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Abstract. Current object detection algorithms based on deep learning- heavily 

depend on a substantial amount of annotated data for model training. High-qual-

ity datasets are crucial in addressing challenges such as overfitting. However, 

collecting large amount of annotated data poses challenging in certain fields. To 

mitigate this limitation, this paper introduces a data augmentation method based 

on low-bit plane manipulation. Specifically, this paper employs selected data 

augmentation methods by processing the low bit planes of the annotated regions 

in images. This can modify the low-frequency information of the images while 

minimizing significant visual changes. It is crucial for tasks that depend on high-

quality image. During the bit-plane combination process, the augmented image 

data is achieved through the combination of different bit planes, thereby increas-

ing the diversity of training data. The effectiveness of the proposed method is 

validated on existing object detection and classification methods, demonstrating 

notable performance improvements on public datasets, voc2007, voc2012, and 

kitti2D. These results demonstrating its applicability to object detection and clas-

sification that require high-quality input images, enhancing the performance of 

the algorithms. The code and data can be find here: 

https://github.com/cjjhf/Data_augmentation.  
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1 Introduction 

In the field of deep learning, various models, such as feedforward neural networks, 

CNNs (convolutional neural networks) [1], recurrent neural networks, and long short-

term memory networks, exhibit inherent advantages in handling high-dimensional data. 

They possess the capability to automatically extract features and subsequently classify, 

recognize, predict, or make decisions based on these features [2,3]. Consequently, nu-

merous CNN models have emerged, including LeNet-5 [4], VGG-16 [5], AlexNet [1], 

ResNet [6], GoogLeNet [7]. Currently, the prevailing trend approach involves attempts 

to compensate for data insufficiency by enhancing model capabilities. Collecting high-

quality datasets demands substantial financial and logistical investments, especially in 

the field of medicine [8]. To obtain more diverse data, the current trend in training 



introduces the concept of data augmentation.  There are solutions aimed at improving 

object detection accuracy, including those based on the transformer mechanism [9], 

those generating optimal network structures based on NAS [10], and those employing 

multimodal approaches [11]. Recently, research on weakly labeled images [12] and 

weakly supervised object detection [13] has become a hot topic. 

Mixed transformations encompass various techniques, including mixup [14,15], cut-

mix [16], cutout [17], and others. These methods are designed to effectively mitigate 

the model's tendency to memorize incorrect labels. By prompting the model to recog-

nize objects from a local perspective and integrating information from other samples 

into the cropped region. The modified regions may lead to information loss from the 

original samples, making them unsuitable for all tasks and scenarios. In contrast, gen-

erative data augmentation methods, such as Variational Autoencoders (VAE) [18], 

Generative Adversarial Networks (GAN) [19], and Diffusion models [20], involve the 

generation of new images to augment data diversity, representing an innovative devel-

opment direction. Image style transfer [21] is a frequently employed augmentation 

method, where models are initially trained using a similar high-quality dataset and sub-

sequently fine-tuned them with original dataset. However, it is may heighten the mod-

el's uncertainty [22] in perceiving real-world scenarios. AutoAugment [23] addresses 

the challenge of determining the best augmentation strategy by framing it as a discrete 

search problem [24]. It directly searches for the optimal strategy tailored to a specific 

dataset, the computational cost is considerable.  In [25], the authors propose a random 

augmentation method. Unlike AutoAugment, it avoids using specific probabilities to 

decide whether to employ a particular sub-strategy. In [26], it can regenerated urban 

layout for the target region. GridMask [27] generates a mask with the same resolution 

as the original image, randomly flips the mask, and multiplies it with the original image 

to obtain the augmented image. The size of the generated mask grid is controlled by 

hyperparameters. Nevertheless, concerns arise due to the visually perceived change in 

the augmented image. Color alteration is also a frequently used augmentation tech-

nique. In [28], it proposes a high-quality fully-automatic colorization method using 

deep learning. Color space transformation involves adjusting the brightness deviation 

within the dataset to enhance the model's adaptability to different lighting conditions.  

In the medical and autonomous driving fields, the shortage of high-quality datasets 

presents a significant challenge. While data augmentation play a crucial role in address-

ing this issue, conventional methods are not be suitable in these fields. 

