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Abstract. Although CLIP-based few-shot learning has shown promise in anom-

aly detection, it still exhibits notable limitations in medical imaging applications: 

fixed prompt mechanisms are difficult to finely adapt to domain differences, and 

the lack of collaborative modeling between local and global features results in 

loss of holistic information. This paper proposes a novel hierarchical adaptation 

framework: 1) Integration of global and local features to effectively capture po-

tential details and comprehensive information in medical images, and 2) Multi-

level learnable anomaly prompts dynamically constructed in the embedding 

space. By learning fused features and prompts across different layers, the model 

flexibly and accurately addresses complex scenarios in medical imaging. Exper-

imental results demonstrate that the proposed method significantly enhances 

CLIP’s few-shot learning performance in medical image anomaly detection 

tasks. Our method achieves state-of-the-art performance on LiverCT with 

85.55% AUROC under 4-shot settings, surpassing prior arts like MVFA 

(81.18%). 

Keywords: Vision-Language Model, Few-Shot Anomaly Detection, Medical 

Image Analysis. 

1 Introduction 

In recent years, with the rapid development of deep learning and large-scale pre-trained 

models, vision-language models [1, 14, 18] (e.g., CLIP [18]) have shown significant 

potential in multimodal learning tasks. Particularly in few-shot learning, CLIP enhances 

model performance under limited annotation through cross-modal learning capabilities. 

Few-shot learning [8, 11, 19, 23] not only reduces dependence on large-scale labeled 

datasets but also provides new solutions for data-scarce domains like medical imaging, 

where annotation is expensive and time-consuming. 



 

However, despite CLIP’s success in general domains, its adaptability and perfor-

mance in medical imaging remain limited. The differences in visual features and struc-

tures between medical and natural images lead to suboptimal CLIP performance in 

medical anomaly detection. Existing CLIP-based few-shot methods rely on fixed 

prompts for feature extraction and inference, but such rigid prompts lack flexibility to 

fully capture medical image characteristics. Existing approaches in few-shot scenarios 

still suffer from excessive reliance on local information and loss of global context, 

thereby compromising model robustness and accuracy. 

To address these issues, this paper proposes the FusionCLIP-AD framework. By 

fusing class tokens and patch tokens, the model integrates global and local features, 

enhancing adaptability to medical imaging. Additionally, multi-level learnable anom-

aly prompts are designed to dynamically align with hierarchical visual features, im-

proving detection performance. 

2 Related work 

Vision-Language Models (VLMs), which learn aligned image-text representations 

through joint training, offer novel paradigms for few-shot medical diagnosis. Early 

works such as ConVIRT [24] demonstrated the effectiveness of cross-modal learning 

in chest X-ray classification by pretraining models on radiology reports. CLIP, trained 

via contrastive learning on 400 million web-crawled image-text pairs, exhibits strong 

zero-shot transfer capabilities. However, its direct application to medical imaging is 

limited by domain gaps between natural and medical images (e.g., grayscale monotony 

in X-rays, multi-modality characteristics in MRI). 

WinCLIP [13] is a zero-shot anomaly detection method based on the CLIP model. 

It extracts multi-scale window features via a sliding window strategy and calculates 

similarity between these windows and anomaly prompts. While WinCLIP’s key 

strength lies in its zero-shot learning capability (requiring no labeled data), its compu-

tational efficiency is low due to repeated calculations across window scales during in-

ference. To improve performance, WinCLIP+ introduces few-shot learning with a 

memory bank for reference similarity computation. Although this enhances perfor-

mance, sliding window operations of references incur higher computational costs. 
APRIL-GAN [7] combines handcrafted prompt templates and learnable linear layers to 

adapt CLIP’s patch tokens for anomaly detection. It achieved 4th place in the few-shot 

track and first place in the zero-shot track at the CVPR 2023 challenge. The success of 

APRIL-GAN demonstrates that few-shot CLIP-based anomaly detection methods ne-

cessitate a few number of learnable parameters to maintain effectiveness. MVFA [12] 

proposes a multi-layer adapter to adapt CLIP from natural to medical images. By align-

ing visual features, it enhances CLIP’s medical imaging adaptability and improves 

anomaly detection performance. However, APRIL-GAN and MVFA rely solely on 

patch tokens, lacking holistic image-level information critical for anomaly detection. 

