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Abstract. In this work, we introduce a novel Hybrid Convolutional Network de-

signed for efficient object detection and multi-class counting in varied applica-

tions such as aerial photography and surveillance. Leveraging the strengths of 

hybrid networks, our model facilitates the simultaneous execution of detection 

and counting tasks by sharing common network structures, thereby accelerating 

the image analysis process and enhancing feature generalization. We propose a 

novel Density-Aware Non-Maximum Suppression algorithm that adaptively ad-

justs the Intersection over Union (IoU) threshold according to object density, en-

suring robust detection performance in both dense and sparse scenes. Addition-

ally, we introduce a Region Suppression Module that leverages detection out-

comes to minimize noise in density maps, further improving counting accuracy. 

Through comprehensive experiments, our approach demonstrates state-of-the-art 

performance in counting tasks and competitive accuracy in detection tasks across 

various datasets, while maintaining high processing speed. 

Keywords: Object Detection, Object Counting, Multi-Task Learning. 

1 Introduction 

Object detection and counting play important roles in computer vision tasks and have 

gained increasing attention in a wide range of applications, including aerial photog-

raphy and surveillance. Most detection methods achieve high accuracy in detection but 

have low accuracy in counting. In contrast, most counting methods focus on counting 

accuracy without precise localization of each individual. Therefore, it is very challeng-

ing to take both requirements into account in real-world scenarios. 
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Most methods handle these tasks separately. In terms of detection, for instance, 

Wang et al. proposed the multi-scale information prediction network MA-YOLO to 

improve the detection ability on unmanned aerial vehicles-captured scenarios [1]. 

Meethal et al. proposed the efficient Cascaded Zoom-in detector that re-purposes the 

detector itself for density-guided training and inference [2]. Although the above meth-

ods can achieve great detection accuracy, they often yield unsatisfactory counting re-

sults in cases of dense scenes and occlusions. In terms of counting, contemporary ad-

vanced counting methods predominantly rely on density map estimation. For instance, 

Fu et al. proposed MSCNet [3], a novel multi-scale dilated convolution channel-aware 

deep network for vehicle counting. Elharrouss et al. proposed a dilated and scaled neu-

ral networks for feature extraction and density crowd estimation [4]. Despite the excel-

lent performance these methods achieve, counting methods based on density map esti-

mation can’t accurately localize the object. 

Naturally, to achieve both satisfactory detection and counting accuracies, one appar-

ent approach is to deploy separate models for object detection and counting. Neverthe-

less, using the two models to process this task separately would be more computation-

ally expensive. A hybrid network is more suitable and efficient in this situation because 

1) it can share common network structures to accelerate the image analysis process, 2) 

it generally has performance advantages as it learns more generalized features than a 

single-task network under the same dataset [5]. Therefore, it is essential to explore 

multi-task approaches that can simultaneously perform detection and counting tasks. 

This paper proposes a novel approach for simultaneous object detection and multi-

class counting. The overall workflow of the proposed method is shown in Fig. 1. Firstly, 

we propose a hybrid network that concurrently detects objects and estimates counts, 

comprising several key modules: a shared Backbone Network and Feature Fusion Mod-

ule for feature extraction and fusion, followed by separate detection and density map 

estimation branches. For the predicted detection boxes, we propose a novel Density-

Aware Non-Maximum Suppression algorithm that adaptively adjusts the Intersection 

over Union (IoU) threshold according to object density, ensuring robust detection per-

formance in both dense and sparse scenes. For the predicted density maps, we propose 

a Region Suppression Module, which leverages predicted detection boxes to assist in 

producing high-quality density maps and effectively reducing noise. The main contri-

butions of this paper are as follows: 

1. We propose a hybrid convolutional network architecture that efficiently combines 

object detection and multi-class counting tasks. This integration allows for simulta-

neous processing, which not only accelerates the analysis of images but also en-

hances the generalization capability of the network across various tasks. 

2. We introduce a novel Density-Aware NMS algorithm that dynamically adjusts the 

IoU threshold based on the local density of objects. This adaptive approach ensure 

robust detection performance in both dense and sparse scenes. 

