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Abstract. In badminton shuttlecock secondary recycling, manual selection is eas-

ily affected by human factors, such as fatigue and attention lapses. This leads to 

low efficiency and makes it impossible to satisfy large-scale refurbishment re-

quirements. This paper proposes YOLOv8n_RepVGG, which is an enhanced 

badminton shuttlecock classification method that uses a modified YOLOv8n ar-

chitecture. We used RepVGGBlock modules in the backbone network to improve 

the representational capacity of the model. Compared with the baseline YOLOv8, 

the proposed model achieved a precision of 91.1% with an increase of 3.1% and 

mean average precision (mAP50) of 87.2% with an increase of 1.2%. The pro-

posed approach not only propels technological advances in badminton shuttle-

cock reconditioning processes but also contributes significantly to global sustain-

ability initiatives through enhanced resource optimization. 

Keywords: Defect detection for badminton shuttlecock, YOLO, RepVGG-

Block, Data augmentation, Deep learning. 

1 INTRODUCTION 

Badminton, a popular indoor sport, primarily uses goose and duck feathers in badmin-

ton shuttlecocks. Goose feather badminton shuttlecocks with stable flight, superior 

hardness, and impact resistance are mainly used in professional tournaments. Duck 

feathers, which are heavier, have curved rachises and are arranged in dense vanes that 

loosen over time, are commonly used in club training and recreational matches. The 

global rise in badminton has spurred demand for badminton shuttlecocks, driving the 

growth of the reuse and refurbishment industries. Heightened environmental awareness 

and sustainable development efforts have drawn attention to the recycling of badminton 

shuttlecocks. Secondary use extends the useful lives of products, reduces resource 

waste, and facilitates ecological conservation. However, traditional manual selection is 

inefficient and inaccurate for large-scale refurbishments, as human operators are prone 

to fatigue-induced errors and attention deficits, which cause workforce inefficiencies 

and heavy environmental burdens. 

Traditional object detection algorithms have several technical limitations in badmin-

ton shuttlecock recognition and classification. The two-stage detection framework of 

the Faster R-CNN [1] achieves high-precision object localization using its region 



proposal network (RPN). However, its multistage network architecture significantly 

increases its computational complexity. Therefore, it is unsuitable for use in real-time 

detection in industrial applications. 

Single-stage detectors, represented by YOLO [2] and proposed by Redmon et al., 

exhibit superior real-time performance. However, they produce significant false nega-

tives for sub-3 mm surface defects. Some examples include broken barbs and creases. 

These false negatives occur because of insufficient shallow feature extraction, which 

degrades the small-target representation. The transformer-based Detection Transformer 

(DETR) framework [3] introduced by Carion et al. achieved global feature modeling 

through self-attention mechanisms. However, the end-to-end training paradigm de-

pends heavily on large-scale annotated datasets. This is a critical constraint, given the 

scarcity of defective badminton shuttlecock samples, particularly for rare defect cate-

gories. This issue severely compromises the generalization capabilities of the model. 

Lightweight variants, such as YOLO-HGNet [4] with integrated depthwise separable 

convolutions, enhance inference speed via parameter reduction. Moreover, their under-

developed multiscale feature fusion mechanisms result in unstable detection perfor-

mance for hierarchical feather defects. Examples include concurrent root fractures and 

tip abrasion. 

To address these challenges, this study focused on developing defect-detection meth-

ods for badminton shuttlecocks. YOLOv8 is a state-of-the-art object detection algo-

rithm that offers exceptional real-time performance with high accuracy for complex 

visual-recognition tasks. We proposed an improved YOLOv8 with RepVGGBlock that 

can precisely identify critical badminton shuttlecock characteristics. The characteristics 

of badminton shuttlecocks include the verification of new conditions, feather loss 

(lose_feather), and fracture point (break) detection. Fig. 1 presents a flowchart of the 

proposed method, which includes key stages, such as data augmentation, model train-

ing, and testing. This automated approach not only enhances operational efficiency but 

also significantly reduces the labor costs and resource waste associated with manual 

inspection processes. 