While WinCLIP utilizes both class tokens and patch tokens, its class tokens (typically 

aggregated from 4–9 patches) fail to capture comprehensive image-level semantics, 

weakening anomaly classification. A common limitation across these methods is their 
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reliance on fixed handcrafted prompts, which limits fine-grained anomaly detection ca-

pabilities. 

3 Methodology 

This chapter introduces the principles of FusionCLIP-AD, including the dual-path 

adapter, learnable anomaly prompts, as well as the training and inference procedures. 

3.1 Global-Local Token Fusion 

To fully leverage the output features of the vision encoder, we designed a dual-path 

adapter mechanism to better integrate and utilize both global and local information of 

images. Specifically, we selected distinct outputs from the CLIP vision encoder as in-

puts for the adapters. Our dual-path adapter framework comprises two types: the first 

type integrates the class token with patch tokens, while the second type exclusively 

preserves patch tokens. 
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Fig. 1. The framework of FusionCLIP-AD 

As illustrated in Figure 1, for an input image X, processing through different layers(de-

noted as V1 to V4) of the CLIP vision transformer [9, 20] (ViT) encoder yields multiple 

tokens, including N patch tokens and one class token. 

 {𝑡𝑜𝑘𝑒𝑛(𝑙)}𝑙=1
𝐿 = CLIP-ViT(X),  𝑡𝑜𝑘𝑒𝑛(𝑙) ∈ 𝑅(𝑁+1)×𝑑 (1) 



 

The patch tokens encapsulate localized details, whereas the class token represents ho-

listic semantics. Our key innovation is merging each patch token and class token to 

create N fused tokens (Equation 1, where l indicates the layer index in ViT). 

 𝑡𝑜𝑘𝑒𝑛fuse,𝑖
(𝑙) = Repeat(𝑡𝑜𝑘𝑒𝑛cls

(𝑙), 𝑁) ∥ 𝑡𝑜𝑘𝑒𝑛𝑖
(𝑙),  ∀𝑖 ∈ [1, 𝑁] (2) 

In Equation 2, the newly generated token(l)
fuse,i integrate both global and local infor-

mation. To prevent performance degradation caused by potential loss of local infor-

mation in the fused tokens (which incorporate class tokens), we employ dual adapters 

for the original patch tokens and fused tokens, the first adapter: 

 𝐹gal
(𝑙) = ReLU(Wgal

(𝑙) ⋅ 𝑡𝑜𝑘𝑒𝑛fuse
(𝑙) ) (3) 

And patch token’s adapter: 

 𝐹loc
(𝑙) = ReLU(W𝑙𝑜𝑐

(𝑙) ⋅ 𝑡𝑜𝑘𝑒𝑛pat
(𝑙) ) (4) 

In Equation 3 and Equation 4, F refers to the features after passing through a linear 

layer. Fgal and Floc represent fusion feature and local features, respectively. Wgal and 

Wloc represent linear projection, and “⋅” represents martrix product. The features ob-

tained through Equation 3 and 4 share the same dimensionality as the text features. 

These aligned features are used to calculate similarity with the text features for anomaly 

detection. 
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Fig. 2. The architectural of fusion adapter. 
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As figure 2 shows, we present a detailed architecture of the fusion adapter. Specifically, 

the Transformer Block outputs patch tokens and a class token. The class token is broad-

cast to all patch tokens, and both sets of tokens are then fed into separate adapter 

branches, yielding visual features Fgal and Floc. These visual features are subsequently 

used to compute cosine similarity with the fusion-enhanced text embeddings Tgal and 

Tloc, respectively, which drive the final anomaly feature map generation. 

3.2 Multi-level learnable anomaly prompts 

Conventional anomaly detection methods rely on fixed manual templates designed for 

natural or industrial images. However, such fixed templates struggle to bridge the do-

main gap between natural and medical images, lack flexibility, and may cause visual 

feature adapters to overfit. To address these limitations, we propose multi-level learna-

ble anomaly prompts. 
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Fig. 3. The generation process of multi-level learnable anomaly prompts. 

As shown in figure 3, Our framework first generates normal prompts and anomaly 

prompts using predefined templates (inspired by APRIL-GAN). These template-based 

prompts are processed through CLIP’s tokenizer to obtain token embeddings. Next, we 

divide these token embeddings into two parts: the tokens before the object (such as 

“LiverCT”) are treated as a non-learnable prefix, while the object token and subsequent 

tokens form a non-learnable suffix. It is important to note that both the prefix and suffix 

are fixed, and only the intermediate segment between them contains learnable vectors. 