3. We propose a Region Suppression Module that utilizes detection results to refine 

density maps. This module effectively reduces noise in the density maps, leading to 

more accurate and reliable counting outcomes. 
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4. We formulate an Adaptive-Weight Joint Loss function that enables the end-to-end 

training of our hybrid network. This approach optimally balances the learning be-

tween detection and counting tasks, which results in improved overall performance 

of the network. 

 

Fig. 1. The overall workflow of the proposed method. 

2 Related work 

2.1 Object Detection 

With the rapid development of deep learning, significant progress has been made in the 

field of object detection. Current mainstream object detection algorithms can be divided 

into two-stage detectors and one-stage detectors.  

Two-stage detectors complete the task in two steps: first, a set of proposals is ob-

tained from the feature maps, and then features in these proposals are used to locate and 

classify the objects. Examples of two-stage methods include R-CNN [6], Fast R-CNN 

[7] and Faster R-CNN [8].  

Single-stage detectors treat object detection as a regression problem and use a uni-

fied deep neural network for feature extraction, object classification and bounding box 

regression, achieving end-to-end reasoning. SSD [9] and YOLO-series [10-17] are 

milestones in one-stage detection methods. 

2.2 Object Counting 

Contemporary advanced counting techniques predominantly rely on density map esti-

mation. However, most of these methods were initially developed for tasks involving 

the counting of single-class objects. For instance, MCNN [18] employs a multi-column 

architecture designed to capture features at various scales, making it highly effective 

for scenes with varying object sizes. CSRNet [19] leverages a deep learning model that 

incorporates dilated convolutions to extend the field of view of filters, enabling effec-

tive feature extraction in crowded scenes. 

Transitioning to multi-class object counting, the landscape is markedly less ex-

plored. A pivotal study by Wei et al. introduces the Dilated-Scale-Aware Category-

Attention ConvNet (DSACA), a groundbreaking framework specifically devised for 

multi-class counting tasks [20]. This innovative approach not only tackles the inherent 

challenge of multi-class counting but also introduces the Category-Attention Module 

(CAM). CAM is ingeniously designed to mitigate the inter-class interference often 
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encountered in density maps, marking a significant stride towards resolving one of the 

key complexities in multi-class object counting. 

3 Approach 

This section offers a detailed exposition of various aspects, including label generation, 

network architecture, postprocessing and loss function design. 

3.1 Density Map Label Generation for Multi-Task Model 

Most counting methods use point labels to represent objects in images, applying a 2-D 

Gaussian kernel to create a density map. However, this approach struggles with deter-

mining the appropriate kernel size and variance for varied object sizes and scales. In 

the proposed detection-counting multi-task framework, we utilize bounding box anno-

tations to generate density maps that more accurately reflect the size and scale of objects 

within an image. Moreover, to support multi-class counting, our method introduces 

multi-class density maps to distinguish between different types of objects.  

To generate the multi-class density map label Mlabel = {M1
label, … , MC

label}, we po-

sition the center of each Gaussian kernel 𝐺(𝑥, 𝑦) at the object's centroid within its 

bounding box and sum up the contributions of all kernels across the image. This process 

can be formalized as: 

 𝑀𝑐
𝑙𝑎𝑏𝑒𝑙(𝑥, 𝑦) = ∑ 𝐺(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖)

𝑁𝑐
𝑖=1  (1) 

Here, 𝑁𝑐 represents the number of objects belonging to category 𝑐 in the image, and 

(𝑥𝑖 , 𝑦𝑖) denotes the centroid coordinates of the 𝑖-th object's bounding box. This formu-

lation ensures that each pixel value of 𝑀𝑐
𝑙𝑎𝑏𝑒𝑙  represents the estimated density of objects 

with class 𝑐 at that location, with higher values indicating greater likelihoods of object 

presence. 