This study not only drives technological innovation in badminton shuttlecock refur-

bishment but also offers substantial support for societal green transformation, marking 

a strategic shift toward intelligent and sustainable industry practices. Through the adop-

tion of advanced technological solutions, we demonstrated effective strategies for ad-

dressing resource scarcity and environmental challenges, thus making concrete contri-

butions to achieving the development goals. The key contributions of this study are as 

follows. 

• We propose a novel defect detection YOLOv8n_RepVGG for badminton shuttle-

cocks that can quickly identify badminton shuttlecock features in various conditions. 

• The proposed YOLOv8n_RepVGG employs RepVGGBlock in the backbone net-

work to improve the representational capacity of the model and increase the detec-

tion performance. 

• Data augmentation is used to increase the diversity and complexity of the dataset, 

which can help the proposed model learn robust features. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Fig. 1. Flowchart of the proposed defect detection for badminton shuttlecock. 

2 RELATED WORK 

In recent years, deep learning has significantly advanced object detection and produced 

several representative algorithms. According to their detection mechanisms and fea-

tures, these algorithms can be classified as single-stage, two-stage, anchor-based, or 

anchor-free. Two-stage detection algorithms, represented by Mask R-CNN [5] and 

Faster R-CNN [6], utilize an RPN to generate the candidate boxes. They refined the 

boxes using precise classification and regression. These algorithms provide high local-

ization accuracy. For example, Faster R-CNN attains a mAP of 82.3%, but its inference 

speed is low at approximately 8 FPS. Thus, it is suitable for use in scenarios in which 

the real-time performance is not crucial. 

Single-stage detection algorithms, such as the YOLO [7] series and SSD [8], adopt 

an end-to-end regression mechanism to predict bounding boxes and class probabilities 

directly. For instance, YOLOv8 can achieve a real-time detection speed of 45 FPS with 

merely 2.7M parameters (in the YOLOv8n version), excelling in lightweight and effi-

cient performance. In the small-object detection of unmanned aerial vehicle images, Li 

et al. [9] improved YOLOv7 to enhance its accuracy and efficiency. Li et al. [10] pro-

posed an intelligent retrievable object tracking system that significantly improved the 

ability to locate lost objects accurately and efficiently in indoor home environments. 

Wang et al. [11] extensively studied and optimized YOLOv7, achieving a new speed--

accuracy trade-off for real-time object detection. These studies provide crucial refer-

ences for future upgrades to the YOLO series. 

In addition to classic algorithms, such as Mask R-CNN, Faster R-CNN, SSD, FCOS, 

and the YOLO series, other methods have also significantly contributed to object 



detection. For example, RetinaNet [12] introduces focal loss to address class imbal-

ances and improve the performance of single-stage detectors. Deformable DETR [13] 

combines deformable convolutions with transformer mechanisms to achieve excellent 

detection in complex scenarios. EfficientDet [14] optimizes the balance between speed 

and accuracy using a neural architecture search. These methods provide innovative 

ideas for different aspects of object detection and lay the groundwork for further per-

formance improvement. 

In this study, we selected the YOLOv8 model [15] for an efficient large-scale bad-

minton shuttlecock classification. This combines the advantages of the YOLO series to 

enable fast and accurate badminton shuttlecock classification. YOLO is an end-to-end 

object detection system that makes predictions based on global image information by 

dividing the image into grids and predicting the bounding boxes and classes for each 

grid cell. The official code of YOLOv8 offers five versions (i.e., n, s, m, l, and x) with 

increasing network widths and depths, resulting in improved detection speeds and ac-

curacies. To achieve high-precision lightweight detection, we selected the YOLOv8n 

model as the baseline and made several improvements. 

