
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Efficient Delegated Multi-Party Private Set Intersection 

Protocol for Large-Scale Datasets 

Ou Ruan1,2[0000-0001-8189-3258], Huiwen Miao1,2[0009-0004-2274-856X], 

and Changwang Yan2[0009-0005-9925-440X] 

1 School of Computer Science, Hubei University of Technology, Wuhan, 

Hubei Province 430000, China 
2 Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network 

Abstract. Private set intersection (PSI) as a core research direction in modern 

cryptography can accurately obtain the intersection information of multiple par-

ties' data while ensuring the confidentiality of the original set of each participant. 

With the advantages of cloud platforms in storage and computation, cloud-based 

PSI schemes are getting more and more attention. Based on Paillier homomor-

phic encryption algorithm and pseudo-random function, this paper proposes an 

efficient delegated multi-party private set intersection protocol suitable for large-

scale data sets. The protocol transforms the dataset intersection problem into a 

polynomial rooting problem and uses random polynomial blinding methods and 

homomorphic encryption techniques to ensure the security of the protocol. We 

give a rigorous formal security proof of the protocol and implement it using the 

C++ programming language. Our advantages can be demonstrated from the ex-

perimental analysis as follows: (a) the protocol is more suitable for large-scale 

dataset scenarios than the relevant protocols. The time complexity of ours’ server 

is while it’s in other protocols where d is the size of the dataset; (b) our protocol 

is much more efficient. The running time for clients of our protocol is 1/3 of that 

of the others; (c) the protocol does not depend on the existence of a secure chan-

nel while the comparison protocol needs. 

Keywords: Private Set Intersection, Cloud Delegation, Set Polynomial Repre-

sentation, Large-Scale Datasets. 

1 Introduction 

With the deep integration of big data, artificial intelligence, and cloud computing, data 

has become a fundamental driver of socio-economic development. However, the ten-

sion between data sharing and privacy protection is increasingly pronounced. On one 

hand, data silos constrain the potential of cross-domain knowledge discovery; on the 

other, direct exposure of raw data poses risks of sensitive information leakage and legal 

non-compliance. Thus, achieving secure and efficient multi-party collaborative com-

puting while ensuring data privacy has become a critical challenge for both academia 

and industry [1]. 



Private Set Intersection (PSI) provides a key technological path to resolve the above 

contradiction. PSI allows two or more participants to output the intersection content 

without revealing the non-intersecting elements of their respective sets. For example, 

medical institutions can identify common mutation sites through PSI protocols without 

sharing all the data [2]; banks can compare lists of defaulters with each other through 

PSI technology without the need for the intervention of trusted third-party organizations 

[3]; airports compare passenger biometrics with multinational security databases 

through PSI technology without leaking users' biometric privacy [4]. Since Meadows 

[5] first proposed the concept of PSI, its technical system gradually moved from theo-

retical conception to engineering landing (Freedman et al. [6]; Pinkas et al. [7]). How-

ever, with the rapid development of the big data era, the existing PSI protocols still face 

multiple challenges of efficiency, scalability and security. 

In order to solve this problem, cloud-commissioned PSI protocols have been pro-

posed one after another. Cloud has two major advantages: the cloud storage advantage 

and the cloud computing advantage [8]. Compared with traditional local PSI computa-

tion, cloud-commissioned PSI has two significant differences [9]: security model and 

computation model. The computational side of traditional local PSI trusts its own local 

resources, while cloud servers are untrustworthy to users; traditional local PSI performs 

computation and storage on local devices, while cloud servers of cloud-commissioned 

PSI share the computation overhead. 

Moving to multi-party PSI introduces additional complexity and opportunities based 

on the Cloud Delegated PSI protocol. Multi-party PSI is about collaboratively compu-

ting the intersection of multiple participants without disclosing non-intersection ele-

ments while ensuring privacy and security [10]. Multi-party systems require a higher 

degree of cloud resource delegation and fine-grained orchestration. With the flexibility 

of cloud computing, multi-party PSI protocols are able to handle large-scale data and 

increase the efficiency of collaboration, but securing data in an untrusted cloud envi-

ronment remains a key concern. In 2022, Abadi introduced Feather [27], a lightweight 

cloud-based multi-party PSI protocol using Bloom filters for verification, improving 

efficiency. However, it still relies on secure channels [28], and the server has relatively 

low computing efficiency in scenarios involving large-scale data. 

Based on the analysis above, we propose an efficient delegated multi-party private 

set intersection protocol for large-scale datasets (DMPSI-LD). Our protocol offers sev-

eral improvements over O-PSI [22] and Feather [27]. It maintains scalability, ensuring 

that the number of clients does not impact individual clients or the querying party, 

thereby sustaining performance as the system expands. Additionally, the server’s com-

putational complexity increases linearly with the number of participants, ensuring pre-

dictable performance. Unlike O-PSI and Feather, our protocol eliminates the need for 

a secure communication channel, reducing both complexity and potential vulnerabili-

ties. Furthermore, it optimizes the server’s ability to handle larger datasets, improving 

efficiency without sacrificing performance. In summary, DMPSI-LD retains their ad-

vantages while addressing key limitations, such as the requirement for a secure channel 

and server performance, particularly for large datasets. 
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2 Related work 

In 1976, Diffie and Hellman [11] proposed the Diffie-Hellman key exchange protocol 

to provide a theoretical basis for subsequent DH-based PSI schemes. In 2004, Freed-

man [8] proposed the DH-based hash comparison PSI protocol, which utilizes a shared 

key to generate a matchable hash value. In 2012, Huang et al. [12] compared the effi-

ciency of the Diffie-Hellman hash comparison with the obfuscated circuit scheme and 

proved the advantage of the Diffie-Hellman scheme under large-scale data. In 2014, 

Pinkas [13] combined DH hashing with OT scaling techniques to propose an efficient 

PSI protocol to support billion-scale data. In 2016, Abadi et al. [14] proposed verifiable 

DH hash comparison schemes to support third-party delegated computation scenarios. 

