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Abstract. How to select a set of nodes with the strongest information spreading 
capability from a complex network is known as the influence maximization prob-
lem. Existing research has mostly focused on structurally stable networks, and 
the impact of network structural changes on the influence diffusion process is yet 
to be explored. Simultaneously, network systems are inevitably subject to dis-
turbances or even structural damage during operation, such as cascading failures. 
To address the robust influence maximization (RIM) problem under cascading 
failures, this paper investigates the RIM problem caused by link attacks leading 
to cascading failures. A numerical metric is designed to comprehensively assess 
the robust influence performance of seeds. For the RIM problem, a memetic al-
gorithm with an ecological niche strategy, termed MA-RIMCF-Link, is designed to 
find seeds with stable influence, and experiments on synthetic and practical net-
works validate the competitiveness and effectiveness. 

Keywords: complex networks, cascading failure, robustness, influence maxi-
mization 

1 Introduction 

In the past decade, there has been substantial emphasis on the Influence Maximization 
(IM) problem. This problem involves a network, G, where a propagation model defines 
how nodes interact within G. Additionally, a constant, K, is employed to specify the 
desired scale of the seed set, determining the maximal influence range. The significance 
of IM is evident in various applications, ranging from product marketing to opinion 
spreading [1]. 

Kempe et al. [2] initially characterized the IM problem as a combinatorial optimiza-
tion problem, highlighting its NP-hard complexity. They proposed a greedy algorithm, 
leveraging the Monte Carlo process for influence assessment. While straightforward, 
this algorithm poses a computational challenge, particularly in its application to large-
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scale networks. Lee et al. [3] introduced a rapid evaluation method by considering only 
potential nodes within the 2-hop radius of seeds. 

In the realm of optimization, the IM problem can be cast as selecting an optimal seed 
set from the network based on specific evaluation criteria. Various optimization solvers 
offer potential avenues for addressing this challenge. Heuristic-based search algorithms 
like the hill-climbing algorithm [2] and simulation annealing [4] have been employed 
for IM problem resolution, albeit with suboptimal search efficiency. Simultaneously, 
the structural characteristics embedded in networks, such as degree, betweenness coef-
ficient, and association structure [5,6], can offer valuable insights for seed selection. 
However, these features often grapple with overlapping regions, limiting their perfor-
mance. Moreover, population-based search methods have been applied to the IM prob-
lem with successful outcomes. These include the discrete particle swarm algorithm [7], 
the Memetic algorithm [8], and the multi-objective algorithm. 

Previous studies have predominantly focused on scenarios where the network struc-
ture remains static, assuming that the influence propagation media, represented by 
nodes and links, remain undisturbed throughout the propagation process [9-11]. How-
ever, in practical physical network systems, structural perturbations are inevitable due 
to internal factors, external environmental interferences, and, in some instances, mali-
cious attacks and sabotage. Such disruptions, whether targeting nodes or links, can sig-
nificantly impact or even paralyze network functionality. 

Within the domain of network robustness, there is a growing emphasis on exploring 
various attack scenarios and analyzing their impact [12-14]. The development of ro-
bustness evaluation metrics has furthered our understanding and ability to enhance net-
work resilience. Among the factors contributing to network damage, cascading failures 
emerge as a prominent failure mode, occurring when specific nodes or links in the net-
work fail, triggering the successive failure of interconnected components, ultimately 
resulting in the collapse of the entire network [15]. Despite initial forays into the Robust 
Influence Maximization (RIM) problem considering structural changes, comprehensive 
investigations remain limited. For instance, while some scholars explored the RIM 
problem under nodal malicious attacks, others delved into the problem under cascading 
failures caused by node-based attacks [16-18]. However, cascading failures can also 
result from link-based attacks, which are often less surveilled and can be paralyzed at 
a lower cost. Addressing cascading failures caused by link-based attacks involves stud-
ying how to assess and determine seeds with robust influential ability throughout the 
entire system, posing open questions in need of further exploration. 

Addressing the limitations of prior research, this work introduces a population-based 
algorithm, MA-RIMCF-Link, to tackle the IM problem under cascading failures, consid-
ering changes in network structure. Utilizing insights from previous studies, a metric is 
formulated to assess the seed set's influence performance under cascade attacks, guid-
ing the optimization process. The performance and feasibility of MA-RIMCF-Link are 
demonstrated on both synthetic and practical networks. The Contributions of the work 
are summarized as follows. 1. The paper investigates the problem of robust influence 
maximization under cascading failures caused by link failures. It proposes suitable met-
rics to assess the robustness of seed nodes in this scenario; 2. An effective algorithm is 
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proposed for finding optimal nodes, validated through experiments on both synthetic 
and real network data, demonstrating the effectiveness and efficiency. 

