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Abstract. Low-light Image Enhancement (LLIE) is a crucial strategy for im-

proving the brightness and visual characteristics of underexposed images. Tradi-

tional and machine learning-based LLIE methods often use a single image or map 

to merge the most prominent channel in RGB. However, these approaches pre-

sents challenges in achieving a comprehensive understanding of the image data 

due to the limited information available from a single source. Leveraging a single 

image or map may limit the algorithm's ability to capture the full spectrum of 

details and nuances present in the original image. Therefore, it is important to 

explore alternative approaches that can capture a more comprehensive and de-

tailed representation of the input data. In this paper, we introduce an unsupervised 

approach, SDLLIE, which combines the advantages of retinex theory and deep 

learning. Firstly, a statistical module is used to extract various information from 

the input map, allowing for a comprehensive analysis of the image data. Sec-

ondly, dense connections are incorporated to prevent network degradation and 

facilitate the smooth flow of information across layers. Before extracting the il-

lumination and reflectance components, we remove noise to improve the quality 

and accuracy of low-light images. To align the generated results with the desired 

outcomes, we use a set of customized loss functions to guide the training process 

and optimize the network parameters effectively. Our proposed SDLLIE method 

has been comprehensively evaluated using both quantitative and qualitative 

measures on three widely-recognized benchmark datasets. The results demon-

strate its considerable performance when compared to existing state-of-the-art 

approaches. 
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1 Introduction 

Images that are acquired under lighting conditions that are not optimal frequently 

suffer from composite distortions, which include limited visibility, low contrast, and 

interference from the sensor. Those images with insufficient exposure are not suitable 

for signal processing as they pose difficulty for human visualization and various com-

puter vision procedures. In order to uncover the hidden details that are present in the 

low-light image and to prevent the performance of follow-up visual tasks from deteri-

orating, boffins have put a significant amount of effort into optimizing contrast, 
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restoring texture, and removing sensor noise for the low-light image. Especially for 

Low-light Image Enhancement(LLIE), a considerable number of algorithms have been 

presented over the course of the last few decades.  

Histogram equalization based approaches and Retinex model based approaches are 

traditional LLIE methodologies. The former alters the pixel intensity distribution by 

shifting the values over the histogram, thereby boosting the contrast and enhancing the 

visual quality. The latter have been extensively used in the LLIE field due to Retinex 

theory, which is a good representation of human color perception. In Retinex theory, a 

picture 𝐼 can be decomposed into lamination 𝐿 and reflection spectrum 𝑅  using the 

equation 𝐼 =  𝐿 ○ 𝑅, where ○ represents the element-by-element multiplication. Nev-

ertheless, the conventional Retinex model, in its original form, does not account for the 

presence of noise, which is unavoidable in poor pictures. To that end, a noise item 𝑁 

introduced in the robust Retinex model [1]. 

As time goes by, LLIE algorithms have achieved considerable breakthroughs. For 

these methods, the majority of solutions are designed to utilize both low-level light and 

normal-level light image pairs [2]. However, capturing photos with varying lighting 

levels in the physical world situation is time-intensive and costly process [3]. To mini-

mize the necessity for normal-light images, unsupervised and zero-shot LLIE tech-

niques are proposed. However, the majority of self-supervised approaches rely on prior 

knowledge, which combines the highest score in the red, green and blue channels with 

the original three channels to provide direct training of the network. In a complicated 

natural environment, it is tough to produce better results utilizing these tactics. Further-

more, deepening the depth of ordinary convolution is likely to cause network degrada-

tion. 