The aforementioned data augmentation methods often introduce visible changes to 

the images, and some methods may significantly impact the quality, leading to the loss 

of valuable information. The data augmentation method proposed in this paper operates 

on the bit planes of the image. The processed method exhibit minimal visual changes, 

avoiding significant degradation in image quality. The contributions of this paper are 

summarized as follows: 

(1) To increase the diversity of the training data, we propose a bit-plane based aug-

mentation method by applying selected data augmentation methods within the anno-

tated regions of the low bit planes, it is effectively modify the visual content of the 

images without introducing significant disruptions. 
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(2) During the bit-plane recombination stage, reconstruction is performed by modi-

fying different bit-plane sequences, which leads to the generation of final augmented 

images. This process is designed to enhance the robustness of the training model. 

2 Propose method 

In this paper, we propose an augmentation method designed for manipulating the low-

bit planes of the images. This approach results in augmented image data that has mini-

mal visual difference from the original data but can enhance the performance of object 

detection algorithms. As illustrated in the Fig. 1 the proposed method can be divided 

into four steps: bit-plane decomposition, bit-plane data augmentation, bit-plane pro-

cessing, and bit-plane composition.  

 
Fig. 1. Proposed Data Augmentation Framework. 

A. Bit-Plane Decompositions 

A pixel in an image can be represented by an 8-bit binary value, ranging from 0 to 255 

as shown in the following: 

          

value a a a a

a a a a    

=  +  +  + 

+  +  +  + 

7 6 5 4

7 6 5 4

3 2 1 0

3 2 1 0

2 2 2 2

2 2 2 2
              (1) 

here value  represents the pixel value. 
i

a  represents the weights, each of which varies, 

with 7
a  having the highest weight and 0

a  having the lowest. This implies that the 

value of 7
a  has the most significant impact on the image, while the value of 0

a  has the 

least, as illustrated in Fig. 2. By exploiting this characteristic during the processing of 

bit planes, focusing on the lower bit planes leads to visually subtle differences in the 

generated images. 



 
Fig. 2. visualization of different bit planes. 

The internal structural information of each extracted bit plane is distinct, with lower 

planes containing fewer internal structural details. An extraction matrix is constructed 

to extract bit planes from the image. To ensure extraction from a color image, the ex-

traction process is performed separately for each channel of every bit plane. The for-

mula is as follows: 
m m

c ori ori c
p p n

m c

=  

   = =   

,
2

0,7 , 0,2
                                (2) 

,

m

c ori
p  represents the extracted image, specifically in terms of channels. 

ori
p  is the orig-

inal image. 2m
 and 

c
n  are extraction matrices, where 2m

 extracts a specific bit plane, 

and 
c

n extracts a particular channel. This process ultimately yields the desired infor-

mation. 

To facilitate subsequent operations, individual channels of every bit plane are par-

titioned, and subsequently consolidated, as depicted by the following formula: 
7 2

,
1 0

m

pro c ori
m c

p p
= =

=                                           (3) 

pro
p  denotes the sum of the split images, where 

,

m

c ori
p  denotes the bit-plane image ob-

tained by decomposing the original image. 

B. Data augmentation on bit planes 

To maximize the utilization of expandable space in the lower bit planes, data augmen-

tation is applied to the annotated regions of the lower planes. The goal is to enhance 

data diversity and robustness, while minimizing visually perceptible alterations in the 

augmented images. Augmentation methods employed in this study include flipping, 

blurring, noise injection, cutout, sharpening, highlighting, and color jittering. These 

methods perturb annotated regions in target images by manipulating spatial positions, 

adding interference information, random cropping, colors alteration, and modifying de-

tails and high-frequency information. The specific parameters of the aforementioned 

method are shown in the table below. 
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Table 1. Parameters of the data augmentation 

Method Parameters 

flip left-right flipping 

blur  Gaussian blur kernel 99 99  

noise injection The Poisson distribution is 2 

cutout covered area:16% - 50%  

sharpen kernel [0, -1, 0; -1, 2, -1; 0, -1, 

0] 

highlight The brightness increases by 

18% 

color jitter The color shift is 15 

C. Bit-Plane Processing 

In the subsequent steps, processing will be conducted on each channel of every bit plane. 