The remainder is structured as follows: Section 2 introduces the IM and cascading 
failure. Section 2.3 design a metric for assessing the level of robust influence. Section 
3 provides details on the MA-RIMCF-Link. Section 4 conducts experiments on synthetic 
and practical networks, validating the performance and feasibility of MA-RIMCF-Link. 
Finally, in Section 5, we draw conclusions and engage in a discussion. 

2 Related Work 

A network can be modeled as a graph G = {V, E}, where V = {1, 2, ..., N} denotes the 
N nodes in the network and E = {eij | i, j∈V and i≠j} denotes the links between different 
nodes in the network. 

2.1 The Influence Maximization problem 

The essence of the IM problem lies in the selection of K nodes from network G to create 
a seed set S. In the context of the IM problem, two primary challenges emerge: effec-
tively modeling the influence diffusion and assessing the spread range of influence. 

Within the diffusion model, crucial elements governing propagation behavior en-
compass activation probability, link weight, and network multiplicity. A classic model, 
the independent cascade (IC) model [2], stands out. In this model, activated nodes dis-
seminate influence to their inactivated neighbors through links at each time step. The 
activation probability (p) is predetermined for each attempt, and successfully activated 
nodes transition to an active state. If an inactivated node is influenced by multiple acti-
vated nodes, each attempt is independent. This process continues until no more nodes 
become activated, with nodes existing in either activated or inactivated states. The 
Weight Cascade (WC) model [19] is introduced for weighted networks, where activa-
tion probability p is no fixed and determined by the link weight (wij). 

Once the propagation mechanism is identified, the subsequent challenge involves 
evaluating the performance of the seed set S. The influence level, denoted as s(S), rep-
resents the cumulative total of all nodes activated during the propagation process. Tra-
ditionally, this is determined through Monte Carlo simulation, a direct but computa-
tionally demanding approach, especially for larger networks. To address this, an effi-
cient method relying on hop information [3] has been proposed to approximate the in-
fluence performance of S. This method estimates the influence scope within the 2-hop 
range of the seed nodes and is defined as follows, 

  (1) 

Where s(s) represents the 2-hop influence of seed s. Cs is the connected neighbors set 
of seed s, p(i, j) is the activation probability between node i and j, and s1c is the 1-hop 
range of node c. c denotes the duplicated influence generated by activated nodes, as  
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  (1) 

In the context of the IM problem, the calculation of seed set influence often presup-
poses a fully connected network, which is an idealized scenario. Nevertheless, practical 
environments are characterized by networks vulnerable to external disruptions, includ-
ing potential malicious attacks, resulting in network incompleteness. The RIM problem 
is concerned with selecting K nodes from a network to achieve optimal influence per-
formance, even in the presence of structural damages to the network [17,18]. Notably, 
Wang et al. [8] tackled the RIM problem under network structural disruptions and in-
troduced a metric for assessing the robust information capability of seeds. 

2.2 The Cascading Failure Model 

In the context of cascading failures, when certain edges in the network fail, the disturb-
ance tends to propagate to adjacent components [20]. The detailed process of cascading 
failures is outlined as follows. 

Step 1: The number of failures t as 0. The initial load   is correlated with the degree 
of the linked nodes. where ki, kj is the degree of node i, j, and α is a coefficient. The 
capacity of each edge in the network is calculated according to its load, as Cij=b * L0 ij, 
where b is the tolerance parameter. 

Step 2: t is updated to t + 1. The edge with the highest load in the network is selected 
as the failure edge. 

Step 3: The load of the failed link est is propagated to all linked links, and the load 
carried by adjacent links is denoted as 

  (2) 

where Γs and Γt represent the sets of the neighboring nodes of nodes s and t. If the link 
esm receives the additional load that causes its total load to exceed its capacity, then the 
link is considered as under failure, becoming a failure link, and continue to propagate 
its load to the neighboring components. 

Step 4: The failure process gets terminated if the network is totally collapsed, other-
wise the process returns Step 2. 

2.3 The Performance Metric 

The spread of information between nodes doesn't depend on the integrity of entire sys-
tem. Instead, it propagates influence through connections between nodes within local-
ized regions. Even seeds within compromised network subcomponents can have an im-
pact, activating more nodes. Considering eq. (1) as references, a metric named RSL-cf is 
proposed to evaluate the robust information of seeds under cascading failures, as 

  (3) 
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where M´Per is the total number of cascading failures occurred, and is the 
influence level of seed set S after the p-th cascading failure. 