To handle the issue of prior knowledge and network degradation, we offer a general 

learning-based LLIE technique, entitled SDLLIE. The fundamental principle of our ap-

proach is to properly utilize information in underexposed images. Hence, we investigate 

leveraging the Deep learning methodologies and retinex theory to dissect poor-light 

images into lumination, reflectance and noise maps. To begin with, we utilize statistical 

approaches to enrich the input information. Second, in contrast to the Retinex decom-

position method that was used previously, the noise is estimated and then deleted from 

the raw picture. The outcome of this process is used afterwards as an input for subse-

quent estimating operations. Finally, by effectively leveraging dense connections, we 

mitigate the issue of excessive information loss typically associated with deeper net-

work architectures. As a result, the suggested SDLLIE obtains competing performance 

in publicly available LLIE datasets by utilizing a steady network and a few of efficient 

loss functions. In summary, the contributions of this paper are the following: 

• We come up with a general LLIE method that just requires images in low light con-

ditions. The neural network is built on Retinex decomposition with dense connec-

tions and a few important loss functions. 

• In order to acquire a comprehensive understanding of underexposed images, we have 

incorporated a statistical module for refinement. 

• We validate the presented approach on multiple publicly available datasets, and the 

outcomes of the experiments confirm its superior performance.  
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2 Related Work 

Various LLIE approaches have been put forward over the past few decades, which 

can be categorised as traditional methods and learning-oriented approaches. 

2.1 Traditional Approaches 

Histogram Equalization is a technique for illuminating an image by expanding its 

dynamic range. For instance, Abdullah Al-Wadud et al. [4] employed gray-level allo-

cation and segmented the picture histogram into many partial histograms. Celik and 

Tjahjadi [5] utilized contextual data modeling, which involves the application of a 2D 

histogram of an input picture to produce non-linear data mappings for creating aestheti-

cally pleasing enhancements to different types of pictures. Liu et al. derived the re-

quired parameters to speed up computations.  

Retinex-based approaches dissect underexposed images into reflectivity and lumi-

nance maps. After that, those approaches alter the reflectivity and luminance compo-

nents and then recompose these to obtain the refined images. Fu et al. [6] presented a 

probabilistic method to better express prior information and estimate reflectivity and 

illumination. Guo [7]  initially created a luminance map by identifying the highest in-

tensity value for each of the pixels in the R, G and B channels. Afterwards, they intro-

duced a skeleton prior to refining the initial illumination. Li et al. [1] improved the 

capability of enhancing underexposed pictures accompanied by rigorous noise. Ren et 

al. [8] incorporated lower ranking prior knowledge into a Retinex disaggregation pro-

cedure in order to reduce noise in the reflectivity map. 

2.2 Learning-based Approaches 

Learning-based approaches are dependent on paired underexposed and normal light-

ing pictures. Wei et al. [3] presented a deep learning structure, Retinex-Net, which com-

bines a decomination net for decomposition and an enhancement net for luminance ad-

justment. Jiang et al. [9] improved the contrast of the image by utilizing both its spatial 

and frequency information while also preserving its detailed characteristics. Zhang et 

al. [10] adopted a deep color coherence network to maintain the color consistency 

across LLIE. Cui et al. [11] proposed a framework in transformer style to evaluate ISP-

related parameters to fuse the targeted images. Xu et al. [12] exploited Signal-to-Noise-

Ratio-aware transformers and convolution filters to dynamically improve pixels. Wang 

et al. [13] presented a network framework that incorporates illumination-sensitive 

gamma correction and comprehensive image modeling. Yi et al. [14] integrated the 

strengths of the substantial model and the generative network to tackle various degra-

dations. 

Recently, unsupervised methods have been designed to minimize the overhead asso-

ciated with gathering reference images. For example, Jiang et al. [15] presented a gen-

erative adversarial network that is pre-trained on non-paired pictures. Zhu et al. [16] 

devised a three-branch convolutive neural network for the purpose of conducting Reti-

nex decomposition and restoration. Guo et al. [17] introduced a renewed approach for 



4  Yunqi Ma and Danwei Chen 

estimating curves using deep learning techniques, without the need for any reference 

data. Liu et al. [18] presented a low-weight LLIE framework by merging the principled 

optimization Extending technique and incorporating a cooperative prior framework dis-

covery tactic. Zhao et al. [19] implemented Retinex decomposition using deep neural 

networks to produce luminance and reflectivity maps, and the luminance map was then 

utilized to execute the enhancement process. Ma et al. [20] presented a cascaded illu-

mination learning strategy with weight sharing to enhance poor images. They con-

structed the self-calibrated module to minimize calculation costs. Fu et al. [21] pre-

sented PairLIE, an unsupervised approach that leverages low-level lighting image pairs 

to learn adaptive priors. 