The specific procedure involves data augmentation operations on the annotated regions 

of the lower bit planes, as delineated by the formula: 
2

, ,
1 0

( ) 0,7
i

m m

c pro c ori
m c

P p n i
= =

 = + =                 (4) 

here 
,

m

c pro
p  represents the sum of the processed channel images, 

,

m

c ori
p  is the bit-plane 

image obtained by decomposing the original image, and n denotes the data augmenta-

tion method. The resulting image exhibits minimal visual changes, while alterations 

have occurred in the low-frequency information of the image. 

While introducing noise may accentuate discrepancies between the original image 

and the noise-added image version, it could also potentially impede the model's ability 

to extract meaningful features from the data, thereby increasing the risk of overfitting 

or underfitting. To address this concern, we employ image quality evaluation and mAP 

as key criteria for determining the appropriate bit planes for noise addition. For image 

quality evaluation, we utilize PSNR[29], MS-SSIM[30], and VIF [31] metrics. These 

metrics serve as criteria for selecting the appropriate bit planes for noise addition, taking 

into account their effects on image quality and subsequent model performance. Fig. 3 

and Table 2 show some data augmentation results. For first image, without augmenta-

tion, the PSNR is 32.4, indicating high quality. After flip augmentation, the quality 

slightly decreases (PSNR 31.7), while blur augmentation has a greater impact (PSNR 

30.1). MS-SSIM and VIF slightly drop, with flip augmentation having the least effect, 

while blur augmentation significantly affects visual quality. For image 2, without aug-

mentation, the PSNR is 33.1, showing excellent quality. Noise augmentation reduces 

the quality (PSNR 30.9), and crop augmentation has the greatest impact (PSNR 29.8). 

MS-SSIM and VIF both decrease, with crop augmentation causing significant loss of 

visual information. 



 
Fig. 3. test images. 

 

When PSNR exceeds 30dB, it becomes challenging for the human eye to perceive 

differences between the compressed and original images. Within the 10dB to 20dB 

range, the original structure of the image remains perceptible, with minimal visual dis-

tinctions between the two images. This study selects images with PSNR values surpas-

sing 30dB as suitable candidates. As indicated in Fig. 4, the number of processed bit 

planes increases, images quality gradually diminishes. Processing the initial five bit 

planes maintains PSNR values above 30dB, MS-SSIM values hovering around 0.99, 

and VIF values show a gradual decline. However, mAP exhibits a different trend, ini-

tially decreasing over the first four bit planes but subsequently increasing with the fifth 

bit plane. After considering all factors, opting for the first five bit planes (i.e., bit planes 

0, 1, 2, 3, and 4) emerges as the most optimal approach. This selection ensuring both 

high PSNR values and the preservation of overall visual coherence, as demonstrated in 

Fig. 5. 

 

 
Fig. 4. Comparison of Image Quality Metrics. 

 
Fig. 5. Different Bit-Plane Processing 
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The criteria for selecting noise entail minimal visual impact on the image while in-

duces internal changes. Firstly, Gaussian noise is considered, generated by incorporat-

ing random values from a normal distribution with a mean of zero and a specified stand-

ard deviation into the input data. Salt-and-pepper noise refers to two types of noise: salt 

noise and pepper noise. Salt noise typically manifests white noise, while pepper noise 

is typically characterized as black noise. The former denotes high-intensity noise, while 

the latter pertains to low-intensity noise. When both types of noise are present, they 

manifest as black and white specks within the image. As shown in Fig.6, under the 

identical conditions, among these four types of noise, Poisson noise exhibits the least 

impact. 

 

 
Fig. 6. Comparison of Different Noises 

 

Fine-tuning the annotated regions involves processing multiple annotated regions in 

a single image, with all regions adjusted in each iteration. The fine-tuning process in-

cludes making small adjustments to the bounding boxes in all nine directions, including 

no movement. The purpose of this movement is to provide additional contextual infor-

mation, assisting the model in understanding the position and relationships of the ob-

jects within the overall scene. Such measures serve to mitigate overfitting and enhances 

the model's generalization capabilities. 

