟𝑖
𝑣−𝑖  further increases R1 and mAP to 62.82% (+15.32%) and 

60.26% (+12.61%) respectively. Finally, when combined the entire cross-modality 

bridging loss ℒ𝑡𝑟𝑖  , TMN achieved optimal performance (R1=71.42%, mAP=65.91%), 

with 23.92% (R1) and 18.26% (mAP) improvements over the baseline.  

The ablation study demonstrates that TMN achieves progressive performance en-

hancement through a hierarchical integration of multi-scale feature extraction and chan-

nel attention mechanisms (AGW-GSCE), cross-modal interaction (VI-TMF), and joint 

loss functions. Each component contributes distinctively: AGW-GSCE captures dis-

criminative patterns across scales and prioritizes critical feature channels, VI-TMF 

aligns cross-modality representations, and the combined loss functions refine fea-

ture consistency. With full components integration, TMN notably outperform the base-

line method, highlighting our method’s effectiveness and superiority in VI-ReID task. 

Table 2. Results of ablation experiments on the SYSU-MM01 dataset. In order to maintain the 

consistency of the results, our ablation experiments were uniformly conducted in the all-search 

mode of the SYSU-MM01 dataset. 

AGW  

Baseline 

GSCE 

(without SE) 

GSCE 

(with SE) 

VI-TMF 

+ℒ𝑖𝑑
𝑖𝑛𝑡𝑒𝑟 

ℒ𝑏𝑟𝑖
𝑣−𝑖 ℒ𝑏𝑟𝑖  R1 mAP 

√      47.50 47.65 

√ √     50.54 49.04 

√ √ √    51.45 49.51 

√ √ √ √   57.85 55.39 

√ √ √ √ √  62.82 60.26 

√ √ √ √ √ √ 71.42 65.91 

5 Conclusion 

In this paper, we propose a framework TMN by constructing a transition modality for 

cross-modality feature interaction and fusion, which addresses the challenge of distri-

bution discrepancies between visible and infrared modalities. We first introduce a 

Grouped Spatial-channel Excitation block (GSCE) to capture the global feature of pe-

destrian images, thereby effectively mitigating local feature ambiguities caused by oc-

clusions and viewpoint variations. Subsequently, the Visible-infrared Transition Mo-

dality module (VI-TMF) is applied to fuse the dual-modal features, constructing a 

cross-modality transitional representation that bridges the modality gap and enhances 

feature compatibility. Based on this, a multi-level loss constraint system is designed: 

the visible-infrared and transition modality identity loss enforces consistency of similar 

features in the cross-modality space, and the cross-modality bridging loss forces the 

alignment of higher-order features between modalities. Extensive experiments on two 

datasets demonstrate that TMN achieves superior performance. This method, following 

a progressive optimization path of "transition modality construction – feature extraction 

and interaction – distribution alignment" realizes hierarchical fusion in cross-modality 

person, thereby providing robust technical support for all-weather security scenarios. 



 

However, our proposed method is relatively simple. In future work, we can consider 

multi-level feature fusion and interaction, such as performing multiple feature fusions 

at different stages of the ResNet backbone. More complex feature fusion methods can 

also be explored, and comparisons between different fusion strategies can be con-

ducted. These are all directions that need to be further improved in our subsequent 

work. 
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