3 METHOD 

This section discusses defect detection in the badminton shuttlecock by emphasizing 

model upgrades that enhance the identification of broken feather points. These upgrades 

were achieved by integrating RepVGGBlock modules into the backbone network to 

replace the original downsampling components, strengthen the feature extraction of the 

model, and significantly improve the damaged feather recognition precision. Conse-

quently, the model is more robust in complex environments and provides a more effi-

cient and accurate solution for badminton shuttlecock recycling and reuse. 

3.1 YOLOv8n_RepVGG 

To enhance the badminton shuttlecock detection of YOLOv8, this study introduced an 

improved YOLOv8n_RepVGG model, as depicted in Fig. 2. By integrating RepVGG 

modifications, this model boosts object classification accuracy. 

The model comprises four parts: input, backbone, neck, and head. The input end uses 

adaptive image scaling and mosaic data augmentation to bolster model robustness. The 

backbone comprised Conv, RepVGGBlock, C2f, and SPPF modules. The Conv module 

uses 3×3 kernels for local feature extraction and 1×1 kernels for channel adjustment 

and feature fusion. Batch normalization accelerates training and enhances stability, 

whereas the SiLU activation function ensures a smoother gradient flow and faster con-

vergence. Unlike the C3 module of YOLOv5, the C2f module enriches the gradient 

flow with skip connections and additional split operations. Specifically, the input fea-

ture map is split into two parts: one remains unchanged, and the other is processed 

through multiple bottleneck modules with 3×3 depthwise separable convolutions. Fi-

nally, Concat fuses the two parts to preserve the rich gradient information, helping the 

model learn more discriminative feature representations. The SPPF module employs 
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pyramid pooling at different scales (i.e., 5×5, 9×9, 13×13) to extract features and thus 

enable the network to capture multiscale context information, which is crucial for the 

object recognition and localization of varying object sizes in object detection tasks. 

 

Fig. 2. The structure diagram of the proposed YOLOv8n_RepVGG. 

The neck uses an improved path aggregation network (PAN) architecture for defect 

detection in a badminton shuttlecock, integrating multiscale features via bidirectional 

fusion to balance the small-object detection accuracy and inference efficiency. The key 

components of this improved PAN architecture are C2f modules, high-compression 

Conv layers, and Upsample modules. The C2f modules have fewer bottlenecks for gra-

dient optimization. High-compression Conv layers reduce the channel dimensions for 

efficiency. The Upsample modules used interpolation for feature alignment. This de-

sign improves the robustness of complex scenes through a dynamic multiscale semantic 

fusion. 

In the defect detection for a badminton shuttlecock, the detection head uses a decou-

pled head architecture. This architecture separates the classification and bounding-box 

regression tasks to resolve parameter conflicts as well as enhance feature expression 

and training efficiency. The detection head employs dynamic channel adjustment for 

multiscale inputs and combines the spatial and channel attention mechanisms. The re-

gression branch introduces distribution focal loss (DFL) for the discrete distribution 

modeling of bounding box predictions, which improves the localization accuracy. In 



addition, YOLOv8 adopts an anchor-free mechanism that involves directly predicting 

the distances from the object centers to the boundaries. These advantages include sim-

plified post processing and reduced hyperparameter dependence. 

3.2 RepVGGBlock 

For the RepVGGBlock module in the backbone, we selected a simple yet powerful 

CNN architecture. This architecture has a VGG-like inference time body composed 

solely of stacked 3×3 convolutions and ReLUs. In contrast, the training-time model 

features a multi-branch topology. This decoupling of the training and inference archi-

tectures was achieved through structural reparameterization. Hence, it was named 

RepVGG. RepVGG is a classification network based on VGG with several key im-

provements. 

• We introduce two residual structures into the Block blocks of the VGG network: the 

identity branch and 1×1 branch. These residual structures' multiple branches provide 

extra gradient flow paths during training, similar to training and fusing several net-

works into one. 

• During the inference phase, we employ an operation fusion strategy. This strategy 

converts all network layers to Conv 3×3. As a result, we obtain a simplified RepVGG 

network architecture. In this architecture, the entire network consists of Conv 3×3 + 

ReLU stacks. This facilitates efficient model inference and acceleration. 