In 2017, Rindal et al. [15] optimized the DH hash comparison protocol for malicious 

adversary models to enhance security through dual execution, and Kiss et al. [16] ex-

tended the DH scheme to support PSI with unequal-length sets to optimize the perfor-

mance of mobile applications. In 2021, Rosulek et al. [17] optimize DH hash compari-

son for small-scale datasets and propose compact and malware-resistant protocols. 

Traditional privacy set intersection (PSI) protocols rely on client-side computation, 

constrained by storage and processing power, making large-scale data handling ineffi-

cient. Cloud computing introduces a new paradigm, enabling outsourced data storage 

and computation. In 2012, Kerschbaum proposed the first cloud-based PSI protocol 

[18] for encrypted data outsourcing and cloud computation but lacked reusability and 

had security flaws. He later optimized it with Bloom filters and homomorphic encryp-

tion [19], improving efficiency but still requiring local data storage. In 2014, Liu et al. 

introduced a lightweight PSI protocol [20] with double encryption, though vulnerable 

to aggregate base leakage. Kamara et al. [21] enhanced security using blinding and 

zero-knowledge proofs but restricted cloud computation. In 2017, Abadi et al. proposed 

two two-party PSI protocol with homomorphic encryption [22], enabling fully out-

sourced encrypted storage with linear complexity. The first protocol, O-PSI, computes 

the intersection efficiently using the Paillier homomorphic encryption algorithm that 

displaces the blinding factor of the set polynomial. The second protocol, EO-PSI, re-

moves the time-consuming cryptographic algorithms and greatly improves the effi-

ciency of the protocol by running an efficient pseudo-random function implementation. 

The second protocol, EO-PSI, removes the time-consuming cryptographic algorithms 

and greatly improves the efficiency of the protocol through an operationally efficient 

pseudo-random function implementation. However, both protocols rely on secure chan-

nels in order to ensure security [23,24]. Later optimizations [24] used hash indexing 

and pseudo-random functions to reduce overhead but retained secure channel reliance. 

In 2018, Mehd et al. [24] introduced an asymmetric encryption scheme improving se-

curity. Yang et al. [25] replaced homomorphic encryption with RSA, increasing com-

putational efficiency by 40%, while Tajima et al. [26] used fully homomorphic encryp-

tion (FHE) for provable security but at a high computational cost due to ciphertext ex-

pansion. 

Multi-party PSI is also widely used in various domains by ensuring the data privacy 

of multiple participants while performing efficient intersection computation. Despite 



its progress in security, protocol design, and efficiency, it still faces challenges such as 

scalability, generalization, and malicious protection. 

In 2022, Abadi extended the second protocol EO-PSI in [22] to multiparty (Feather 

[27]) and used a Bloom filter to enhance the performance of the protocol. Feather in-

herits the feature of high efficiency of EO-PSI, the operation efficiency of users and 

queriers is not affected by the number of users, and the operation efficiency of servers 

is linearly correlated with the number of users. However, it still has two aspects that 

need to be improved: (a) the protocol still does not address the need for secure channels; 

and (b) the efficiency of the protocol is less efficient with large-scale datasets. To ad-

dress this issue, our protocol retains the advantages of the Feather protocol and further 

improves the processing capability of the server when the amount of data increases, 

while no longer relying on the secure channel and requiring only a small amount of 

encryption to complete the computation under the open channel, which improves the 

efficiency and applicability of the protocol while guaranteeing privacy and security. 

3 Specific Protocol 

In this subsection, the process and details of the protocol will be elaborated specifi-

cally.  

3.1 System Model 

System Framework 

The cloud-commissioned multi-party private aggregate intersection protocol contains 

three types of participants: t users 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡), one query party B, and one cloud 

server C. The system framework is shown in Fig. . 

 

 
 

Fig. 1. System framework diagram 

Define the following function: 𝑓(⊥, 𝑆𝑖 , . . . , 𝑆𝑡 , 𝑆𝑏) ,where ⊥  is the empty string,  

𝑆1, . . . , 𝑆𝑡represents the data set of user 𝐴1, . . . , 𝐴𝑡,𝑆𝑏represents the data set of querying 

party B, and 𝐸𝑛𝑐  represents the encryption algorithm. 𝐴1, . . . , 𝐴𝑡 and B encrypt or 

blind their respective data sets and upload them to C, which computes the encrypted or 

blinded data to find the intersection 𝐸𝑛𝑐(𝑆1 ∩···∩ 𝑆𝑡 ∩ 𝑆𝑏) of the encrypted or blinded 

set, and sends it to the querying party B. The querying party B can decrypt or unblind 

this data set to find the intersection. 
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System Goals and Requirements 

Based on the definition of the cloud delegation PSI protocol given in the article [28], 

the objectives of the system given in this paper are as follows: 

(1) Each delegating user 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) is able to securely store their set 𝑆𝑖(1 ≤ 𝑖 ≤
𝑡) on the cloud server C; 

(2) Query user B is able to securely store his set 𝑆𝑏 on cloud server C; 

(3) Cloud server C is able to unite user 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) and querying party B to com-

pute intersection 𝑆1 ∩···∩ 𝑆𝑡 ∩ 𝑆𝑏 efficiently. 