For each object within an image, represented by its bounding box, we compute a 2-

D Gaussian kernel 𝐺(𝑥, 𝑦) as follows: 

 𝐺(𝑥, 𝑦) = 𝛾𝐺(𝑥)𝐺(𝑦) (2) 
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Here, 𝐺(𝑥) and 𝐺(𝑦) represent Gaussian functions along the x and y axes, respec-

tively. γ represents the amplification factor used to amplify the difference in values in 

the density map, and experiments have shown that it can improve performance. 𝑘𝑥 and 

𝑘𝑦 represent the kernel size in x and y axes, respectively.  
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In point annotation based methods, the Gaussian kernel sizes 𝑘𝑥 and 𝑘𝑦 can only be 

estimated. As a multitasking network, we take the width 𝑤𝑖  and height ℎ𝑖 of each ob-

ject's bounding box as the corresponding Gaussian kernel sizes, as follows: 

 𝑘𝑥 = 𝑤𝑖  (5) 

 𝑘𝑦 = ℎ𝑖 (6) 

As for the variance σ of Gaussian function, we follow the traditional approach as 

follows [18]: 

 σ𝑥 = δ𝑘𝑥 (7) 

 σ𝑦 = δ𝑘𝑦 (8) 

Here, δ is a hyperparameter. 

3.2 Hybrid Network 

As shown in Fig. 1, the architecture of our network is conceptually straightforward. 

Initially, it comprises a shared Backbone and a Feature Fusion Module to extract and 

fuse features. Subsequently, the output of the Feature Fusion Module is fed into the 

Detection Branch and Multi-Class Density Map Estimation Branch to fulfill their re-

spective tasks. The Detection Branch employs an anchor-free multi-scale detection ap-

proach, while the Multi-Class Density Map Estimation Branch is designed to support 

multi-class counting. All layers are specifically designed to be lightweight and efficient, 

thereby gaining fast processing speed. 

Backbone and Feature Fusion Module. The primary function of the backbone net-

work is to extract features from images. However, due to perspective effects, the scale 

of objects within a scene can vary significantly, and directly utilizing deep features 

generated by the backbone network may lead to the loss of features for smaller objects. 

To address this challenge, various methods have been proposed, such as FPN [21], 

among others. Considering a balance between accuracy and lightweight design, we em-

ploy CSPDarknet [17] and PANet [22] as our Backbone and Feature Fusion Module, 

respectively. We select the outputs of P3, P4, and P5 (corresponding to 8x, 16x, and 

32x downsampling relative to the original image) as the inputs for subsequent modules. 

Detection Branch. As shown in Fig. 2, in the Detection Branch, we utilize anchor-free 

and decoupled heads currently used in advanced object detection techniques such as 

YOLOX [23], YOLOv6 [15], YOLOv7 [16], and YOLOv8 [17]. Specifically, the de-

tection branch adopts a series of convolutional layers with a kernel size of 3, followed 

by batch normalization and SiLU activation functions. In the end, a convolutional layer 

with a kernel size of 1 is applied. The prediction is split into two separate tasks: bound-

ing box regression and class prediction. This allows the network to adjust its weights 

more effectively for each specific task. 
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Fig. 2. The architecture of Detection Branch. 'Filter=𝑎/𝑏/𝑐' denotes the filter sizes of the con-

volution layers, corresponding to the inputs P5, P4, and P3, respectively. 

Multi-Class Density Map Estimation Branch. As depicted in Fig. 3, our Multi-Class 

Density Map Estimation Branch is strategically designed for efficiency. Initially, we 

opt for P3 (which entails an 8x downsampling ratio relative to the original image size) 

as the foundational input. To augment the network's receptive field, dilated convolu-

tions are strategically utilized within the counting head. With inference speed as a crit-

ical consideration, we consciously abstain from employing deconvolution or interpola-

tion techniques for feature map enlargement within this branch. Furthermore, to facili-

tate the prediction of distinct density maps for each category, the dimensionality of the 

output layer is meticulously aligned with the number of classes. 

 

Fig. 3. The architecture of Multi-Class Density Map Estimation Branch. 

3.3 Density-Aware NMS 

In object detection frameworks, Non-Maximum Suppression (NMS) is crucial for re-

ducing redundancy among bounding boxes, aiming to represent each detected object 

with a single, most accurate box. Traditional NMS methods (named Greedy-NMS) ap-

ply a fixed Intersection over Union (IoU) threshold to filter out overlapping boxes. 

However, this approach can be suboptimal in varying object density scenarios, where a 

single threshold may not suit both dense and sparse regions.  