A partial expression of the RepVGG network architecture during training and infer-

ence was presented in [16]. 

3.3 Data augmentation 

We used data augmentation to improve the generalization and robustness of the model 

using three methods: color adjustment, noise addition, and geometric transformation. 

The color adjustments included rb, rs, and rc. Noise addition included gn, pn, and sn. 

Geometric transformations involved cc, fh, and fv. 

• Center Crop (cc): Crops the image center to a square and adjusts the corresponding 

bounding boxes. 

• Flip Horizontal (fh): Randomly flips images horizontally and adjusts bounding box 

coordinates. 

• Flip Vertical (fv): Randomly flips images vertically and adjusts bounding box coor-

dinates. 

• Add Gaussian Noise (gn): Adds Gaussian noise to images to enhance data diversity. 

• Add Pepper Noise (pn): Adds pepper noise to increase visual sample complexity. 

• Add Salt Noise (sn): Adds salt noise to increase image randomness. 

• Random Brightness (rb): Randomly adjusts image brightness. 

• Random Contrast (rc): Randomly adjusts image contrast. 

• Random Saturation (rs): Randomly adjusts image saturation. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

4 EXPERIMENTS 

In comparative experiments, we tested five representative and high-performing models: 

YOLOv5n, YOLOv8n, YOLOv10n, YOLOv11n, and YOLOv12n. Using the same da-

taset and evaluation metrics, we assessed the Precision, Recall, Giga Floating-point 

Operations Per Second (GFLOPs), mAP50, and mAP50-95 to compare their differ-

ences. 

4.1 Dataset 

The dataset for this project consists of three categories of labels: lose_feather, break, 

and new, to simulate the inspection and quality control processes of badminton shuttle-

cocks in enterprises. Initially, 1024 badminton shuttlecock images were collected. To 

enhance the quality and diversity of the dataset, we applied data augmentation tech-

niques to expand the dataset to 2683 images. Following an 8:2 random split, the training 

set contained 2146 images, and the test set contained 537 images. Table 1 details the 

label distribution, showing the number of labels for each class after processing as well 

as their allocation in the training and validation sets. 

Table 1. Label distribution across data subsets. 

Class Processed Train  Validation 

lose_feather 1481 1170 311 

break 1045 830 215 

new 1203 977 226 

 

 

Fig. 3. (a): training set data volume distribution. (b): bounding box size-quantity relationship in 

training set. 



Fig. 3 (a) depicts the data volume distribution for each category in the training set, 

which indicates the number of samples per category. Fig. 3 (b) illustrates the relation-

ship between the bounding box size and quantity in the training set, displaying how the 

box numbers change with size.  

 

 

Fig. 4. (a): distribution of bounding box center points in images. (b): aspect ratio distribution of 

objects in images. 

Fig. 4 (a) presents the distribution of the bounding box center points relative to the 

entire image, showing their frequencies across different regions. Fig. 4 (b) shows the 

aspect ratio distribution of objects relative to the entire image, reflecting variations in 

height-to-width proportions across categories and instances. All badminton shuttlecock 

images came from actual badminton shuttlecocks used in courts, ensuring that the da-

taset reflected real-world conditions. This design improves model training and en-

hances the accuracy and reliability of the detection system in practical applications to 

provide a robust data foundation for automatic badminton shuttlecock detection and 

repair. 

Data augmentation was performed to generate additional training images. As shown 

in Fig. 5, the first image is the original image, and the following nine images show the 

results after data enhancement. 
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Fig. 5. Comparison of example images before and after data augmentation. 