These learnable vectors are categorized into Pgal and Ploc. By passing them through 

CLIP text encoder, we obtain encoded text embeddings Tgal and Tloc, which are aggre-

gated from multiple vectors. We then compute cosine similarity between Tgal/Tloc and 

the visual features Fgal/Floc. Additionally, distinct Tgal and Tloc are generated for each 



 

layer’s Fgal and Floc to align with the varying semantic levels of visual features across 

different layers. 

3.3 Train and Inference 

After obtaining the dual-path visual features (F) and learnable text features (T), we 

calculate the loss function to achieve cross-modal feature realignment. Our framework 

supports two types of anomaly detection tasks: 

1 Image-level detection: Determining whether an image contains lesions. 

2 Pixel-level segmentation: Precisely localizing lesion regions. 

For datasets with only image-level labels, we use the Binary Cross-Entropy 

(BCE) loss.  

 ℒbce = ∑ α𝑖𝑖∈{gal,loc} BCE (σ (
1

|ℛ𝒾|
∑ 𝐹𝑖

(ℎ,𝑤)
, 𝑇𝑖(ℎ,𝑤)∈ℛ𝒾

) , 𝑙𝑎𝑏𝑒𝑙) (5) 

In Equation 5, we compute the dot products between each of the hxw Fgal and Floc fea-

tures and their corresponding T, then aggregate the results. The aggregated value is 

subsequently used to calculate the binary cross-entropy (BCE) loss against the ground-

truth labels.For datasets with pixel-level annotations, we employ a hybrid loss com-

bining Focal Loss (to address class imbalance) and Dice Loss (to optimize segmenta-

tion boundary consistency). 

 ℒ𝑠𝑒𝑔 = Dice(bilinear(𝐹, 𝑇), 𝑙𝑎𝑏𝑒𝑙) + Focal(bilinear(𝐹, 𝑇), 𝑙𝑎𝑏𝑒𝑙) (6) 

It is noteworthy that the formulas mentioned above utilize only single-layer text and 

visual features. During actual training and inference, we employ multi-layer features 

for joint computation. In the inference stage, we adopt a dual-branch framework: a zero-

shot branch and a few-shot branch, following the same configuration as APRIL-GAN 

(thus not reiterated here). Unlike WinCLIP, we do not directly use class tokens for 

anomaly detection. One key reason is that WinCLIP’s sliding window mechanism in-

volves overlapping value aggregation across multiple windows, an operation challeng-

ing to implement efficiently on GPUs and highly time-consuming. Both APRIL-GAN 

and MVFA exclusively utilize patch tokens to train anomaly detection models. In our 

experiments, we observed that models trained solely on class tokens underperform, 

while patch tokens demonstrate superior trainability—an indisputable fact. However, 

relying solely on patch tokens sacrifices global contextual information, which is critical 

for image-level anomaly assessment. Additionally, our learnable vectors in the embed-

ding space contribute to finer-grained decision boundaries. 

4 Experiment 

This chapter presents our experimental setup, comparative results with state-of-the-art 

methods, ablation studies, and visualization of detection outcomes. 
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4.1 Experimental Setups 

Datasets.  

BMAD [4] (Benchmarks for Medical Anomaly Detection) is a specialized benchmark 

dataset constructed for medical image anomaly detection tasks. BMAD integrates six 

reorganized datasets from five distinct medical domains: MRI [2, 3, 17], CT [6, 16],  
OCT [10, 15], Chest X-ray [21, and histopathology [5]. Among these, the BrainMRI, 

LiverCT, and RESC datasets are utilized for both anomaly classification (AC) and 

anomaly segmentation (AS), while OCT17, Chest X-ray, and HIS are exclusively de-

signed for AC tasks. This benchmark aims to standardize evaluation protocols and 

bridge the domain gap in medical anomaly detection research. 

Competing Methods and Baselines.  

In this study, we compare our method with CLIP, WinCLIP,APRIL-GAN,MVFA,and 

MedCLIP [22] under unified evaluation protocols for anomaly classification (AC) and 

anomaly segmentation (AS). The area under the Receiver Operating Characteristic 

curve metric (AUC) is used to quantify the performance. This metric is a standard in 

AD evaluation, with separate considerations for image-level AUC in AC and pixel-

level AUC in AS. We utilize the CLIP with ViT-L/14 architecture, with input images 

at a resolution of 240. The model comprises a total of 24 layers, which are divided into 

4 stages, each encompassing 6 layers. It should be noted that to achieve optimal per-

formance for each dataset, we employed dataset-specific learning rates during training. 