3 Proposed Method 

In Section 3.1, we will describe the process and steps of the presented method for 

enhancing underexposed images through a technique known as SDLLIE. Following 

that, in Section 3.2, we will delve into the specifics of the specially tailored loss function 

for SDLLIE, which is structured to facilitate zero-shot learning scenarios. 

 

Fig. 1. The summarization of our method. (a) The SDLLIE consists of two components, de-

noising and restoring. (b)Statistic Blocks uses three branches to extract rich information from a 

single image. (c) Dense Connection Block consists of five convolutions and four LeakyReLU. 

3.1 Architecture of SDLLIE 

On the basis of robust Retinex technology [1]. The disassembly of a low-light image 

𝐼 can be represented as the sum of a reflectance image 𝑅, an illumination image 𝐿 and 

a noise map 𝑁 as,  

 𝐼 = 𝑅 ○ 𝐿 + 𝑁 (1) 

where ○ indicates the element by element multiplication. Fig. 1 displays the overall 

framework of our technique. As illustrated in Fig. 1 (a),  Fig.1 (b) shows the specifics 
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of the Statistic Block. As indicated in Fig. 1 (c), the basic unit of the Dense Connection 

block, which is formed of five Convolution and four LeakyReLU.    

 (1) Network: In this network architecture, the decomposition processes resemble Ret-

inex decomposition, but also have significant differences. During the feature extraction 

phase, the Statistic Block(STB) and Dense Connection Block(DCB) are used to extract 

information from low-light images. This ensures that all the rich information contained 

in the images is explored. The final step employs tanh and sigmoid activation functions 

to estimate noise, illumination maps, and reflection maps. However, the reflectance and 

illuminance branches terminate with a sigmoid layer to ensure that the intensities re-

main within the range of [0, 1]. Additionally, a tanh activation function is employed as 

the final layer of the noise branch to improve the accuracy of the noise map estimation, 

resulting in a decrease in noise values within the range of [-1, 1]. To minimize the 

impact of noise on the reflectance and illumination estimation of the low-light image, 

we use a comparatively clean low-level lighting image, denoted as 𝐼′, which is obtained 

by subtracting the noise from the original image 𝐼. The noise present in the image is 

represented by 𝑁, so that 𝐼′ = 𝐼 − 𝑁. During the training stage, the optimization pro-

cess focuses on using the loss function to guide and constrain the decomposition pro-

cess. This ensures that the model learns to accurately separate the image into its com-

ponents. However, when transitioning to the testing stage, additional steps are intro-

duced to further enhance the image. These steps typically involve performing gamma 

correction, as well as combining and refining the three key components: reflectance, 

illumination, and noise. By performing these post-processing procedures, the final out-

put image undergoes further enhancement and adjustments, resulting in improved and 

visually appealing image quality: 

 𝐼𝑒 = 𝐺(𝐿) ○ 𝑅 = 𝐿𝛾 ○ 𝑅 (2) 

where 𝛾 is the gamma correction factor and 𝐼𝑒  means the enhanced picture. 

(2) Statistic Block: Many LLIE techniques commonly utilize low-light images cap-

tured at different exposure levels as input to the network for enhancing details and im-

proving image quality. However, the process of manual pre-selection of images based 

on prior knowledge is time-consuming and subjective, which can affect the quality of 

the generated results. Even with meticulous selection, there is no guarantee that the 

results will meet the desired standards of satisfaction.  The Histogram Equalization 

(HE) method leverages the histogram to characterize the distribution of pixel intensity 

values in an image. By analyzing and adjusting the pixel distribution through histo-

gram-based operations, the HE method aims to enhance the overall contrast and im-

prove the visual quality of the image. Our approach is inspired by the principles of 