The requirements of the system are as follows: 

(1) Delegated user 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) knows only their private set 𝑆𝑖(1 ≤ 𝑖 ≤ 𝑡); 

(2) Cloud server C cannot know any private information; 

(3) Querying party B can only know his set 𝑆𝑏 and the intersection information 𝑆1 ∩
···∩ 𝑆𝑡 ∩ 𝑆𝑏 of all users; 

(4) Cloud server C handle most of the computation and communication tasks; 

(5) User 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) and querying party B should not interact directly or should 

keep such interaction minimal. 

3.2 Overview of the Protocol 

The protocol is divided into 3 phases: the initialization phase, the data uploading 

phase, and the intersection calculation phase. The initialization phase works as the 

cloud server generates the necessary parameters for the entire protocol, and the users 

prepare their data sets. The data uploading phase works as all the users store their data 

on the cloud server, which utilizes the storage capacity of the cloud server so that the 

data can be deleted locally to save storage space. The intersection computation phase 

is performed by the querying party's request, and the other users cooperate, and the 

cloud server performs the main computation work. 

The protocol uses point-valued representation of polynomials for the computation. 

The point-valued representation of polynomials reduces the time complexity of multi-

plication of polynomials to linear. The protocol blinds the roots by adding a random 

number to the polynomial after blinding the random polynomial. A polynomial plus a 

random number means that the curve of this polynomial is shifted up and down on the 

axes, and if this random value is not exposed, then the roots of the original polyno-

mial are not exposed. With the protocol in this paper, the need for a secure communi-

cation channel can be eliminated, optimizing the server's ability to handle larger da-

tasets and increasing efficiency without sacrificing performance. 

 

3.3 The Details of the Protocol      

The detailed flowchart of the protocol is shown in Fig. . 



 

Fig. 2. Protocol Flow Chart 

Setup Phase 

Step 1: A finite field 𝐹𝑝 is constructed with large prime p, followed by the genera-

tion of a pseudo-random function 𝑃𝑅𝐹: {0,1}𝑙 × 𝑍 → 𝑅 where l denotes secret key 
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bit-length. The system configures the user-defined set cardinality bound d, selects se-

curity parameter 𝜆 , and generates point vector 𝑥⃗ = {𝑥1, . . . , 𝑥𝑛}, 𝑁 = 2𝑑 + 1. All pa-

rameters are ultimately published by cloud server C. 

Step 2: User 𝐴𝑖 generates a master key mki using a cryptographically secure ran-

dom number generator (RNG), which serves as the seed for the PRF 𝑟𝑎𝑛𝑑().The 

user maintains a private dataset 𝑆𝑖
⃗⃗⃗ ⃗ = {𝑎𝑖,1, . . . , 𝑎𝑖,𝑛}, 𝑛𝑖 ≤ 𝑑. 

Step 3: Query party B generates a master key mkb using a cryptographically se-

cure random number generator (RNG), which serves as the seed for the 

PRF 𝑟𝑎𝑛𝑑().The B maintains a private dataset 𝑆𝑏
⃗⃗⃗⃗⃗ = {𝑎𝑏.1, . . . , 𝑎𝑏,𝑛𝑏

}, = 𝑛𝑏 ≤ 𝑑. 

Initialization Phase 

Step 1: Executes the Paillier cryptosystem’s key generation algorithm to produce a 

public-private key pair (𝑝𝑘𝑐, 𝑠𝑘𝑐) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆) The public-private keys are repre-

sented by pkcand skc, respectively, and 𝜆 stands for a security parameter in this pro-

cedure. 

Step 2: User 𝐴𝑖 represents the dataset as a polynomial 𝑓𝑖(𝑥) = ∏ (𝑥 − 𝑎𝑖,𝑗)
𝑛𝑖
𝑗=0  , 

and then substitutes the point vector 𝑥⃗ into it to obtain the point value vector. Uti-

lizes the PRF and master key 𝑚𝑘𝑖 to generate N random numbers, forming a random 

vector 𝑍𝑖.Computes a blinded point-value vector i  by summing the original and 

random vectors, then uploads 𝜊⃗𝑖  to C. 

 ,1 , ,1 ,{ , , } { ( ), , ( )}i i i N i i i i Nf a f a  = =
 

（1） 

 ,1 ,{ , , } { ( ,1), , ( , )}i i i N i iz z z PRF mk PRF mk N= =
 

（2） 

 

,1 ,1 , ,

,1 ,

{ , , }

{ ( ) ( ,1), , ( ) ( , )}

i i i i i i N i N

i i i i i N i

z z z

f a PRF mk f a PRF mk N

   = + = + +

= + +  
（3） 

Step 3: B represents the dataset as a polynomial 𝑓𝑏(𝑥) = ∏ (𝑥 − 𝑎𝑏,𝑗)
𝑛𝑏
𝑗=0 , and then 

substitutes the point vector 𝑥⃗ into it to obtain the point value vector.Utilizes the 

PRF and master key 𝑚𝑘𝑏 to generate N random numbers, forming a random vec-

tor 𝑍𝑏.Computes a blinded point-value vector 𝜊⃗𝑏  by summing the original and ran-

dom vectors, then uploads 𝜊⃗𝑏  to C. 