3 MA-RIMCF-Link 

3.1 The Framework.  

Drawing on the established MA framework, MA-RIMCF-Link combines both population-
based and individual-based exploration strategies, integrating a local search operator to 
enhance search capabilities. Borrowing from the principles of niche memetic algorithm 
[17], the niche strategy is employed to cluster individuals with similar characteristics, 
facilitating the exploitation of more individual information. 

The execution of MA-RIMCF-Link follows a structured process. Initially, the initiali-
zation operator generates NP individuals with an expectation of a random distribution. 
The population is then divided into clusters, acting as mating pools, taking into account 
the performance of these individuals. Subsequently, the crossover operator is employed 
within and among mating pools, expanding the population with NP new individuals. 
The mutation operator introduces stochastic elements into these new individuals. The 
population deduplication operation eliminates duplicate individuals, and the population 
alignment operation generates new individuals to fill vacant regions. The local search 
operator is applied to attain local optimal solutions using existing optimal information. 
After each iteration, the selection operator picks superior individuals for the next gen-
eration and updates the mating pool. The algorithm concludes and produces the best 
seed set as the optimal solution upon reaching the termination condition. The frame-
work of MA-RIMCF-Link is outlined in Algorithm 1. 

Algorithm 1: MA-RIMCF-Link 
Input: 
G: Inputted network;  K: Size of seed set; 
NP: Size of initial population; NicheSize: Size of niche; 
pc: Crossover probability; pm: Mutation probability; 
pl: Local search probability; MaxGen: Maximal genetic iterations; 
Output: 
S*: The best-find seed set; 
P0 = {S1, S2, …, SK} ¬ Initialization (G, K, NP); g ¬ 0; 
While g < MaxGen 
 Generate the MatingPool with the Partition(Pg, NicheSize); 
 Generate the offspring population P with the crossover operator  
 (pc, MatingPool); 
 Update P with the mutation operator (pm, P); 
 Update P with the local search operator (pl, P); 
 Get the Pg+1 with the selection operator (P, MatingPool); 
 Update the S*; g = g + 1; 
end while 
Output the S*; 

ˆ ( | )S ps
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Fig. 1. The main flowchart of MA-RIMCF-Link 

3.2 The genetic operators 

Initialization and the population partition strategy. 
The population-based optimization algorithm necessitates an initialization operation to 
create the initial population, denoted as P0, based on the input network G. For each 
individual Pi in P0, K nodes are randomly chosen as seeds from the network G, consti-
tuting the gene information of that particular individual. The validity of these nodes and 
no duplicates seeds is crucial, denoted as Pi = {s1, s2, ..., sK}, where sm and sn (m and n 
within [0, K-1]) are distinct. Following the initialization operator, NP individuals with 
random characteristics are generated, establishing the initial population. 

Implementing the population partition strategy involves regrouping individuals into 
mating pools based on their fitness. Individuals within a population are categorized into 
niches based on their fitness, with the tendency for similar individuals to be placed in 
the same niche, which has a fixed size. The strategy is detailed as follows: the individual 
with the highest fitness is chosen from the ungrouped individuals to lead niche Nichei. 
Subsequently, individuals with the highest similarity are selected from the remaining 
pool to join Nichei in descending order of similarity until the niche reaches its prede-
fined size, NicheSize. This process repeats until all individuals are allocated to their 
respective niches. Given the discrete nature of genes in an individual and their order 
insignificance to fitness, seed intersection among individuals is used for similarity as-
sessment, denoted as similarity(Pi, Pj) = (Pi Ç Pj) / K. 

Crossover operator and Mutation operator. 
The crossover operator facilitates the exchange of partial gene segments in two indi-
viduals, while the mutation operator introduces genes at randomly-selected positions. 

The specific process of crossover is outlined as follows: treating the seeds as a chro-
mosome, with the K nodes in the seeds representing the K gene segments on the chro-
mosome. Two chromosomes, denoted as x = {x1, x2, ..., xK} and y = {y1, y2, ..., yK}, are 
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randomly selected. A crossover point, pos (1 ≤ pos ≤ K), is then randomly chosen. The 
gene fragment before the crossover point remains unchanged, while genes after the 
crossover point (including the crossover point) swap positions. If the exchanged gene 
duplicates existing genes, new genes are randomly generated at the duplicated gene's 
position for no repeated genes on chromosome. Final chromosomes are x' = {x1, x2, ..., 
xpos-1, ypos, ypos+1, ..., yK} and y' = {y1, y2, ..., ypos-1, xpos, xpos+1, ..., xK}. 