4.2 Evaluation Metric 

To validate the effectiveness of our model experimentally, we set the evaluation metrics 

during training as Precision, Recall, GFLOPs, mAP50, and mAP50-95. The specific 

formulae are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝑃𝐴𝑃(𝑖)
𝑛
𝑖=0  (3) 

where TP represents the number of true positives predicted by the model, FP represents 

the number of false positives predicted by the model, FN represents the number of false 

negatives predicted by the model, Precision is the proportion of actual positive cases 

among those predicted as positive, Recall is the proportion of cases predicted as positive 

among the actual positive cases, GFLOPs is a computational complexity metric, indi-

cating the number of billions of floating-point operations executed per second, used to 

evaluate the computational demands and performance of models or hardware. mAP50 

represents the average precision of each category when the confidence threshold is 0.5, 

and mAP50-95 represents the average precision after weighting the average of the con-

fidence thresholds from 0.5 to 0.95 with a step length of 0.05. According to the defini-

tion of an AP: 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
 (4) 



The Average Precision (AP) is the area under the precision-recall curve, with recall 

on the x-axis and precision on the y-axis. All experiments were conducted on a local 

computer with consistent hyperparameter settings (batch sizes of 16 and 200 epochs). 

To ensure validity, all baseline models were trained from scratch without pretraining. 

The experimental environment is detailed in Table 2. 

Table 2. Hardware and software configuration. 

Configuration Environment Version Environment 

Operating System Window 11 

Machine Learning Framework PyTorch 2.4.1 

GPU Acceleration Library cuda11.8 

Programming Environment Python 3.8.19 

GPU NVIDIA GeForce RTX 3050 

4.3 Experimental results 

Tables 3-6 present the experimental results for YOLOv8n_RepVGG and the other base-

line models with different labels. 

Table 3. Comparison of overall experimental results among different models. 

Model  Precision Recall mAP50 mAP50-95 GFLOPs 

YOLOv5n 93.6% 79% 84.2% 71% 7.1 

YOLOv8n 88% 84.8% 86% 72.6% 8.1 

YOLOv10n 82.3% 82.4% 82.8% 69.6% 8.2 

YOLOv11n 91.1% 81.2% 85.4% 71.6% 6.3 

YOLOv12n 90.3% 80.3% 83.9% 68.1% 5.8 

Ours 91.1% 84.2% 87.2% 72.9% 8.2 

 

Table 3 lists the overall performance of different models. Among the recent YOLO-

based methods, the proposed YOLOv8n_RepVGG achieved the highest mAP50 and 

mAP50-95 among the recent YOLO-based methods. Our model has a GFLOPs of 8.2, 

similar to YOLOv8n's 8.1. This indicates that our method achieves performance im-

provement while essentially maintaining the same level of computational complexity. 

Compared with the most recent YOLOv12n, the proposed method can obtain an in-

crease of 3.3% (83.9%-87.2%) in mAP50 and 4.8% (68.1%-72.9%) in mAP50-95. 

Table 4 compares the results of the different models for the lose_feather label. The 

proposed YOLOv8n_RepVGG achieved a higher mAP50 than did the other YOLO-

based methods. Compared with the most recent YOLOv12n, the proposed method can 

obtain a slight increase of 0.5% (98.5%-99%) in mAP50 and 2.8% (86.4%-89.2%) in 

mAP50-95. 
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Table 4. Comparison of experimental results for the lose_feather label among different models. 

Lose_feather  Precision Recall mAP50 mAP50-95 

YOLOv5n 97.1% 99.4% 98.9% 89.1% 

YOLOv8n 96.8% 98.4% 98.8% 90.1% 

YOLOv10n 93.9% 99.4% 99% 89.2% 

YOLOv11n 97.3% 98.4% 98.9% 89.2% 

YOLOv12n 95.4% 99.7% 98.5% 86.4% 

Ours 97.2% 99% 99% 89.2% 

Table 5. Comparison of experimental results for the break label among different models. 

Break Precision Recall mAP50 mAP50-95 

YOLOv5n 85.6% 41.3% 54.7% 32.8% 

YOLOv8n 72.4% 58.1% 60.3% 35.1% 

YOLOv10n 57% 50.5% 50.7% 27.9% 

YOLOv11n 79.8% 47.7% 58.4% 33.9% 

YOLOv12n 79.8% 44.7% 54.4% 28.7% 

Ours 79.2% 56.7% 63.5% 36.8% 

Table 6. Comparison of experimental results for the new label among different models. 