 ,1 , ,1 ,{ , , } { ( ), , ( )}b b b N b b i b Nf a f a  = =
 

（4） 

 ,1 ,{ , , } { ( ,1), , ( , )}b b b N b bz z z PRF mk PRF mk N= =
 

（5） 

 

,1 ,1 , ,

,1 ,

{ , , }

{ ( ) ( ,1), , ( ) ( , )}

b b b b b b N b N

b b b b b N b

z z z

f a PRF mk f a PRF mk N

   = + = + +

= + +  
（6） 

Intersection Computation Phase 

Step 1: Generates a Paillier public-private key pair (pkb, skb) ← KeyGen(λ) and 

transmits its identity  IDb and public key  pkb to C to request intersection computa-

tion. Returns the dataset 𝜊⃗𝑖  stored by user 𝐴𝑖 to 𝐴𝑖 and the dataset 𝜊⃗𝑏  stored by B 



to party B.Transmits auxiliary parameters 𝑝𝑘𝑏 and 𝐼𝐷𝑏  to 𝐴𝑖 to explicitly identify 

the requesting party initiating the intersection query. 

Step 2: Restores 𝜏𝑖. Generate a randomized d-order polynomial 𝜔𝑖(𝑥). Construct a 

point-value vector 𝑤⃗⃗⃗𝑖 for the randomized polynomial. A random number 𝑟𝑖 is gener-

ated, followed by the computation of parameters 𝜑⃗⃗𝑖 and 𝑒𝑒𝑟𝑖, 𝜑⃗⃗𝑖 and 𝑒𝑒𝑟𝑖 are trans-

mitted to the cloud server C for further processing. 

 ,0 ,0 , ,{ , , }i i i i i i N i Nz z z   = − = − −
 

（7） 

( ) ( )i x genRandomPoly d 
                   

(8) 

 ,1 , ,{ , , }, ( ),1i i i N i j iw w w w j j N= =  
 

（9） 

 , , , ,1i j i j i j iw r j N =  +  
 

（10） 

 ,1 ,{ , , }i i i N  =
 

（11） 

 
( ( ))

c bi pk pk ieer Enc Enc r=
 

（12） 

Step 3: Restores 𝜏𝑏.Reduce the polynomial  𝑓𝑏(𝑥) via 𝜏𝑏 and Lagrange interpo-

lation, factorize 𝑓𝑏(𝑥) using the Jenkins-Traub algorithm and restore 𝑆𝑏. Generate a 

randomized d-order polynomial 𝜔𝑏(𝑥). Construct a point-value vector 𝑤⃗⃗⃗𝑖 for the 

randomized polynomial. A random number 𝑟𝑏 is generated, followed by the compu-

tation of parameters 𝜑⃗⃗𝑏 and 𝑒𝑒𝑟𝑏, 𝜑⃗⃗𝑏 and 𝑒𝑒𝑟𝑏 are transmitted to the cloud server C 

for further processing. 

 ,0 ,0 , ,{ , , }b b b b b b N b Nz z z   = − = − −
 

（13） 

( ) ( )b x genRandomPoly d 
                

（14） 

 ,1 , ,{ , , }, ( ),1b b b N b j bw w w w j j N= =  
 

（15） 

 , , , ,1b j b j b j bw r j N =  +  
 

（16） 

 ,1 ,{ , , }b b b N  =
 

（17） 

 
( ( ))

c bb pk pk beer Enc Enc r=
 

（18） 

Step 4: A random number rc is generated. Subsequently, the point-value vectors of 

all users are aggregated by summing their respective polynomials, yielding the result-

ant vector φ⃗⃗⃗sum. Decrypt the parameters 𝑒𝑒𝑟𝑖(1 ≤ 𝑖 ≤ 𝑡) and 𝑒𝑒𝑟𝑏 to get 𝑒𝑟𝑖(1 ≤
𝑖 ≤ 𝑡) and erb and then compute ersum. 

 , 1, , , ,1sum j j t j c b jr j N   = + + +   
 

（19） 

 ,1 ,{ , , }sum sum sum N  =
 

（20） 

 
( ),1

ci sk ier Dec eer i t=     （21） 

 
( )

cb sk ber Dec eer=
 

（22） 

 0sum c H b H H H ter r er er er=  + + +
 

（23） 

Step 5: Recover 𝑟𝑠𝑢𝑚 and computes ѱ⃗⃗⃗𝑠𝑢𝑚.Construct a polynomial using Lagrange 

interpolation method for the set 𝑓𝑠𝑢𝑚(𝑥), and substitute each data point of the set S⃗⃗b 
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into the polynomial. If the value of the polynomial is 0, then it is considered as an ele-

ment in the intersection. 