 
Table 2. Different data augmentation methods applied to two images 

Image 

ID 
 

Data Augmen-

tation Method 

PSNR MS-

SSIM 

VIF 

1 No 32.4 0.987 0.91 

1 Flip 31.7 0.985 0.89 

1 Blur 30.1 0.980 0.87 

 2 No 33.1 0.990 0.93 

2 Noise 30.9 0.982 0.88 

2 Crop 29.8 0.976 0.85 



D. Bit-plane combination 

In this step, the low bit planes are integrated with the high bit planes using three meth-

ods: sequential, interleaved, and deletion. 

Given that the internal structural information in an image follows a sequential ar-

rangement, the combination proceeds from the low bit planes to the high bit planes. In 

conventional combination methods, the discussion specifically focuses on which bit 

planes to process. This can be formulated by the formula: 
2 7 2

, ,
0 0 0

( ) 0,7
i

m m

combin c ori c ori
m c m i c

P p n b i
= = = =

 = + + =              (5) 

combin
P  represents the aggregated image after adding noise,

,

m

c ori
p  is the bit-plane image 

obtained by decomposing the original image, n  is a fixed method, and 
,

m

c ori
b  is the im-

age without the applied method. This approach aligns with the internal structure of the 

image, maximizing information preservation and maintaining image integrity. 

To provide a clearer depiction of the combination method that best aligns with the 

expected results, an experiment was conducted using 6000 images from the VOC2007 

dataset [32] for validation. The experiment comprised two distinct groups: the original 

and the augmented dataset. The augmented group was generated through the inclusion 

of noise addition as a representative example. 

The experiment is divided into two groups: interleaving and deletion. The regular 

group serves as the control. In the deletion experiment group, individual bit planes from 

the first to the fifth are systematically deleted. Conversely, in the interleaving experi-

ment group, bit planes spanning from the first to the fifth are interwoven with each 

other, yielding a total of 10 combination methods. 

The experimental platform utilized in this study is OpenMMLab [33], version 2.0, 

which serves as the platform for implementing the training of a Faster R-CNN model 

[34] with ResNet-50 [35] as the backbone. The learning rate is set to 0.0025, and the 

experiment is trained for 24 epochs. Feature Pyramid Network (FPN) [36] is also em-

ployed, which enhances the model's capability to perceive objects across various scales 

by providing multi-scale feature maps. In the domain of object detection, FPN plays a 

pivotal role in furnishing superior contextual information and extracting detailed fea-

tures, thereby contributing to the heightened accuracy and stability of detection results. 

 
Table 3. Training Results for Specific Bit Plane Deletions. 

Category 0 1 2 3 4 

all-com 0.7095 0.7043 0.6966 0.6905 0.6937 

all-pro 0.7088 0.7043 0.7069 0.702 0.6804 

part-com 0.7194 0.7070 0.7129 0.6964 0.6941 

part-pro 0.7204 0.7150 0.7194 0.7154 0.6865 

 

Table 3 presents the results of removing specific bit planes. Denoted as planes 0 

through 4, with one plane removed per iteration. "all-com" indicates the overall mAP 

result, "all-pro" denotes the mAP after augmentation, "part-com" represents the mAP 

of the original dataset, and "part-pro" represents the mAP of the augmented dataset. 

The original dataset achieves an object detection accuracy of 0.7134. As indicated in 
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the table, there is a trend of decreasing overall precision with the increasing index of 

the deleted bit plane. Notably, a minor improvement is observed only when deleting 

the third bit plane, yielding a precision of 0.7129 for the original processing and 0.7194 

for the augmented processing. However, this increment does not significantly affect the 

overall declining trend. Particularly noteworthy in the case of the fifth bit plane, the 

results after processing exhibit inferior compared to the original processing, with no-

ticeable visual changes observed in images processed up to the fifth bit plane. 