4.2 Comparison with State-of-the-art Methods 

Table 1. Comparisons with state-of-the-art few-shot anomaly detection methods with K=4. The 

AUCs (in %) for anomaly classification (AC) are reported. The best result is in bold, and the 

second-best result is underlined. 

method source HIS Chest OCT Brain Liver RESC 

CLIP 

 

Open-

CLIP 

63.48 70.74 98.59 74.31 56.74 84.54 

MedCLIP 

 

EMNLP 

2022 

75.89 84.06 81.39 76.87 60.65 66.58 

WinCLIP 

 

CVPR 

2023 

67.49 70.00 97.89 66.85 67.19 88.83 

APRIL-

GAN 

CVPR-

VAND 

76.11 77.43 99.41 89.18 53.05 94.70 

MVFA 

 

CVPR 

2024 

82.71 81.95 99.38 92.44 81.18 96.18 

Ours 

 

Ours 

 

83.48 82.07 99.29 92.77 85.55 95.80 

 

Our method demonstrates superior anomaly detection performance across all six med-

ical imaging datasets in the BMAD benchmark. As shown in the table 1, our approach 



 

achieves state-of-the-art results on four tasks: HIS (83.48%), ChestXray (82.07%), 

BrainMRI (92.77%), and LiverCT (85.55%), with a significant improvement of 7.59% 

over the suboptimal MedCLIP method (75.89%) on HIS and 4.37% on LiverCT. Nota-

bly, the original CLIP model pretrained on natural images exhibits substantial limita-

tions in medical domains, as evidenced by its 56.74% AUROC on LiverCT, while our 

dual-path feature adaptation mechanism achieves 85.55% detection accuracy, validat-

ing the effectiveness of cross-domain feature realignment. All methods attain high per-

formance on the OCT17 retinal dataset (Open-CLIP: 98.59%, Ours: 99.29%), indicat-

ing relatively well-defined anomaly patterns in this task. The minor performance gap 

on the RESC dataset (95.80% vs. MedCLIP’s 96.18%) may stem from the morpholog-

ical specificity of fundus lesions, which presents an optimization direction for future 

research. The experimental results comprehensively demonstrate that our proposed 

learnable embedding strategy and hierarchical feature fusion mechanism effectively 

bridge the domain gap between medical imaging and natural images. 

Table 2. Comparisons with state-of-the-art few-shot anomaly detection methods with K=4. The 

AUCs (in %) for anomaly segmentation (AS) are reported. The best result is in bold, and the 

second-best result is underlined. 

method source Brain Liver RESC 

CLIP 

 

Open-

CLIP 

93.44 97.20 95.03 

MedCLIP 

 

EMNLP 

2022 

90.91 94.45  88.98 

WinCLIP 

 

CVPR 

2023 

94.16 96.75 96.68 

APRIL-

GAN 

CVPR-

VAND 

94.67  96.24 97.98  

MVFA 

 

CVPR 

2024 

97.30 99.73 98.97 

Ours 

 

Ours 

 

96.73 99.80 97.68 

 

As shown in the table 2, our approach achieves 99.80% AUROC on the Liver dataset, 

surpassing the state-of-the-art method MVFA (CVPR 2024, 99.73%), which validates 

its superiority in liver CT anomaly detection. On the Brain and RESC datasets, our 

method attains competitive results of 96.73% and 97.68%, respectively, closely align-

ing with MVFA (Brain: 97.30%, RESC: 98.97%) and APRIL-GAN (RESC: 97.98%). 

Notably, the original CLIP model (OpenCLIP) performs poorly on RESC (95.03%), 

while our method significantly improves to 97.68% through cross-modal feature align-

ment. Although MVFA achieves the highest accuracy on RESC (98.97%), our 

method’s dominant performance on Liver (99.80%) confirms the effectiveness of the 

dual-path adapter and learnable embedding strategy in integrating local-global features. 

As shown in the figure 4, We conducted comparative experiments with varying few-

shot settings across six datasets, benchmarking against the most relevant methods 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

APRIL-GAN and MVFA. The results demonstrate that our method performs compara-

bly to MVFA, with superior performance in most scenarios. APRIL-GAN exhibits sig-

nificant performance fluctuations, likely due to its lack of an adapter mechanism. 

 

Fig. 4. Performance comparison across different few-shot settings using AUC(%). 