Histogram Equalization (HE) and leverages statistical analysis to extract valuable in-

formation from individual underexposed images.  The method focuses on the raw pixel 

values, as well as their average and variance, to understand the distribution of pixel 

values across the image.  By examining the relationship between pixel values and their 

spatial context, areas of potential improvement in exposure can be identified. In accord-

ance with Fig. 1 (b), Initially, the input feature 𝐹 is restructured into tokens 𝑋. Then 

𝑋 passes through three functions and is reconstructed: 
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 𝑋𝑔 = 𝐹(𝑓𝑂(𝑋) + 𝑓𝑚(𝑋) + 𝑓𝑣(𝑋))
𝑐
 (3) 

where 𝑋𝑔 denotes the global information, and 𝐹𝑐 means the concatenate operation. The 

result of 𝐹𝑜 is the 𝑋. 𝐹𝑚 and 𝐹𝑣 indicate the mean and variance of the picture. 

 (3) Dense Connection Block: In convolutional neural networks, there is a tendency 

for global and contextual information to diminish as the network depth grows. While 

residual connections [22] can mitigate this issue, they may not be suitable for the LLIE 

task. Residual connections accumulate extracted features from the previous layer to the 

input of the next layer. This can lead to an increase in redundant information, which is 

not conducive to optimizing model parameters. To tackle this challenge, we consider 

increasing the network width. However, simply widening each layer may lead to model 

underfitting due to the limited number of datasets. Therefore, we draw inspiration from 

the benefits of dense connections [23], where each layer aggregates features from the 

previous layer, enabling richer information processing at each level. This approach not 

only mitigates network degradation but also facilitates the discovery of optimal model 

parameters during training. The conjecture can also be demonstrated in the ablation 

experiment section. 

3.2 Loss function 

In order to enhance the separation performance of the SDLLIE network, it is essential 

to update its parameters and design a criterion that measures the current separation per-

formance. This criterion should guide the network to produce more precise individual 

elements. To achieve this, we have developed a loss function that considers various 

factors to evaluate the separation quality of the network. Below is a detailed explanation 

of the loss function design. 

 ℒ =  𝜔1ℒ𝑟𝑒𝑐 + 𝜔2ℒ𝑖𝑛𝑐 +   𝜔3ℒ𝑟𝑟 (4) 

where ℒ𝑟𝑒𝑐  is the reconstruction loss. ℒ𝑖𝑛𝑐  is the illumination-noise correlation loss. 

ℒ𝑟𝑟 is the reflectance reference loss. 𝜔1, 𝜔2, and ℒ𝑟𝑟 are the hyper-parameters. 

 (1) Reconstruction Loss: To guarantee a dependable and precise decomposition, the 

extracted components from an image must conform to specific constraints that facilitate 

the reconstruction of the original image according to the specified equation Eq. (3). The 

objective of the reconstruction process is to minimize the difference between the recon-

structed image and the original input image. Thus, the reconstruction loss can be ex-

pressed as a function that measures this difference and directs the optimization process 

to generate components that can accurately reconstruct the image. This loss function is 

essential in training the model to produce decomposed components that closely match 

the original image, resulting in high-quality and accurate reconstruction outcomes. The 

reconstruction loss can then be formulated as, 

 ℒ𝑟𝑒𝑐 = ‖𝑅 ○ 𝐿 + 𝑁 − 𝐼‖𝐹 (5) 

where 𝑅 ○ 𝐿 + 𝑁 denotes the reconstructed image, 𝐼 represents the input image and 

‖𝑋‖𝐹 refers to the Frobenius norm of the matrix 𝑋. 
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 (2) Illumination-Noise Correlation Loss: During the process of enhancing low-level 

lighting images, the luminance of the dark portions is boosted to augment their clarity 

and perceptibility. However, this can also amplify any noise that may be present  in 

those areas. Therefore, noise reduction is vital to prevent any unfavorable impact on 

subsequent enhancements. The luminance map reflects the brightness distribution of 

the picture, which can be applied to direct the task of image denoising and assist 

SDLLIE to estimate noise more efficiently in low-level lighting conditions. The term 

for the loss of correlation between illumination and noise has been designed accord-

ingly. 