The mutation operator is executed as follows: a chromosome x = {x1, x2, ..., xK} is 
randomly chosen, and a mutation point, pos (1 ≤ pos ≤ K), is randomly generated. The 
gene xpos at the original mutation point is replaced by the newly generated gene y, en-
suring that the new gene does not duplicate any existing genes on the chromosome. 
This results in a mutated chromosome, x' = {x1, x2, ..., xpos-1, y, xpos+1, ..., xK}. 

The local search operator.  
The local search operator is deployed to explore the local neighborhoods of individuals, 
enhancing the overall performance of the population. While a larger neighborhood 
space for local search enhances overall algorithm optimization, it also comes at the cost 
of increased computational resources. To strike a balance between optimization and 
computational efficiency, this work confines the local search neighborhood to the 2-
hop domain. Specifically, it iteratively searches for neighboring nodes of a given node, 
and with a low probability, explores the 2-hop neighborhood. 

The selection operator.  
Advantageous genetic traits are more likely to persist in the next generation, thereby 
enhancing the overall competitiveness of the population. The roulette wheel selection 
strategy is chosen, where an individual's fitness serves as the selection criterion. Each 
individual has a certain probability of entering the next population through this process, 
ensuring population diversity. However, this simple principle also introduces the risk 
of discarding the optimal individual. To mitigate this, the optimal individual is pre-
served by elite retention to prevent degradation. 

Complexity analysis. 
The MA-RIMCF-Link algorithm consists of two main parts: initialization phase and ge-
netic iteration phase. The initialization phase is responsible for generating candidate 
seeds and is executed only once, with a complexity of O(N). On the other hand, the 
genetic iteration phase needs to be repeated. The complexity of each iteration is ana-
lyzed as follows: in the crossover operator, generating a new individual from two indi-
viduals has a complexity of O(P´K). In the mutation operator, iterating through each 
individual has a complexity of O(P´K). In the global search operator, each individual 
has the opportunity to update genes with a complexity of O(P´K´ákñ). In the local 
search operator, iterating through the search domain of individuals, where the network's 
average degree is ákñ, has a complexity of O (T´P´K´ákñ). In the selection operator, the 
complexity is O(P). The entire genetic iteration process needs to be repeated MaxGen 
times, resulting in a complexity upper limit of O(MaxGen´P´K´ákñ). 
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4 Experimental Results. 

The experimental evaluation employs synthetic networks, specifically Scale-Free (SF), 
Erdős-Rényi (ER), and Watts-Strogatz (WS) networks. These synthetic networks are 
created with sizes of N=200 and N=500, average degree <k> = 4. The outcomes of 
experiments conducted with algorithms are presented in [4] and [16]. 

Table 1. RSL-cf of optimal seed sets are acquired for synthetic networks comprising 200 nodes, 
and the results represent averages over 5 independent realizations. Employing the results from 
MA-RIMCF-Link as a benchmark. Symbols like "−" signify that the compared algorithm is less 

effective than MA-RIMCF-Link, "+" indicates that the compared algorithm surpasses MA-RIMCF-

Link, and "≈" denotes that the two algorithms exhibit no significant difference. 

Network K MA-
RIMCF-Link 

GA MA SA 

SF 10 11.09 11.09(») 11.09(») 10.85(-) 
20 21.72 21.69(») 21.71(») 21.37(-) 
30 32.11 31.98(-) 32.06(-) 31.62(-) 

ER 10 10.89 10.89(») 10.89(») 10.81(-) 
20 21.68 21.63(-) 21.66(») 21.42(-) 
30 32.36 32.28(-) 32.32(-) 31.95(-) 

WS 10 10.55 10.55(») 10.55(») 10.48(-) 
20 21.03 20.95(-) 21.00(») 20.83(-) 
30 31.46 31.36(-) 31.41(-) 31.18(-) 

Table 2. Similar experiments are conducted on networks with N=500. 