New  Precision Recall mAP50 mAP50-95 

YOLOv5n 98.2% 96.2% 99.1% 91.2% 

YOLOv8n 94.8% 97.8% 99% 92.6% 

YOLOv10n 96.2% 97.3% 98.8% 91.6% 

YOLOv11n 96.2% 97.3% 98.8% 91.5% 

YOLOv12n 95.6% 96.6% 98.9% 89.3% 

Ours 96.9% 96.8% 99.2% 92.6% 

 

Table 5 compares the results of the various models for the break label. The proposed 

model significantly improved mAP50 and mAP50-95, outperforming all the compari-

son models. Compared with the most recent YOLOv12n, the proposed method obtained 

a significant increase of 9.1% (54.4%-63.5%) in mAP50 and 8.1% (28.7%-36.8%) in 

mAP50-95. 

Table 6 presents the results of the different models on the new label. The proposed 

model also achieved the highest mAP50 and mAP50-95 values, outperforming all the 

comparison models. Compared with the most recent YOLOv12n, the proposed method 

obtained an increase of 0.3% (98.9%-99.2%) in mAP50 and 3.3% (89.3%-92.6%) in 

mAP50-95. 

Moreover, the intuitive results are presented in Fig. 6. As shown in Fig. 6, the first 

row shows the results obtained by the baseline YOLOv8n, whereas the second row 

shows the results obtained by YOLOv8n_RepVGG. The results demonstrate that the 



proposed model identifies critical break defects (e.g., column 1) that are not detected 

by the baseline. The proposed model can achieve higher prediction confidence in most 

categories (lose_feather, break, new) than YOLOv8n. 

 

Fig. 6. Comparison results between YOLOv8n and the proposed YOLOv8n_RepVGG. 

4.4 Discussion 

The YOLOv8n_RepVGG model proposed in this study has made significant pro-

gress in the detection and recognition of badminton shuttlecocks. We conducted an in-

depth analysis of the advantages and disadvantages of the model. 

• The YOLOv8n_RepVGG model excels in detecting specific types of badminton 

shuttlecock defects. Notably, it achieves a remarkable mAP50 of 63.5% for the break 

label, significantly outperforming other models. This enhanced capability is crucial 

for quality control in badminton shuttlecock refurbishment, as it enables more accu-

rate identification of broken feather points. 

• The use of data augmentation techniques, such as cropping, flipping, and brightness 

adjustment, significantly boosts the robustness and generalizability of the model. 

These techniques increase the diversity of the dataset and enable the model to main-

tain high detection accuracy across various lighting conditions, angles, and back-

grounds, ensuring reliable performance in real-world applications. 

• Limitation: The YOLOv8n_RepVGG model heavily relies on the quantity and qual-

ity of the training data. Limited or insufficiently diverse datasets can restrict its per-

formance. In scenarios in which data collection is challenging or the available data 

are limited, the model may not achieve optimal detection accuracy, potentially re-

sulting in misclassifications. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

5 CONCLUSION 

In this study, we proposed a YOLOv8n_RepVGG model for badminton shuttlecock 

detection. Through feature extraction using the employed RepVGGBlock, the model 

can effectively identify and classify badminton shuttlecocks of different qualities. 

Moreover, we used data augmentation, including color adjustment, noise addition, and 

geometric transformation, to significantly enhance the generalization and robustness of 

the proposed model. The experimental results showed that data augmentation signifi-

cantly improved the detection accuracy and robustness of the model. Future research 

will focus on expanding the dataset by enhancing data diversity and optimizing the 

model architecture to meet potential challenges and improve the detection performance. 

This research demonstrates the effectiveness of YOLOv8 in badminton shuttlecock de-

tection and lays a solid foundation for relevant applications. 
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