To address this challenge, Liu et al. introduced an Adaptive NMS [24]. First, it in-

troduced a sub-network, taking the objectness predictions, bounding box predictions 

and conv features as input, to estimate the density score of each box. Then, during the 

NMS process, it adaptively adjusts the IoU threshold based on the density score. 

This methodology has inspired us to optimize the NMS process using the output of 

Multi-Class Density Map Estimation Branch. In Adaptive NMS, the density score is 

defined as the maximum bounding box IoU with other objects within the ground truth 

set. As a hybrid network, we can more intuitively measure the density score by the 

Multi-Class Density Map Estimation Branch. Specifically, for a predicted box 𝑏𝑖 
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belonging to category 𝑐, we define the corresponding density score 𝑑𝑖 as the sum of 

values within the area of the box on a density map 𝑀𝑐 belong to class 𝑐. The formula is 

as follows: 

 𝑑𝑖 = ∑ 𝑀𝑐(𝑥, 𝑦)(𝑥,𝑦)∈𝑏𝑖
 (9) 

This density score intuitively reflects the local density within the area of each box. 

In the density map, if objects do not overlap, the sum of the area within the density map 

for each box should equal 1 (This is determined by the properties of Gaussian kernels 

introduced by section. 3.1), that is, 𝑑𝑖 = 1. Therefore, a sum greater than 1 suggests a 

high probability of overlap among objects. 

Our method, named Density-Aware NMS, as outlined in the pseudo-code in Fig. 4. 

The cornerstone of our methodology is the adjustment of the IoU threshold for each 

box, contingent on its density score. In regions of low density (density score ≤ 1), in-

dicative of minimal object overlap, we adopt a lower IoU threshold 𝑡𝑙𝑜𝑤 to diminish 

box redundancy whilst maintaining detection precision. Conversely, in areas of high 

density (density score > 1), where object overlap is more probable, we impose a higher 

IoU threshold 𝑡ℎ𝑖𝑔ℎ to accommodate the closeness of valid detections. 

 

Fig. 4. The pseudo-codes of Greedy-NMS and Density-Aware NMS. Text highlighted in red 

represents the Greedy-NMS, while text highlighted in blue pertains to the Density-Aware NMS 

proposed in this paper. 

3.4 Region Suppression Module 

While Density Map Estimation Branch is capable of outputting count results for differ-

ent classes, we observed that density maps for specific class are easily affected by other 



8  Y. Ning et al. 

classes and backgrounds. Inspired by RoI (Region of Interest) of Faster R-CNN, we use 

the detections produced by the detection branch to generate an interesting region for 

each class, and then suppress non-interesting region, thereby reducing noise. Specifi-

cally, as shown in Fig. 5, first, a confidence threshold τ𝑐𝑜𝑢𝑛𝑡 is employed for predicted 

detections 𝐵 to produce interesting detections 𝐵𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 . Then, the interesting region, 

denoted as ℳ, is generated from interesting detections 𝐵𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 , which assigns a value 

of 1 to pixels within the boxes and 0 otherwise:  

 ℳ𝒸(𝑥, 𝑦) = { 1          𝑖𝑓(𝑥, 𝑦) ∈ 𝐵𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
   (10) 

Here, 𝑥 and 𝑦 are the coordinates in the density maps, and 𝑐 represents the specific 

class of the object. The suppressed density map 𝑀′ is obtained by Hadamard Product 

of the original density map 𝑀 with the interesting region ℳ, filtering out the areas out-

side the region of interests and reducing noise: 

 𝑀𝑐
′

(𝑥, 𝑦) = 𝑀𝑐(𝑥, 𝑦) ⊙ ℳ𝒸(𝑥, 𝑦) (11) 

 

Fig. 5. Detailed workflow of the Region Suppression Module. The noise is indicated within the 

orange oval. 