 
( )

bsum sk sumr Dec er=
 

（24） 

 , , ,1sum j sum j sumr j N = −     （25） 

 ,1 ,{ , , }sum sum sum N  =
 

（26） 

 
( ) ( , )sum sumf x PolyInter x =

 
（27） 

4 Scheme Analysis 

4.1 Correctness Analysis 

From Section 3, it can be known that the protocol can obtain the intersection of all users 

including and the querying party B at the end. This section will derive the result of the 

protocol execution to prove the correctness of our protocol at the end. For the 𝑖 ∈
{1, . . . , 𝑡}, 𝑗 ∈ {1, . . . , 𝑁}: 

( ( ))

( ( ))

i pk pk ic b

b pk pk bc b

eer Enc Enc r

eer Enc Enc r

=

=
  

（28） 

( ) ( ( ( ))) ( )

( ) ( ( ( ))) ( )

sk i sk pk pk i pk ic c c b b

sk b sk pk pk b pk bc c c b b

Dec eer Dec Enc Enc r Enc r

Dec eer Dec Enc Enc r Enc r

= =

= =
 

（29） 

0

0

0

1

( )

( )

( ( ) ( ) ( ))

( ( ))

( )

sum sk sumb

sk c H b H H H tb

sk c H sk b H sk H H sk tb c c c

sk pk c b tb b

t

i c b

i

r Dec er

Dec r er er er

Dec r Dec eer Dec eer Dec eer

Dec Enc r r r r

r r r
=

= 

=  + + +

=  + + +

=  + + +

= + 

 

（30） 

, 1, , ,

1, 1, , , , ,

, , , ,

1 1

( )

( ) ( )

sum j j t j c b j

j j i t j t j t c b j b j b

t t

i j i j c b j b j i c b

i i

r

w r w r r w r

w r w r r r

   
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 
= =

= + + + 

=  + + +  + +  +

=  +   + +  
 

（31） 

, ,

, , , ,

1 1 1

, , , ,

1

( ) ( ) ( )

( )

sum j sum j sum

t t t

i j i j c b j b j i c b i c b

i i i

t

i j i j c b j b j

i

r

w r w r r r r r r

w r w

 

 

 

= = =

=

= −

=  +   + +  − + 

=  +  

  


 

（32） 



For each term of the polynomial point-value form of each user 𝐴𝑖, it is multiplied 

by the corresponding term of the point-value form of the random polynomial (denoted 

as 𝜔𝑖(𝑥)) generated by itself. The final result is: 

1 1

( ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

sum sum

t t c b b

f x PolyInter x

f x x f x x r f x x



  

=

=  + +  +  
 

（33） 

When query party B substitutes each data element into the protocol, if and only if 

the element belongs to the intersection set, will all polynomial terms be set to zero, 

thereby resulting in the polynomial evaluating to zero.

 
4.2 Security Analysis 

Theorem: If the Paillier homomorphic encryption scheme and the pseudo-random 

function PRF are secure, then the protocol DMPSI-LD is secure in the semi-honest 

adversary model. 

Proof: 

We prove the security of our protocol by considering three scenarios. For each sce-

nario, we compare whether the adversary's simulated view and the real view can be 

distinguished, thereby determining whether the protocol is secure. 

Case 1: Cloud Server C Controlled by Adversary 

In a real protocol, the view of the server can be represented as follows: 

 

1

1 1 1 1

( , , , , )

{ , , , , , , , , , , , , , , , , , }

C t b

t b t b t b t b sum sum

View S S S

eer err err er er er er      

 ⊥

=

 

（34） 

To simulate real-world views, we construct a simulator Simc to emulate scenarios 

where cloud server C is compromised by adversaries, where index i ranges from 1 

to t and j ranges from 1 to N. The simulation process executes the following steps: 

Step 1: Create an empty view 𝑆𝑖𝑚𝑐(⊥, ⊥). 

Step 2: Simulate the initialization process of  𝐴1, . . . , 𝐴𝑡 , 𝐵's steps and generate t +
1 random numbers n1

′ , . . . , nt
′ , nb

′  to represent the cardinality of  𝐴1, . . . , 𝐴𝑡 , 𝐵 set. Cre-

ate t + 1 random n1
′ , . . . , nt

′ , nb
′ -dimensional row vectors 𝑆1

′ , . . . , 𝑆𝑡
′, 𝑆𝑏

′  to represent the 

data set of  A1, . . . , At, B, and express it as polynomial 𝑓1
′(𝑥), . . . , 𝑓𝑡

′(𝑥), 𝑓𝑏
′(𝑥). Then, 

substitute each value xj in the vector x⃗⃗ and convert these data sets into vec-

tor ͳ⃗1
′ , . . . , ͳ⃗𝑡

′ , ͳ⃗𝑏
′  in point-value form. Then, generate t + 1 random N-dimensional 

row vectors 𝑍1
′ , . . . , 𝑍𝑡

′ , 𝑍𝑏
′  to blindify the point-value vector, obtaining 𝜊⃗1

′ , . . . , 𝜊⃗𝑡
′, 𝜊⃗𝑏

′ . 