Considering the comprehensive dataset, it becomes evident that as the index of the 

deleted bit plane increases, precision decreases, occasionally dropping below the pre-

cision of the original untreated data. Images processed with augmentation yields higher 

precision compared to non-augmented processing, though a shift in trend is noticeable 

starting from the fifth bit plane. Notably, for the fifth bit plane, the precision of the 

original processing is surpasses than that of the processed images. 

Based the experimental data, it is apparent that the detection accuracy achieved in 

the experiment is lower than the detection accuracy of the original data, failing to meet 

the selection criteria. Nevertheless, several conclusions can still be drawn from the ex-

perimental data. 

When low bit planes are interleaved with high bit planes, there is an observable 

increase in the overall object detection accuracy. However, if there exists a significant 

difference in bit plane index, the object detection accuracy experiences a subsequent 

decrease. This phenomenon may be attributed to the significant divergence in infor-

mation carried by low bit planes when interleaved with high bit planes, thereby result-

ing in a decline in object detection accuracy. 

3 Results and Discussion 

A. Model and Experiment Settings 

This study employed both single-stage object detection models, YOLOv7 [37] and 

YOLOv8, alongside two-stage detection models including Faster R-CNN, Cascade R-

CNN [38], and RetinaNet [39], as well as object detection models DiffusionDet [40] 

and EfficientDet[41], and image classification models EfficientNetV2 [42], ResNet 50, 

and Vision Transformer [43].The single-stage object detection models were imple-

mented using the MMDetection framework, while the two-stage object detection mod-

els were built upon the PyTorch framework. For the single-stage models, the experi-

ment was configured with 200 iterations, a batch size of 8, and a learning rate of 0.01. 

The two-stage models were trained with 24 iterations, a batch size of 16, and a learning 

rate of 0.00125. Training was conducted on a single NVIDIA GeForce RTX 2080 Ti, 

equipped with a CPU model of Platinum 8352V, PyTorch version 1.11, and CUDA 

version 11.3. 

B. Dataset 

The experiment utilized three datasets: VOC2007, VOC2012, and the Kitti2D dataset 

[38]. The VOC format serves as a standardized dataset format for computer vision tasks, 



primarily geared towards object detection, image classification, and semantic segmen-

tation. Comprising 20 classes, the dataset includes annotated objects ranging from peo-

ple and animals (e.g., cats, dogs, birds) to vehicles (e.g., cars, ships, airplanes) and fur-

niture (e.g., chairs, tables, sofas). On average, each image contains 2.4 annotated ob-

jects. The VOC2007 dataset comprises 9963 annotated images, while its upgraded 

counterpart, VOC2012, boasts a total of 17125 images. On the other hand, the Kitti2D 

dataset contains 7481 annotated images, featuring common road objects such as cars, 

pedestrians, and cyclists. Primarily associated with autonomous driving, this dataset 

was tailored for this experiment, focusing on six traffic-related classes. The images are 

sourced from diverse real-world scenarios, spanning urban and rural environments, ren-

dering it a fitting choice for research in autonomous driving. 

Data augmentation was employed across all three datasets, resulting in an aug-

mented dataset utilized for experimentation. To enable direct comparison between the 

original and augmented datasets, one image was randomly selected from the nine aug-

mented images, making the number of images in the augmented dataset equivalent to 

the original dataset. The augmented dataset was partitioned into training, validation, 

and test sets, maintaining a ratio of 7:2:1. 

C. Evaluation metrics 

Mean Average Precision (mAP) is a performance evaluation metrics within object de-

tection tasks. It combines the accuracy of the detection model across different catego-

ries and its robustness to different confidence threshold values, providing a comprehen-

sive performance measure. In this study, mAP@0.5 is utilized for single-stage object 

detection models, whereas mAP is used for two-stage object detection models. The 

formula for computing mAP is outlined as follows: 

TP
Precision

TP FP
=

+
                                          (6) 

TP
Recall

TP FN
=

+
                                        (7) 

Precision  represents accuracy, and  Recall  signifies the recall rate. Here,  TP denotes 

true positives (correctly identified positive instances), FP is false positives (incorrectly 

identified negative instances as positive),  FN stands for false negatives (incorrectly 

identified positive instances as negative). 