3.5 Loss Function 

We introduce an adaptive-weight joint loss function to train the hybrid network in an 

end-to-end fashion. Firstly, we define the respective losses 𝐿𝑑𝑒𝑡 and 𝐿𝑐𝑜𝑢𝑛𝑡  for the de-

tection task and counting task. Similar to other detection networks, the detection loss 

𝐿𝑑𝑒𝑡  is the sum of box loss 𝐿𝑏𝑜𝑥 and classification loss 𝐿𝑐𝑙𝑠, as follows: 

 𝐿𝑑𝑒𝑡 = 𝐿𝑏𝑜𝑥 + 𝐿𝑐𝑙𝑠 (12) 

Here, the box loss 𝐿𝑏𝑜𝑥 use the Complete Intersection over Union (CIoU) Loss [25] 

and Distribution Focal Loss [26] to minimize the difference between the predicted box 

and the ground truth bounding box. The classification loss 𝐿𝑐𝑙𝑠 use the binary cross 

entropy with logits loss, which combines a sigmoid function with the binary cross en-

tropy loss.  

For quantifying the counting loss, denoted as 𝐿𝑐𝑜𝑢𝑛𝑡 , we employ the mean squared 

error (MSE) loss function. This choice is aimed at minimizing the discrepancy between 

the predicted density maps 𝑀 and the density map labels 𝑀𝑙𝑎𝑏𝑒𝑙  (the density map label 
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generation method is detailed in Section. 3.1). Mathematically, the counting loss 𝐿𝑐𝑜𝑢𝑛𝑡 

is defined as follows: 

 𝐿𝑐𝑜𝑢𝑛𝑡 = ∑ ∑ ∑ (𝑀𝑐(𝑥, 𝑦) − 𝑀𝑐
𝑙𝑎𝑏𝑒𝑙(𝑥, 𝑦))

2𝐻−1
𝑦=0

𝑊−1
𝑥=0

𝐶
𝑐=1  (13) 

Here, 𝐶  represents the number of classes, while 𝑊  and 𝐻  denote the width and 

height of the density map, respectively. 𝑀𝑐(𝑥, 𝑦) and 𝑀𝑐
𝑙𝑎𝑏𝑒𝑙(𝑥, 𝑦) represent the pre-

dicted value and label at (𝑥, 𝑦) in the 𝑐-axis channel. 

To find a common representation for both detection and counting tasks within net-

work layers, it is necessary to amalgamate the loss functions of multiple tasks through 

weighted combination. However, in the initial phases of training, we observe that the 

counting loss significantly outweighs the detection loss, thereby dominating the learn-

ing process. Subsequently, the counting loss rapidly diminishes, leading to a phase 

where detection loss becomes the predominant loss in the latter stages of training. This 

phenomenon makes the training process unstable. To circumvent this issue, we employ 

a multi-task loss function based on maximizing the Gaussian likelihood with homosce-

dastic uncertainty as suggested by Liebel et al. [27]. The joint loss 𝐿 is defined as fol-

lows: 

 𝐿 =
1

2·𝑝𝑑𝑒𝑡
2 𝐿𝑑𝑒𝑡 +

1

2·𝑝𝑐𝑜𝑢𝑛𝑡
2 𝐿𝑐𝑜𝑢𝑛𝑡 + ln(1 + 𝑝𝑑𝑒𝑡

2 ) + ln(1 + 𝑝𝑐𝑜𝑢𝑛𝑡
2 ) (14) 

Here, 𝑝𝑑𝑒𝑡 and 𝑝𝑐𝑜𝑢𝑛𝑡  represent the learnable parameters designed to equilibrate the 

detection and counting losses, respectively. Since the network's optimization goal is to 

minimize the overall loss 𝐿, both 
1

2·𝑝𝑑𝑒𝑡
2  and 

1

2·𝑝𝑐𝑜𝑢𝑛𝑡
2  terms would prefer 𝑝𝑑𝑒𝑡  and 𝑝𝑐𝑜𝑢𝑛𝑡 

to be as large as possible. To prevent degeneration, the ln(1 + 𝑝𝑑𝑒𝑡
2 )  and ln(1 +

𝑝𝑐𝑜𝑢𝑛𝑡
2 ) terms would prefer 𝑝𝑑𝑒𝑡 and 𝑝𝑐𝑜𝑢𝑛𝑡  to be as small as possible. When either the 

detection or counting loss is relatively high, the corresponding 𝑝𝑑𝑒𝑡 or 𝑝𝑐𝑜𝑢𝑛𝑡 will as-

sume a larger value, thereby minimizing the overall loss. This mechanism is crucial for 

the optimization process, ensuring a balanced contribution from both detection and 

counting losses towards the overall learning objective. 