The simulator will add this vector to the simulation view. Here, 0 < 𝑛𝑖
′ ≤ 𝑑, 𝑆1

′ =

{𝑎𝑖,1
′ , . . . , 𝑎

𝑖,𝑛𝑖
′

′ }, 𝑓𝑖
′(𝑥) = ∏ (𝑥 − 𝑎𝑖,𝑗

′ )
𝑛𝑖

′

𝑗=1 , ͳ⃗𝑖
′ = {ͳ⃗𝑖,1

′ , . . . , ͳ⃗𝑖,𝑁
′ }, ͳ⃗𝑖,𝑗

′ = 𝑓𝑖
′(𝑥𝑗), 𝑧𝑖

′ =

{𝑧𝑖,1
′ , . . . , 𝑧𝑖,𝑁

′ }, 𝜊⃗𝑖
′ = {𝜊𝑖,1

′ , . . . , 𝜊𝑖,𝑁
′ }, 𝜊𝑖,𝑗

′ = ͳ𝑖,𝑗
′ + 𝑧𝑖,𝑗

′ . 

Step 3: Simulate the calculation process of the intersection of sets  𝐴1, . . . , 𝐴𝑡 , 𝐵's 

steps, generate 𝑡 + 1 random numbers 𝑟1
′, . . . , 𝑟𝑡

′, 𝑟𝑏
′ , then generate 𝑡 + 1 N-dimen-

sional random row vectors 𝑤⃗⃗⃗1
′ , . . . , 𝑤⃗⃗⃗𝑡

′, 𝑤⃗⃗⃗𝑏
′ , and then calculate  𝜑⃗⃗1

′ , . . . , 𝜑⃗⃗𝑡
′ , 𝜑⃗⃗𝑏

′   based 

on ͳ⃗1
′ , . . . , ͳ⃗𝑡

′ , ͳ⃗𝑏
′  , 𝑟1

′, . . . , 𝑟𝑡
′, 𝑟𝑏

′  , and 𝑤⃗⃗⃗1
′ , . . . , 𝑤⃗⃗⃗𝑡

′, 𝑤⃗⃗⃗𝑏
′  .Simultaneously, calculate 

𝑒𝑒𝑟1
′ , . . . , 𝑒𝑒𝑟𝑡

′, 𝑒𝑒𝑟𝑏
′  based on 𝑟1

′, . . . , 𝑟𝑡
′, 𝑟𝑏

′ ., and 
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adds 𝜑⃗⃗1
′ , . . . , 𝜑⃗⃗𝑡

′ , 𝜑⃗⃗𝑏
′  and 𝑒𝑒𝑟1

′ , . . . , 𝑒𝑒𝑟𝑡
′, 𝑒𝑒𝑟𝑏

′  to the simulation view. Here, 𝑤⃗⃗⃗𝑖
′ =

{𝑤𝑖,1
′ , . . . , 𝑤𝑖,𝑁

′ }, 𝜑⃗⃗𝑖
′ = {𝜑𝑖,1

′ , . . . , 𝜑𝑖,𝑁
′ } , 𝜑𝑖,𝑗

′ = ͳ𝑖,𝑗
′ · 𝑤𝑖,𝑗

′ + 𝑟𝑖
′ , 𝑒𝑒𝑟𝑖

′ =

𝐸𝑛𝑐𝑝𝑘𝑐
(𝐸𝑛𝑐𝑝𝑘𝑏

(𝑟𝑖
′)). 

Step 4: Simulate the calculation process of the intersection of sets on the cloud 

server's steps, generate random numbers rc, calculate 𝜑⃗⃗𝑠𝑢𝑚 
′ , 𝑒𝑟0

′, . . . , 𝑒𝑟𝑡
′, 𝑒𝑟𝑏

′  , 𝑒𝑟𝑠𝑢𝑚
′ , 

and add them to the simulation view. Here, φ⃗⃗⃗sum 
′ = {φsum,1 

′ , . . . , φsum ,N
′ } , 

𝜑𝑠𝑢𝑚,𝑗 
′ = 𝜑𝑖,𝑗 

′ +. . . +𝜑𝑡,𝑗 
′ + 𝑟𝑐𝜑𝑏,𝑗 

′  , 𝑒𝑟𝑖
′ = 𝐷𝑒𝑐𝑠𝑘𝑐

(𝑒𝑒𝑟𝑖
′) ,𝑒𝑟𝑠𝑢𝑚

′ =

𝑟𝑐
′ ×𝐻 𝑒𝑟𝑏

′＋𝐻𝑒𝑟1
′＋𝐻 ··· ＋𝐻𝑒𝑟𝑡

′. 

After completing the above steps, all the protocol steps of cloud server C have 

been executed. The view of the simulator can be obtained as follows: 

 
1 1 1 1

( , )

{ , , , , , , , , , , , , , , , , , }

C

t b t b t b t b sum sum

Sim

eer err err er er er er      

⊥ ⊥

             =

 
（35） 

By comparing the real view and the simulated view, both vectors ο⃗⃗ and φ⃗⃗⃗ in the 

two views have been blinded using random numbers. The values eer and er have 

been encrypted by random numbers and encrypted using public keys. Moreover, the 

cloud server cannot completely decrypt them. Therefore, 𝑉𝑖𝑒𝑤𝐶
ԥ
and 𝑆𝑖𝑚𝑐are compu-

tationally indistinguishable, 𝑉𝑖𝑒𝑤𝐶
ԥ(⊥, 𝑆1, . . . , 𝑆𝑡 , 𝑆𝑏) ≃ 𝑆𝑖𝑚𝑐(⊥, ⊥). 