 ℒ𝑖𝑛𝑐 = ‖𝐿 ○ 𝑁‖2 +
1

𝑛
 ‖𝐿 −  𝐿𝑚‖2

2 + 𝛼1 ‖
𝛿𝐿

𝛿𝑤
‖

1
+ 𝛼2 ‖

𝛿𝐿

𝛿ℎ
‖

1
  (6) 

where ‖𝑋‖2calculates the sum of squares of all the elements in 𝑋.  
1

𝑛
 ‖𝐿 −  𝐿𝑚‖2

2 is 

the mean absolute eror(MSE) between 𝐿 and 𝐿𝑚, the value of 𝐿𝑚 is calculated by tak-

ing the maximum value from the R, G, and B channels. ‖𝑋‖1denotes the summation of 

the absolute values of every element in 𝑋. Inspired by TVLoss [24], we propose two 

terms: 𝛼1 ‖
𝛿𝐿

𝛿𝑤
‖

1
and 𝛼2 ‖

𝛿𝐿

𝛿ℎ
‖

1
. The 𝛼1 and 𝛼2 represent the image dimensions, width 

and height, respectively. 

(3) Reflectance Reference Loss: Supervised learning techniques use normal-light im-

ages as a reference during training to leverage the wealth of color information embed-

ded in reflectance maps. We have formulated the reflectance reference loss as a crucial 

component in our training methodology, following the supervised approach of using 

reference images. The reflectance reference loss is used to compare and align predicted 

reflectance maps with corresponding reference images. This allows the model to learn 

and refine its predictions based on the desired output, resulting in accurate and con-

sistent reflectance maps that closely resemble the reference images. The loss function 

enhances the quality and fidelity of the decomposition process. The reflectance refer-

ence loss can be expressed as: 

 ℒ𝑟𝑟 = ‖𝑅 − 𝑅′‖2
2 (7) 

where 𝑅′  denotes the reflectance reference map, obtained by evaluating (𝐼 −
 𝑁) / 𝐿. Based on signal processing principles, we assume that (𝐼 −  𝑁) represents a 

low-light image without noise. 

4 Experiments 

4.1 Datasets and Implementation Details 

To evaluate the effectiveness of our suggested method for enhancing low-light images, 

we carried out comprehensive experiments on three publicly available datasets, includ-

ing LOL-v1 [3], LOL-v2-real [25] and LOL-v2-synthetic [25]. The LOL-v1 dataset 

consists of 500 pairs of low/normal-light images, distributed into 485 training pairs and 

15 testing pairs. The LOL-v2-real includes 689 pairs of low/normal-light images for 
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training and an incremental 100 pairs for testing. Similarly, the LOL-v2-synthetic da-

tasets have 900 pairs of low/normal-light images for training and 100 pairs for testing. 

Only low-light images are used for training. 

SDLLIE was implemented using PyTorch on a individual NVIDIA GTX 3090 GPU. 

During the training phase, a batch size of 16 is applied and images are randomly 

cropped to the size of 48 × 48. To optimize the network parameters, we employed the 

ADAM optimiser with an initial learning rate of 1 × 10−4. For the training process, we 

established 600 epochs and implemented a learning rate reduction strategy where the 

rate was decreased by half every 100 epochs. Regarding the hyperparameters 𝜔1, 𝜔2, 

and 𝜔3 in Equation 4, we empirically set 𝜔1 = 70, 𝜔2 = 1.5, and 𝜔3 = 1. In the test-

ing stage. The default gamma correction factor 𝛾 is 0.15. The evaluation metrics em-

ployed are peak signal-to-noise ratio (PSNR), structural similarity (SSIM), mean abso-

lute error (MAE) and learned perceptual image patch similarity (LPIPS). 

 

Fig. 2. Qualitative comparisons of different LLIE methods. LIME, BrainLikeRetinex,  KinD, 

URetinex-Net, EnlightenGAN, Zero-DCE, PairLIE, and SDLLIE(ours). 