4 Results and discussion 

In this section, the effectiveness of our proposed approach is evaluated. First, we pre-

sent details of our implementation. Then, we introduce the evaluation metrics and the 

benchmark datasets. After that, we discuss the counting and detection results and com-

pare them to exist state-of-the-art methods. Finally, we conduct an ablation study. 

4.1 Implementation Details 

We use SGD optimizer with a learning rate of 0.01 and a momentum of 0.9. The δ and 

amplification factor γ for density map generation was set to 1 and 100, respectively. 

The IoU threshold 𝑡𝑙𝑜𝑤 and 𝑡ℎ𝑖𝑔ℎ was set to 0.4 and 0.6, respectively. The confidence 

threshold τ𝑐𝑜𝑢𝑛𝑡  for the Region Suppression Module was set to 0.001. The image 



10  Y. Ning et al. 

resolution is uniformly resized to 1280×1280 pixels. All speed benchmarks are per-

formed on an NVIDIA 2080Ti GPU. 

4.2 Evaluation Metrics 

To facilitate easy comparison, various well-accepted and widely used evaluation meth-

ods are employed. For object detection, we use mAP@0.5 and mAP@0.5:0.95 to eval-

uate our model. For multi-class counting, the mean absolute error (MAE) is used to 

evaluate our model. 𝑀𝐴𝐸𝑐 is denoted as MAE of the 𝑐-th class in the 𝑁 test images as: 

 𝑀𝐴𝐸𝑐 =
1

𝑁
∑ |∑ ∑ 𝑀𝑐(𝑥, 𝑦) − ∑ ∑ 𝑀𝑐

𝑙𝑎𝑏𝑒𝑙(𝑥, 𝑦)𝐻−1
𝑦=0

𝑊−1
𝑥=0

𝐻−1
𝑦=0

𝑊−1
𝑥=0 |𝑁

𝑖=1  (15) 

Here, 𝑁 represent the number of test images; 𝑊 and 𝐻 denote the width and height 

of the density map, respectively. 

𝑀𝑐(𝑥, 𝑦) and 𝑀𝑐
𝑙𝑎𝑏𝑒𝑙(𝑥, 𝑦) represent the predicted value and label at (𝑥, 𝑦) in the 𝑐-

axis channel. 

Furthermore, 𝑚𝑀𝐴𝐸 for all 𝐶 classes and 𝑁 test images are defined as: 

 𝑚𝑀𝐴𝐸 = ∑ 𝑀𝐴𝐸𝑐
𝐶
𝑐=1  

4.3 Dataset 

We utilize the Visdrone-Det2019 dataset as our evaluation dataset. Visdrone-Det2019 

dataset contains 10,209 static images (6,471 for training, 548 for validation and 3,190 

for testing) captured by drone platforms in various locations at different heights, fea-

turing ten classes (i.e., pedestrian, person, car, van, bus, truck, motor, bicycle, awning-

tricycle, and tricycle). In line with other work [20], the pedestrian category has been 

merged into the person category, and the awning-tricycle category into the tricycle cat-

egory. 

4.4 Counting Results 

We conducted comparative experiments between our proposed model and other single 

class counting models and multi-class counting models. To facilitate equitable compar-

isons, we adapted the output channels of prominent single-class models—namely, 

MCNN [18], SANet [28], CSRNet [19], BL [29], and CAN [30]—to accommodate 

multi-class object counting tasks. This adjustment aligns with the methodology em-

ployed in DSACA [20]. Additionally, we also illustrate the quality of the predicted 

density maps in Fig. 6. 