Case 2: User 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) Controlled by Adversary 

In a real protocol, the view of user 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑡) can be represented as follows: 

 1( , , , , ) { , ( ), , , , , , , , }A t b i i i i i i i i i ii
View S S S S f x z r w er eer   ⊥ =

 
（36） 

The steps to simulate a real view are similar to case 1, including creating an empty 

view, simulating data upload, and simulating set intersection computation. The differ-

ence is that when creating the empty view, 𝑆𝑖 is added to the view, 𝑆𝑖 =
{𝑎𝑖,1, . . . , 𝑎𝑖,𝑛𝑖

}.After completing the above steps, all the protocol steps of user 𝐴𝑖 have 

been executed. The view of the simulator can be obtained as follows: 

 
( , ) { , ( ), , , , , , , , }A i i i i i i i i i i ii

Sim S S f x z r w er eer        ⊥ =
 

（37） 

By comparing the real view and the simulated view,, 𝑉𝑖𝑒𝑤𝐴𝑖

ԥ
 and 𝑆𝑖𝑚𝐴𝑖

 are indis-

tinguishable in calculation, and 𝑉𝑖𝑒𝑤𝐴𝑖

ԥ (⊥, 𝑆1, . . . , 𝑆𝑡 , 𝑆𝑏) ≃ 𝑆𝑖𝑚𝐴𝑖
(⊥, 𝑆𝑖). 

Case 3: Query Party B Controlled by Adversary 

In a real protocol, the view of B can be represented as follows: 

 

1( , , , , )

{ , ( ), , , , , , , , , , , , , ( ), }

B t b

b b b b b b b b b b sum sum sum sum sum

View S S S

S f x z r w er eer er r f x S    

 ⊥

=
 

（38） 

The steps to simulate a real view are similar to case 2, including creating an empty 

view, simulating data upload, and simulating set intersection computation. After com-

pleting the above steps, all the protocol steps of B have been executed. The view of 

the simulator can be obtained as follows: 

 

( , )

{ , ( ), , , , , , , , , , , , , ( ), }

B b

b b b b b b b b b b sum sum sum sum sum

Sim S

S f x z r w er eer er r f x S    

⊥

            =
 
（39） 



By comparing the real view and the simulated view,𝑉𝑖𝑒𝑤𝐵
ԥ
 and 𝑆𝑖𝑚𝐵 are indistin-

guishable in calculation, and 𝑉𝑖𝑒𝑤𝐵
ԥ(⊥, 𝑆1, . . . , 𝑆𝑡 , 𝑆𝑏) ≃ 𝑆𝑖𝑚𝐵(⊥, 𝑆𝑏). 

From the above three scenarios we know that our protocol is secure in the semi-

honest adversary model. 

5 Realization and Performance Analysis 

In this section, the implementation of DMPSI-LD is described. Moreover, in the same 

environment, a comparison of running efficiency and communication complexity with 

O-PSI [22] and Feather [27] is conducted. 

5.1 Protocol implementation 

The experiment implemented our protocol using C++. The experimental environment 

was a 12th Gen Intel(R) Core (TM) i9-12900H with a clock speed of 2.50 GHz, 16GB 

RAM, Ubuntu 18.04, and 64-bit. The libraries used in the experiment included the large 

number operation library NTL and the encryption library Crypto++. The experiment 

used the NTL library to implement the operation of large data and the Paillier encryp-

tion algorithm. At the same time, we used the AES-CTR 128bit algorithm of the 

Crypto++ library as the PRF call. 

5.2 Performance analysis 

This section presents a detailed analysis of the performance of our protocol in compar-

ison with O-PSI and Feather, as shown in Tables 1, 2 and 3. 𝑑 is the dataset size and 

𝑡 is the number of clients. 

Table 1. Comparison of the protocol 

Protocol 
Secure communi-

cation channel 

Time com-

plexity 

Communication 

complexity 

O-PSI [22] 

User A 

√ 

𝑂(𝑁) 𝑂(𝑁) 

Query Party B 𝑂(𝑁2) 𝑂(𝑡𝑁) 

Server C 𝑂(𝑡𝑁2) 𝑂(𝑡𝑁) 

Feather [27] 

User A 

√ 

𝑂(𝑁2) 𝑂(𝑁) 

Query Party B 𝑂(𝑁2) 𝑂(𝑡𝑁) 

Server C 𝑂(𝑡𝑁2) 𝑂(𝑡𝑁) 

DMPSI-LD 
User A 

× 
𝑂(𝑁2) 𝑂(𝑁) 

Query Party B 𝑂(𝑁2) 𝑂(𝑁) 
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Server C 𝑂(𝑡𝑁) 𝑂(𝑡𝑁) 

Table 2. Runtime vs. set size under fixed participant count (Unit: seconds) 

Protocol 

Set size 211 212 213 214 215 

O-PSI [22] 

User A 0.446 0.888 1.808 3.602 7.259 

Query Party B 52.901 112.181 256.396 631.003 1721.517 

Server C 27.983 57.542 127.273 290.823 746.561 

Feather [27] 

User A 0.394 1.580 6.213 24.936 99.496 

Query Party B 4.819 21.036 81.126 308.392 1340.440 

Server C 1.570 6.225 24.704 99.869 411.918 

DMPSI-LD 

User A 0.264 1.063 4.130 16.945 65.736 

Query Party B 3.213 13.176 53.669 219.830 917.323 

Server C 0.030 0.031 0.033 0.038 0.041 

Table 3. Runtime vs. participant count under fixed set size (Unit: seconds) 