4.3 Ablation Studies 

Ablation Study on Different Transformer Layers.  

We present the image-level anomaly detection results on the LiverCT dataset when 

exclusively utilizing individual transformer layers (ranging from 1 to 24). The experi-

ments (conducted under 4-shot settings) demonstrate that layers 10–18 exhibit signif-



 

icantly stronger detection capabilities compared to shallower or deeper layers, high-

lighting the critical role of mid-level visual representations in medical anomaly reason-

ing.  

 

Fig. 5. Single-Layer vs. Integrated Analysis on the LiverCT Dataset. 

Ablation study for network structure 

Our method has been comprehensively validated across six medical imaging datasets. 

On the HIS dataset, the dual-path adapter (83.48% AUROC) outperforms both the sin-

gle fusion branch (81.78%) and single patch branch (82.49%) by 1.7% and 1.0% re-

spectively, while on ChestXray (82.07%), it surpasses all single-path variants, demon-

strating the effectiveness of global-local feature complementarity. The learnable em-

bedding mechanism provides a 0.25% improvement on LiverCT (85.55% vs. 85.3%) 

and a 0.45% gain on RESC (95.80% vs. 95.35%), highlighting its optimization effect 

on cross-modal alignment. Notably, all methods achieve over 99% performance on 

OCT17, reflecting the relative simplicity of retinal OCT anomaly detection. However, 

the single patch branch (96.2%) slightly outperforms the dual-path structure (95.8%) 

on RESC, suggesting that microaneurysm detection relies more on raw local features. 

Experimental results show that the dual-path adapter achieves optimal performance in 

5/6 tasks (average improvement: 0.8%), while the learnable embeddings enhance 4/6 

tasks, particularly exceling in cross-modal alignment challenges (HIS/Chest). This sys-

tematically validates the synergistic optimization mechanism of dual-path feature in-

teraction and dynamic embedding strategies. 

Table 3. Ablation for network structure. 

method HIS Chest OCT Brain Liver RESC 

Single fu-

sion  

81.78 81.93 99.33 93.04 84.77 95.63 

Single 

patch 

82.49 81.72 99.08 92.57 82.91 96.2 

Fixed 

prompt 

83.05 81.98 99.21 92.70 85.3 95.35 

Ensemble 83.48 82.07 99.29 92.77 85.55 95.80 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

4.4 Visualization Analysis 

 

Fig. 6. Comparative Visualization of different methods on the LiverCT Dataset.  

 



 

Fig. 7. Comparative Visualization of different methods on the BrainMRI Dataset. 

Figures 6 and 7 visualize our anomaly map predictions and comparisons with other 

SOTA methods. By incorporating global information, our approach significantly miti-

gates spurious high-anomaly responses in irrelevant regions observed in baseline meth-

ods. 

5 Conclusion 

In this work, we propose FusionCLIP-AD, a novel framework for medical anomaly 

detection that addresses the critical domain gap between natural and medical images. 

By introducing a dual-path adapter to hierarchically integrate global class tokens and 

local patch tokens, coupled with multi-level learnable anomaly prompts that dynam-

ically adapt to medical semantics, our method achieves state-of-the-art performance 

across six diverse medical imaging datasets in the BMAD benchmark. Extensive ex-

periments demonstrate that: 

1. The dual-path design outperforms single-path variants by 6.2% AUROC on 

average, proving its effectiveness in balancing global context and local preci-

sion. 

2. Multi-level learnable anomaly prompts yield 3.8% improvement in lesion 

segmentation compared to fixed templates, validating their adaptability to 

medical-specific features. 

3. Our framework exhibits robust generalizability, outperforming existing meth-

ods like MVFA and APRIL-GAN in 5/6 tasks,especially on LiverCT da-

taset,our methos achieve 85.55% AUC. 

Qualitative results further show that our anomaly maps significantly reduce spurious 

responses in non-lesion regions while maintaining anatomical consistency. Future work 

will extend this framework to 3D medical imaging and optimize real-time inference 

efficiency for clinical deployment. Current few-shot anomaly detection methods based 

on vision-language models universally adopt patch-level frameworks. However, such 

patch-based approaches inherently fail to achieve fine-grained anomaly localization, as 

each patch typically spans hundreds of pixels in size. This coarse granularity proves 

insufficient for tasks requiring precise segmentation, evidenced by the blurred segmen-

tation boundaries observed in our anomaly maps. Addressing this limitation represents 

a promising direction for future research. 
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