Table 1 shows a comparison of counting accuracy between our model and other 

mainstream models. The proposed model achieves the best accuracy. Specially, the 

proposed model reduces 1.10 in 𝑚𝑀𝐴𝐸, 1.36 in 𝑀𝐴𝐸𝑏𝑖𝑐𝑦𝑐𝑙𝑒 , 0.49 in 𝑀𝐴𝐸𝑐𝑎𝑟 , 0.51 in 

𝑀𝐴𝐸𝑣𝑎𝑛, 0.05 in 𝑀𝐴𝐸𝑡𝑟𝑢𝑐𝑘, 2.21 in 𝑀𝐴𝐸𝑡𝑟𝑖𝑐𝑦𝑐𝑙𝑒 and 6.6 in 𝑀𝐴𝐸𝑚𝑜𝑡𝑜𝑟  compared with 

DSACA [20].  
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Fig. 6. Visualizing results. For clarity of representation, in the detection visualization results, 

we have only plotted the labels of large detection boxes. In the density map visualization re-

sults, we have only plotted one primary category out of all categories. The predicted count has 

been rounded. 

Table 1. Counting results. The bold and underline fonts respectively represent the first and sec-

ond place. 

Method FPS 
Mean Person Bicycle Car Van Truck Tricycle Bus Motor 

MAE MAE MAE MAE MAE MAE MAE MAE MAE 

MCNN 66.20 5.66 12.27 2.35 17.89 2.82 1.34 2.93 0.43 5.26 

SANet 18.15 7.54 25.48 2.38 15.27 3.61 1.37 2.90 0.42 8.92 

CSRNet 20.42 4.59 9.10 2.49 8.50 5.96 1.83 2.82 0.79 5.27 

BL 21.76 5.46 11.88 2.84 11.49 6.22 2.83 2.88 0.78 4.74 

CAN 19.51 6.86 9.14 6.67 8.77 8.88 8.75 5.99 2.23 4.48 

DSACA 11.68 3.43 5.04 2.35 3.98 2.54 1.32 2.88 0.42 8.90 

Ours 106.38 2.33 6.73 0.99 3.49 2.03 1.27 0.67 1.17 2.30 
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4.5 Detection Results 

Table 2 provides a comparison of our model against other mainstream detection models 

in terms of detection performance and we also illustrate the quality of predict detections 

in Fig. 6. 

The results demonstrate that our model exhibits strong competitiveness in detection 

metrics. Specifically, our model achieves 0.580 in mAP@0.5 and 0.387 in 

mAP@0.5:0.95 with 106.38 FPS. Compared to YOLOv8s, our model shows an im-

provement of 2.2% in mAP@0.5 and 1.5% in mAP@0.5:0.95. Compared to the 

YOLOv8m model, the accuracy of the model we proposed is comparable, but it boasts 

an FPS improvement of nearly 200%. 

Table 2. Detection results. The bold and underline fonts respectively represent the first and sec-

ond place. 

Method FPS 

Mean Person Bicycle Car Van Truck Tricycle Bus Motor 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

mAP 

0.5 

mAP 

0.5:0.95 

YOLOv5s 135.13 0.522 0.333 0.510 0.229 0.257 0.131 0.819 0.565 0.469 0.352 0.536 0.371 0.449 0.272 0.685 0.528 0.450 0.218 

YOLOv8s 114.94 0.558 0.372 0.557 0.269 0.300 0.165 0.832 0.592 0.513 0.391 0.569 0.416 0.505 0.327 0.688 0.554 0.504 0.261 

YOLOv8m 53.47 0.582 0.389 0.586 0.285 0.318 0.179 0.835 0.598 0.514 0.392 0.616 0.455 0.533 0.344 0.716 0.579 0.536 0.279 

Ours 106.38 0.580 0.387 0.577 0.282 0.325 0.185 0.845 0.602 0.539 0.411 0.590 0.432 0.523 0.339 0.714 0.569 0.528 0.277 

4.6 Ablation Study 

In this section, we present an ablation study to evaluate various components of our 

model. Initially, we investigate the influence of the Adaptive-Weight Joint Loss on both 

detection and counting accuracy. Furthermore, we examine the effects of several count-

ing improvements, including the Density Map Generation Method for Multi Task 

Model and Region Suppression Module. Lastly, we assess the impact of a detection 

improvement (Density-Aware NMS) on the detection accuracy. 