4.2 Compared Methods 

Thirteen state-of-the-art LLIE methods were compared with SDLLIE. These methods 

can be categorized into traditional, supervised, and unsupervised approaches. Those 

methods include LIME [7], Brain-Like Retinex [26], Retinex-Net [3], MBLLEN [27], 

KinD [29], ChebyLighter [2], URetinexNet [28], EnlightenGAN [15], RRDNet [16], 

Zero-DCE [17], RUAS [18], SCI [20], and PairLIE [21]. 

 a   ow light image  b       c   rain i e etine  d   in  e   retine   et

     nlighten    g   ero     h   air    i         ours      round  ruth
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Table 1. Quantitative comparisons were made between the given method and state-of-the-art 

methods on the LOL-v1 and LOL-v2 datasets. "T", "S", and "U" correspond to the terms "Tra-

ditional", "Supervised", and "Unsupervised" approaches, respectively. In bold are the top three 

results. 

Method Type 

LOL-v1 LOL-v2-real LOL-v2-synthetic 

    ↑     ↑    ↓      ↓     ↑     ↑    ↓      ↓     ↑     ↑    ↓      ↓ 

LIME[11] T 14.22  0.51  50.92  0.37  17.14  0.53  34.91  0.34  17.63  0.79  28.82  0.20  

BrainLikeRetinex[3] T 17.38  0.47  30.47  0.36  15.64  0.44  36.56  0.40  16.59  0.76  31.73  0.26  

RetinexNet[34] S 16.77  0.42  32.02  0.47  16.10  0.40  33.48  0.54  17.14  0.76  29.87  0.26  

MBLLEN[23] S 17.90  0.69  31.11  0.25  17.94  0.66  29.22  0.28  16.25  0.72  39.86  0.20  

KinD[14] S 17.65  0.77  31.40  0.18  20.59  0.82  22.44  0.14  17.28  0.76  33.18  0.25  

ChebyLighter[12] S 19.74  0.75  26.96  0.20  18.83  0.77  30.53  0.18  13.42  0.63  45.35  0.38  

URetinexNet[47] S 21.33  0.83  21.17  0.12  21.22  0.86  23.17  0.10  18.76  0.83  27.44  0.19  

EnlightenGAN[30] U 17.48  0.65  34.47  0.32  18.64  0.68  27.53  0.31  16.57  0.77  33.91  0.21  

RRDNet[31] U 11.40  0.46  69.83  0.36  13.90  0.48  53.36  0.32  14.79  0.65  45.96  0.25  

Zero-DCE[32] U 14.86  0.56  47.07  0.34  18.06  0.57  33.38  0.31  17.76  0.82  31.64  0.17  

RUAS[33] U 16.40  0.50  39.11  0.27  15.33  0.49  41.33  0.31  13.40  0.64  50.10  0.36  

SCI[35] U 14.78  0.52  48.76  0.34  17.30  0.53  37.49  0.31  15.43  0.75  39.85  0.23  

PairLIE[36] U 19.24  0.74  26.04  0.25  18.75  0.76  28.11  0.25  18.37  0.78  28.40  0.23  

SDLLIE(ours) U 19.31  0.75  26.32  0.34  19.81  0.69  24.43  0.35  19.92  0.83  24.39  0.18  

 

4.3 Quantitative Comparisons 

Tab. 1 shows the quantitative performance metrics for the LOL-v1, LOL-v2-real and 

LOL-v2-synthetic datasets. It is evident that traditional and unsupervised methods pro-

duce suboptimal results in these three datasets.  This is due to the difficulty in learning 

optimal enhancement modeling parameters without reference images.  Furthermore, 

some existing approaches depend on images with different exposure levels or manual 

priors, which can restrict their effectiveness and applicability in various scenarios.  In 

many real-world situations, a more automated and robust solution is required as relying 

on carefully selected images or manual incorporation of prior knowledge may not be 

feasible or practical. SDLLIE achieves satisfactory performance compared to the other 

six unsupervised methods and gets comparable results among the supervised ap-

proaches in Tab. 1. 