AP (Average Precision) serves as a balanced evaluation of precision and recall for 

each class. The formula for AP is as follows: 

AP P r dr= 
1

0
( )                                         (8) 

mAP (mean Average Precision) is the average precision across all predicted objects 

for various classes. The formula is as follows: 

1

1 k

i
i

mAP AP
k =

=                                            (9) 

here k  is the number of classes, and 
i

AP  represents the average precision for each class. 
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D. Validation of the Dataset in Image Classification 

In this paper, the performance gap between EfficientNetV2 and Vision Transformer 

varies across different datasets. According to Table 4, in the original dataset, the Top-

1 accuracy of EfficientNetV2 is 55.19, while Vision Transformer only reaches 35.58, 

resulting in a gap of nearly 20%. However, in the dataset used in this paper, Efficient-

NetV2's accuracy is 54.13, and Vision Transformer improves to 32.82, narrowing the 

gap to 21.31%, indicating that this dataset provides a more balanced evaluation across 

different models. 

 
Table 4. Comparison of Image Classification Models on Datasets 

Data Methods Top-1  Top-5  

Origiral data EfficientNetV2 55.19 94.49 

ResNet 50 40.72 85.91 

Vision Transformer 35.58 81.02 

Augmentation 

data 
EfficientNetV2 74.62 97.01 

ResNet50 43.39 88.91 

VisionTransformer 45.66 84.32 

 

The Precision and Recall metrics show that in the original dataset, EfficientNetV2 

achieves a Precision of 61 and a Recall of 52.7, while Vision Transformer’s Precision 

and Recall are much lower, at 30.31 and 17.49, respectively. In the dataset from this 

paper, Vision Transformer’s Precision improves to 32.38 and Recall to 19.46. Although 

the absolute values are still low, the improvement suggests that the dataset contributes 

to better model performance. 

This dataset may include more diverse and complex samples, forcing the models 

to learn more comprehensive global features instead of relying on specific characteris-

tics for predictions. This results in more balanced evaluations between models, high-

lighting the strengths and weaknesses of each architecture. In conclusion, the dataset in 

this paper enhances the balanced performance of models, better reflecting their gener-

alization capabilities in complex scenarios and making it suitable for comprehensive 

evaluation of different model performances. 

E. Accuracy of the Model Across Different Categories 

The evaluation metric employed in this study is mAP (mean Average Precision). Firstly, 

an analysis of the average precision for each category is conducted on the VOC2007 

dataset. The dataset comprises 20 categories, including "Aeroplane" (AE), "Bicycle" 

(BI), "Bird" (BR), "Boat" (BO), "Bottle" (BT), "Bus" (BU), "Car" (CA), "Cat" (AT), 

"Chair" (CH), "Cow" (CO), "Dining Table" (DI), "Dog" (DO), "Horse" (HO), "Motor-

bike" (MO), "Person" (PR), "Potted Plant" (PO), "Sheep" (SH), "Sofa" (SO), "Train" 

(TR), and "TV" (TV).The detection models utilized in this study include Faster R-CNN, 

Cascade R-CNN, RetinaNet, YOLOv7, and YOLOv8, as outlined in Table 5. 



Table 5. Comparison of the training results for each category before and after augmentation on 

the VOC2007 dataset for various models. 