Network K MA-
RIMCF-Link 

GA MA SA 

SF 10 11.81 11.81(») 11.81(») 11.01(-) 
20 22.95 22.75(-) 22.94(») 21.64(-) 
30 33.77 33.14(-) 33.72(-) 31.80(-) 

ER 10 12.14 12.11(-) 12.14(») 11.95(-) 
20 24.06 23.92(-) 24.04(») 23.56(-) 
30 35.83 35.65(-) 35.78(-) 34.93(-) 

WS 10 10.60 10.59(») 10.60(») 10.48(-) 
20 21.14 21.10(-) 21.12(») 20.96(-) 
30 31.63 31.56(-) 31.59(-) 31.32(-) 

From the presented numerical outcomes, it is evident that the seed sets derived from 
MA-RIMCF-Link exhibit superior RSL-cf values in comparison to other algorithms. These 
seed sets demonstrate sustained information propagation capabilities, even in the face 
of cascading failures within the network. Notably, SA [4] lags considerably behind 
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other population-based optimization algorithms. In scenarios where K is small, such as 
K=10, all algorithms can secure commendable optimal solutions. This stems from the 
fact that nodes with robust information dissemination capabilities have higher degrees 
in networks, enabling algorithms to swiftly obtain better solutions in such cases. How-
ever, as K increases, the pool of high-degree nodes becomes insufficient for the set size, 
the differences among algorithms become more pronounced. 

To begin with, GA exhibits notably inferior performance on SF and ER networks 
compared to other methods. This can be rationalized by the fact that SF networks adhere 
to a power-law degree distribution, concentrating most link connections in a small num-
ber of nodes. GA, relying solely on random search, struggles to extract valuable infor-
mation from these critical nodes, especially when the majority of nodes have minimal 
connections. Similarly, ER networks present similar challenges due to their uniform 
degree distributions, making it difficult for GA, operating within limited computational 
resources, to attain the global optimal solution. 

Contrastingly, the performance differences among the remaining three algorithms 
are less pronounced in terms of RSL-cf. However, the distinctions become more apparent 
in the iteration process, as will be elucidated later. It's noteworthy that even in complex 
scenarios, MA-RIMCF-Link consistently outperforms other solvers. The results presented 
in Fig. 2 and Fig. 3. underscore that MA-RIMCF-Link achieves substantial and consistent 
optimization outcomes across various types of synthetic networks, demonstrating its 
versatility in handling networks with different properties. 

 

Fig. 2. The convergence curves for RSL-cf of optimal seed set in population. 

Additionally, we compared the convergence process of the algorithms, i.e., the var-
iation in the fitness of the best individual in each generation under the guidance of the 
four optimization algorithms. As shown in Fig. 2., taking the SF network with 500 
nodes as an example, it is evident that the optimization performance of the SA algo-
rithm is the poorest. This is because, during the optimization process, SA only compares 
the quality between two solutions, while the other algorithms are population-based. In 
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each iteration, they identify the optimal solution from a given population size. Sec-
ondly, GA is notably inferior to MA, mainly because GA lacks a local search operator. 
The local search operator is used to explore the optimal solution within a certain range, 
significantly enhancing population performance. Finally, it can be observed that the 
optimization performance of MA and MA-RIMCF-Link is essentially the same, but MA 
converges faster than MA, reaching the peak with fewer iterations. 

 

Fig. 3. Healthcare network in Guangming District, Shenzhen, consisting of 47 nodes and 50 
edges. 

We conducted experiments on the collected data, as shown in Fig. 3., which is the dis-
tribution map of community health service centers in Guangming District, Shenzhen. 
We selected 5 seed nodes from this network. GA, MA, and MA-RIMCF-Link selected the 
same nodes (1, 19, 28, 33, 42). These nodes form a core part of the community structure, 
indicating the effectiveness of the proposed algorithm. For instance, in the event of a 
significant infectious disease outbreak, these community healthcare centers can con-
sistently and stably radiate their influence. 

5 Conclusions 

This study addresses the challenge of robust influence maximization in the presence of 
cascading failures. We introduce a comprehensive metric, RSL-cf, to evaluate the robust 
influence capability of a given seed set. Using this metric, the seed determination prob-
lem is formulated as an optimization task, and we propose a Memetic Algorithm with 
niche strategy, denoted as MA-RIMCF-Link, to identify robust and influential seeds. The 
efficacy and efficiency of the proposed algorithm are assessed through comparisons 
with existing approaches. MA-RIMCF-Link exhibits superior optimization results and 
convergence capabilities compared to other methods, demonstrating scalability and 
generality. 
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In the context of robust influence maximization against structural failures, cascading 
failures represent only one form of damage. Investigating other types of failure modes 
and even the interplay of multiple failure modes holds significance for practical appli-
cations [12]. Additionally, relying solely on single-layer networks might not adequately 
capture the dynamics of intricate systems. Therefore, extending the study to multiplex 
networks is a promising avenue for further investigation [8]. 
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