4.4 Qualitative Comparisons 

Fig. 3 provides a visual comparison showcasing the quality outcomes of various Low-

Light Image Enhancement (LLIE) methods on both the LOL-v2-real and LOL-v2-

synthetic datasets. Analyzing the results in conjunction with Tab. 1, it becomes evident 

that the supervised methods KinD and URetinexNet exhibit commendable performance 

specifically on the LOL-v1 and LOL-v2-real datasets. However, our proposed approach 

demonstrates a well-rounded efficacy across all three benchmark datasets, with notable 

success observed on the LOL-v2-synthetic dataset. Notably, our method achieves com-

pelling visual effects through the adept management of color rendering, contrast 



10  Yunqi Ma and Danwei Chen 

enhancement, and preservation of natural tones, culminating in an overall enhancement 

of image quality and aesthetic appeal.  

Table 2. Quantitative outcomes from the ablation research conducted on the LOL-v1 dataset. 

The optimal outcomes are emphasized in bold type. 

Method     ↑     ↑    ↓      ↓ 

w/o STB 18.75 0.75 28.23 0.32 

w/o DC 17.68 0.69 31.73 0.48 

w/o inc 12.9 0.53 50.54 0.85 

w/o rr 16.57 0.65 36.2 0.61 

SDLLIE 19.31 0.75 26.32 0.34 

 

 

Fig. 3. Qualitative comparisons of the ablation studies on the LOL-v1 dataset. 

4.5 Ablation Studies 

Ablation studies were conducted on the LOL-v1 dataset to investigate the effectiveness 

of the proposed SDLLIE method in four experimental settings. The results of these 

studies are presented and analyzed in detail, providing valuable insights into the per-

formance and impact of different components within the algorithm. The outcomes and 

findings of the ablation studies are presented in Tab. 2 for quantitative analysis and Fig. 

2 for visual comparison. Upon the removal of ℒ𝑖𝑛𝑐, a noticeable decline in performance 

is observed, leading to the generation of a grayscale output map.  This outcome under-

scores the critical relationship between noise and illumination in the Low-light Image 

Enhancement process, highlighting the integral role that noise suppression plays in pre-

serving image quality and enhancing visual clarity. The vibrancy and richness of color 

within the image can be significantly enhanced by incorporating ℒ𝑟𝑟.  By using this 

specific loss function, the enhancement algorithm is able to effectively enhance and 

amplify the color depth and saturation of the image, resulting in a visually striking and 

aesthetically pleasing output.  ℒ𝑟𝑟 plays a pivotal role in fine-tuning the color represen-

tation and bringing out the vibrancy of the hues, contributing to an overall improvement 

in the visual appeal of the image. When dense connections are absent, the resulting 

image usually appears darker and less bright overall.  Dense connections are essential 

for facilitating the flow of information and gradients throughout the network, ensuring 

that relevant features are effectively communicated and preserved across different lay-

ers. While the removal of STB may lead to a slight decrease in LPIPS values by a mere 

0.02, it is important to note that this comes with a significant trade-off. Removing STB 

can result in overexposure in certain areas of the image, which can greatly compromise 

the overall quality and natural appearance of the enhanced image. 

 a  ow light image  b  w o    c  w o    d  w o     w o  g   round  ruth
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5 Conclusion 

In this paper, we propose a general, reference-free approach, SDLLIE, which combines 

both Retinex-based and learning-based solutions to enhance low-light images. By in-

troducing the overall change law of pixels, SDLLIE can extract more information from 

a single image and then better adapt to various scenarios. In order to better estimate the 

feature map, SDLLIE employs dense connections in the original convolution and then 

removes the noise map before estimating reflectance and illumination. Extensive quan-

titative and qualitative experiments show that SDLLIE outperforms the state-of-the-art 

unsupervised methods on public benchmarks. In the future, we will focus on exploring 

feature extraction methods for underexposed images. 
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