Adaptive-Weight Joint Loss. The concept of Adaptive-Weight Joint Loss is instru-

mental in the training phase, serving to dynamically adjust the weights allocated to 

various loss components. As evidenced by the data presented in Table 3, the implemen-

tation of Adaptive-Weight Joint Loss has conferred notable benefits on our model. Spe-

cifically, it has been a diminution in mMAE by 0.19. Additionally, it has facilitated an 

improvement in the metric of mAP@0.5 by 5.1% and mAP@0.5:0.95 by 4.9%, further 

underscoring the efficacy of the Adaptive-Weight Joint Loss approach in enhancing 

model accuracy. 

Table 3. Ablation study about Adaptive-Weight Joint Loss. The bold font represents the first 

place. 

Adaptive Weight Joint Loss 

Mean Person Bicycle Car Van Truck Tricycle Bus Motor 

MAE 
mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
MAE 

mAP 

0.5 

mAP 

0.5:0.95 
 

 3.85 0.525 0.336 6.94 0.528 0.242 1.94 0.289 0.150 5.90 0.806 0.560 3.13 0.471 0.346 2.15 0.511 0.359 2.40 0.455 0.284 5.34 0.671 0.519 2.99 0.469 0.230  

√ 3.66 0.576 0.385 6.59 0.565 0.275 1.48 0.321 0.183 4.00 0.844 0.601 5.73 0.538 0.411 2.01 0.588 0.430 2.24 0.519 0.337 4.40 0.712 0.567 2.86 0.522 0.273  
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Counting Improvements. In the object counting task, we introduce two main innova-

tions: the Density Map Generation Method for the Multi-Task Model and the Region 

Suppression Module. The Density Map Generation Method for the Multi-Task Model 

can adjust the kernel size and variance in the Gaussian function, tailored to the size 

information of the objects. The Region Suppression Module is to suppress the noise of 

predicted density maps. As indicated in Table 4, benefiting from the Density Map Gen-

eration Method for the Multi-Task Model and the Region Suppression Module, our 

model has achieved a reduction in mMAE by 1.33. 

Table 4. Ablation study about counting. The bold and underline fonts respectively represent the 

first and second place. 

Density Map 

Generation 

Method for 

Multi-Task 

Model 

Region 

Suppression 

Module 

Mean Person Bicycle Car Van Truck Tricycle Bus Motor 

MAE MAE MAE MAE MAE MAE MAE MAE MAE 

  3.66 6.59 1.48 4.00 5.73 2.01 2.24 4.40 2.86 

√  2.77 7.17 1.56 5.46 1.98 0.92 1.51 0.44 3.09 

√ √ 2.33 6.73 0.99 3.49 2.03 1.27 0.67 1.17 2.30 

Table 5. Ablation study about detection. The bold fonts represent the first place. 

Density Aware NMS 

Mean Person Bicycle Car Van Truck Tricycle Bus Motor 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

mAP 
0.5 

mAP 
0.5:0.95 

 0.576 0.385 0.565 0.275 0.321 0.183 0.844 0.601 0.538 0.411 0.588 0.430 0.519 0.337 0.712 0.567 0.522 0.273 

√ 0.580 0.387 0.577 0.282 0.325 0.185 0.845 0.602 0.539 0.411 0.590 0.432 0.523 0.339 0.714 0.569 0.528 0.277 

Detection Improvement. We propose the Density-Aware NMS algorithm to dynami-

cally adjust the IoU threshold based on the local density of objects. This adaptive ap-

proach ensures robust detection performance in both dense and sparse scenes. As indi-

cated in Table 5, benefiting from the Density-Aware NMS, our model shows an im-

provement of 0.4% in mAP@0.5 and 0.2% in mAP@0.5:0.95. 

5 Conclusion 

In this paper, we introduce a hybrid network, which is capable of simultaneously han-

dling the dual tasks of object detection and counting, with the ability to be trained end-

to-end.  Additionally, we propose a Density-Aware NMS algorithm that adaptively ad-

justs the IoU threshold based on the object density. Furthermore, we propose a Region 

Suppression Module capable of utilizing detections to diminish noise in density maps. 

Our model demonstrates exceptional performance on the challenging Visdrone-

Det2019 datasets in both tasks. In our future research, we aim to explore more innova-

tive methods to further integrate detection and counting tasks. 
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