 
Faster 

r-cnn 

Cas-

cade r-

cnn 

Reti-

nanet 

Yolo 

v7 

Yolo 

v8 

Faster 

r-cnn 

Cas-

cade-

rcnn 

reti-

nanet 

Yolo 

v7 

Yolo 

v8 

mAP 0.74 0.715 0.735 0.872 0.785 0.77 0.752 0.753 0.91 0.827 

AE 0.788 0.784 0.756 0.922 0.834 0.812 0.804 0.795 0.907 0.924 

BI 0.808 0.798 0.794 0.917 0.889 0.87 0.868 0.857 0.943 0.863 

BR 0.765 0.698 0.752 0.9 0.675 0.784 0.715 0.764 0.979 0.783 

BO 0.57 0.588 0.601 0.753 0.704 0.7 0.687 0.673 0.902 0.761 

BT 0.559 0.496 0.611 0.735 0.67 0.571 0.591 0.567 0.81 0.692 

BU 0.775 0.795 0.783 0.943 0.764 0.873 0.893 0.85 0.96 0.856 

CA 0.802 0.804 0.846 0.602 0.878 0.812 0.812 0.862 0.828 0.89 

AT 0.867 0.802 0.832 0.856 0.813 0.866 0.865 0.835 0.947 0.863 

CH 0.573 0.504 0.56 0.989 0.599 0.638 0.575 0.616 0.975 0.702 

CO 0.775 0.761 0.773 0.886 0.873 0.75 0.744 0.724 0.921 0.785 

DI 0.704 0.629 0.681 0.934 0.764 0.783 0.723 0.789 0.805 0.743 

DO 0.783 0.774 0.773 0.945 0.863 0.846 0.782 0.799 0.974 0.809 

HO 0.896 0.884 0.847 0.984 0.863 0.797 0.788 0.812 0.971 0.905 

MO 0.793 0.776 0.777 0.955 0.795 0.773 0.788 0.778 0.983 0.876 

PR 0.795 0.792 0.788 0.922 0.865 0.795 0.796 0.79 0.973 0.866 

PO 0.477 0.478 0.491 0.833 0.547 0.637 0.665 0.669 0.909 0.768 

SH 0.785 0.699 0.742 0.938 0.779 0.747 0.676 0.66 0.974 0.879 

SO 0.701 0.644 0.689 0.804 0.756 0.717 0.682 0.666 0.79 0.745 

TR 0.79 0.868 0.834 0.811 0.857 0.838 0.798 0.796 0.91 0.953 

TV 0.788 0.718 0.772 0.81 0.92 0.786 0.794 0.751 0.744 0.881 

 

The training results for both the original and augmented datasets are provided sepa-

rately in the table. It is evident from the table that both single-stage and two-stage de-

tection models show improvements on the augmented dataset. To further emphasize the 

advantages of the augmented dataset, the achieved results for each category are bolded 

in the table. Notably, for many categories, the best results are obtained from the aug-

mented dataset. Comparing the training on the original dataset with YOLOv7 and the 

augmented dataset with YOLOv7, overall, the augmented dataset exhibits higher cate-

gory accuracy. For instance, in the "Car" (CA) category, the highest accuracy is 

achieved with augmented YOLOv7. However, when comparing the results before and 

after augmentation, the model's accuracy is generally higher after augmentation.  

F. The generalization capability of the method 

To illustrate the feasibility of our proposed method, we conducted testing and validation 

on the VOC2007, VOC2012, and KITTI datasets. The utilization of both VOC2007 

and VOC2012 datasets aimed to evaluate the method’s performance across general da-

tasets, while the KITTI dataset served to evaluate the method's feasibility in specific 

scenarios. We observed that under comparable dataset conditions, different object de-

tection models exhibited varying improvements in detection accuracy. This indicates 
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that the method proposed in this paper exhibits strong generalization capabilities and 

has the potential to be extended for handling diverse and previously unseen data. 

 
Table 6. Detection Results on VOC2007 (%) 

Method Original Augmented Increase 

Faster R-CNN 74.0 77.0 3.0 

Cascade R-CNN 71.5 75.2 3.7 

Retinanet 73.5 75.3 1.8 

Yolo v7 87.2 91 3.8 

Yolo v8 78.5 82.7 4.2 

DiffusionDet 52.5 57.5 5.0 

EfficientDet 73.0 79.5 6.5 

 

In the general dataset, our method demonstrates improvements in both single-stage 

and two-stage approaches as Table 6 shows. Notably, when comparing single-stage and 

two-stage object detection models, the degree of enhancement is more pronounced in 

the one-stage models. Specifically, YOLOv7 exhibits a 3.8% improvement, while 

YOLOv8 shows a 4.2% enhancement. Similarly, EfficientDet achieves a 6.5% im-

provement. Among the two-stage models, Faster R-CNN, Cascade R-CNN, and Reti-

naNet achieved improvements of 3%, 3.7%, and 1.8%, respectively. Moreover, Diffu-

sionDet shows a notable 5.0% enhancement.  This comparison highlights the effective-

ness of our method across different object detection frameworks. 