Protocol 

Participant 

Count 
28 29 210 211 212 213 214 

O-PSI 

[22] 

A 0.223 0.224 0.224 0.226 0.226 0.226 0.226 

B 25.112 25.253 25.339 25.478 25.389 25.560 2.367 

C 65.736 143.758 316.931 673.173 1423.146 2973.292 5998.584 

Feather 

[27] 

A 0.106 0.104 0.113 0.106 0.108 0.122 0.138 

B 1.168 1.234 1.310 1.644 1.752 1.914 2.367 

C 25.826 51.423 106.86 218.723 449.75 913.426 1839.17 

DMPSI

-LD 

A 0.079 0.081 0.079 0.079 0.080 0.079 0.081 

B 0.832 0.841 0.813 0.832 0.867 0.824 0.860 

C 1.530 3.063 6.019 12.376 25.082 50.310 98.786 

 

Table 1 presents a comparison of the three protocols in terms of time and communi-

cation complexity, as well as whether a secure channel is required. 

Table 2 shows the impact of the number of user data on the time changes of each 

participant in the protocol operation. The experiment fixes the number of participants 

𝑡 as 5 (where the number of users is 4 and the number of querying parties is 1), and the 

maximum amount of aggregated data 𝑑 is from 211 to 215. 



Table 3 shows the impact of the number of user data on the time changes of each 

participant in the protocol operation. The set size 𝑑 of users and query parties is fixed 

to 1024, the number of participants 𝑡 is increased from 28 to 214. 

From Table 1, DMPSI-LD has the following two advantages over O-PSI and Feather 

in terms of design principle: (a) DMPSI-LD does not require a secure channel. In 

DMPSI-LD, users blind point-valued polynomials using random polynomials gener-

ated by themselves, and the random numbers of the blinded roots use double encryption 

to prevent the querying party B from eavesdropping on the channel to obtain them; (b) 

the computational complexity of the server in DMPSI-LD is linear in the size of the 

maximum set of users, which is an order of magnitude lower than O-PSI and Feather. 

From Table 2, it can be seen that with the same parameter settings, as the data set 

size increases exponentially, the total run time is O-PSI > Feather > DMPSI-LD. From 

the perspective of each participant, DMPSI-LD has three main advantages: (a) In the 

case where the data volume is 211, the running time of DMPSI-LD users is 2/3 of that 

of Feather and O-PSI users; (b) the running time of the DMPSI-LD query party is 2/3 

of that of Feather, and when the dataset size is 211, the running time of the DMPSI-LD 

query party is 1/16 of that of O-PSI; (c) the running time of the DMPSI-LD server is 

basically unaffected. From the data, when the dataset size is 215, the running time of 

the DMPSI-LD server is 1/10047 of that of Feather and 1/18209 of that of O-PSI. 

From Table 3, it can be seen that with the increase in the number of clients, the 

running times of users and queryors for the three protocols are not affected, but the 

running time of the server shows a linear growth. Specifically, the advantages of the 

DMPSI protocol over the O-PSI protocol and Feather are as follows: (1) Although the 

number of participants does not affect the running times of users and queryors, the run-

ning time of users for DMPSI-LD is approximately 1/2 of that for Feather and 1/4 of 

that for O-PSI. The running time of queryors for DMPSI-LD is approximately 1/2 of 

that for Feather and 1/31 of that for O-PSI. (2) The running time of the server for 

DMPSI-LD increases more gently with the increase in the number of participants. From 

the specific data analysis, approximately for every 100 additional users, the server run-

ning time of the DMPSI-LD protocol increases by 0.006 seconds, while that of Feather 

increases by 0.113 seconds and that of O-PSI increases by 0.348 seconds. The server 

running time of DMPSI-LD is 1/18 of that of Feather and 1/60 of that of O-PSI. 

From the above analysis, the following conclusions can be drawn: 

(1) DMPSI-LD does not rely on secure channels, while O-PSI and Feather must be 

secured in an environment where secure channels are used. 

(2) DMPSI-LD is more suitable for large-scale dataset scenarios than O-PSI and 

Feather. The time complexity of DMPSI-LD's server is 𝑂(𝑁) when the dataset size is 

the variable, while the time complexity of O-PSI’s server and Feather's server are 

𝑂(𝑁2). 

(3) The running time of DMPSI-LD users and queryors is independent of the number 

of participants and is highly efficient. Under the condition that the dataset size is 1024 

in all cases, the running time of DMPSI-LD users is approximately 1/4 of that of O-PSI 

and 1/2 of that of Feather. The running time of DMPSI-LD queryors is approximately 

1/31 of that of O-PSI and 1/2 of that of Feather. 
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6 Conclusion 

This paper presented an efficient delegated multi-party private set intersection protocol 

for large-scale datasets (DMPSI-LD) in a cloud environment, which overcome the de-

ficiency of the security channel in the Feather protocol. The protocol achieved the char-

acteristic of one-time delegation and multiple intersection computations without the 

need for a secure channel. Moreover, the running time of users and query parties was 

independent of the number of participants, and the computational cost of the server 

increases linearly with the number of participants and the size of the data set. The article 

detailed the protocol flow, provided a rigorous security proof and experimental analy-

sis, and offered beneficial references for research in the PSI field. 
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