 
Table 7. Detection Results on VOC2012 (%) 

Method Original Augmented Increase 

Faster R-CNN 61.4 71 9.6 

Cascade R-CNN 60.1 69.4 9.3 

Retinanet 62.9 70.7 7.9 

Yolo v7 87.1 93.8 6.7 

Yolo v8 71 80.4 9.4 

DiffusionDet 55.3 60.0 4.7 

EfficientDet 72.5 76.9 4.4 

 

In the general dataset VOC2012, the observed improvements are more pronounced, 

showing varying degrees of enhancement across different object detection models as 

Table 7 shows. Notably, Faster R-CNN exhibits the largest increase in accuracy, with 

a notable improvement of 9.6%. Comparing the training results on VOC2012 with those 

on VOC2007, it is evident that the improvements are generally superior, surpassing 

them by 3% to 6%. Specifically, among the models, Faster R-CNN demonstrates the 

highest improvement, with a boost of 9.6%. In the two-stage models, Cascade R-CNN 

and RetinaNet achieved improvements of 9.3% and 7.9%, respectively. In the single-

stage models, YOLOv7 and YOLOv8 demonstrated improvements of 6.7% and 9.4%. 

Additionally, EfficientDet achieved a 4.4% improvement, while DiffusionDet demon-

strated a 4.7% increase. This highlights the effectiveness of our method across different 

object detection frameworks in VOC2012. 

 



Table 8. Detection Results on KITTI 2D (%) 

Method Original Augmented Increase 

Faster R-CNN 83.5 86.6 3.1 

Cascade R-CNN 82.7 86.8 4.1 

Retinanet 81.9 85.2 3.3 

Yolo v7 92.3 96.2 3.9 

Yolo v8 84.5 87.2 2.7 

DiffusionDet 68.3 72.2 3.9 

EfficientDet 37.6 41.0 3.4 

 

On the KITTI 2D dataset tailored for autonomous driving scenarios, our method exhibits 

notable improvements as Table 8 shows. Among the two-stage models evaluated, the 

Cascade R-CNN model stands out, showing an improvement of 4.1%. Similarly, within 

the single-stage models, YOLOv8 emerges as the top performer with a commendable 

improvement of 3.9%. DiffusionDet demonstrated an improvement of 3.9%, while Ef-

ficientDet showed a 3.4% increase. These results signify the positive impact of our 

method on datasets specifically designed for domains, such as autonomous driving. 

The experimental results presented in Table 9 demonstrate the performance of vari-

ous data augmentation methods when integrated with the YOLOv8 framework, evalu-

ated on the VOC2007 dataset. The mean Average Precision (mAP) metric is used to 

assess the effectiveness of each augmentation technique. Among the methods tested, 

the proposed method achieves the highest mAP of 0.827, indicating its superior ability 

to enhance model performance compared to other augmentation strategies. Notably, 

traditional methods such as mixup and flipud show moderate improvements, with mAP 

values of 0.797 and 0.773, respectively. However, techniques like keepaugment result 

in a relatively lower mAP of 0.765, suggesting limited effectiveness in this context.  

 
Table 9. Different augmentation method comparison 

Method mAP 

Yolo v8+original 0.785 

Yolo v8+mixup 0.797 

Yolo v8+flipud 0.773 

Yolo v8+keepaugment 0.765 

Yolo v8+ours 0.827 

4 Conclusion 

In addressing the scarcity of high-quality datasets, the proposed method in this paper 

has demonstrated effectiveness, which lies in integrating bit-plane manipulation with 

data augmentation, selectively processing different bit planes (e.g., low bit planes) to 

effectively enhance both detail and overall image information while maintaining visual 

quality. By applying various data augmentation techniques (such as blurring and noise 
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injection) on low bit planes and fine-tuning the enhanced data during the bit-plane re-

combination stage, the robustness and accuracy of the detection model are significantly 

improved. Additionally, the proposed method can be integrated with other models. Fu-

ture research could further explore how to combine bit-plane decomposition with cross-

domain learning to better handle differences between various data domains, and extend 

this method to other computer vision tasks such as image segmentation and video anal-

ysis. 
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