
A Survey: Research Progress of Feature Fusion 

Technology 

Weiqi Wang1,2,3, Feilong Bao1,2,3(✉), Zhecong Xing3, Zhe Lian4  

1 National & Local Joint Engineering Research Center of Intelligent Information Processing 

Technology for Mongolian, Hohhot 010000, China 
2 Inner Mongolia Key Laboratory of Mongolian Information Processing Technology College of 

Computer Science, Inner Mongolia University, Hohhot 010000, China 
3 College of Computer Science, lnner Mongolia University, Hohhot 010000, China 

4 School of Computer Science and Technology, Inner Mongolia Normal University, 

 Hohhot 010022, China 
csfeilong@imu.edu.cn 

Abstract. Feature fusion techniques represent a critical research content in the 

domain of deep learning, aiming to concatenate feature information from diverse 

sources or varying levels to generate more comprehensive and accurate 

representations. This technology is extensively employed in downstream tasks 

that necessitate rich target representations, such as image classification, semantic 

segmentation, and object detection. Over recent years, under the impetus of 

advancements in deep learning technologies, we have witnessed rapid progress 

in feature fusion techniques and their profound impact on the entire computer 

vision field. This paper takes an technique evolutionary perspective to 

comprehensively summarize the innovative contributions of feature fusion 

technology within four cutting-edge domains: Convolutional Neural Network 

(CNN), Vision Transformer (ViT), Graph Convolutional Network (GCN) and 

Neural Architecture Search (NAS). We provide a detailed introduction to the 

specific implementation process of each technology, and analytically explores 

the pivotal roles played by the concept of feature fusion in each of these 

technologies through different viewpoints.  Finally, we provides a systematic 

overview of the mechanisms behind several classical methods and arrange the 

open-source code links, and we performance evaluation was conducted on 

several classic methods. 

Keywords: Deep learning, Feature fusion, Convolutional neural network, 

Vision transformer, Neural architecture search, Graph convolutional network. 

1 Introduction 

With the advent of the big data era and the rapid advancement of computer 

technologies, feature fusion techniques have increasingly found broad applications 

across various domains including Artificial Intelligence, Machine Learning, Computer 

Vision, and Natural Language Processing. Serving as a vital tool for information 
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processing and data analytics, these techniques effectively amalgamate feature 

information from disparate sources and with differing attributes, thereby enhancing the 

recognition and classification capabilities of systems. This improvement, in turn, 

propels the development of more intelligent and precise information processing and 

applications. 

The research on feature fusion technology began at the end of the last century, and 

with the continuous development of computer vision and pattern recognition, its 

research depth and breadth have gradually expanded. Early feature fusion methods were 

mainly based on simple weighted summation or feature connections, such as 

Hypercolumns, ION, YOLO v2 [1, 2, 3] etc. Other algorithms SPPnet and Inception 

use multi-scale convolution kernels to extract features from different receptive fields 

[4, 5], and merge the extracted features to achieve feature fusion. Although these 

methods are simple and easy to implement, and have been successful in early computer 

vision tasks, they are no longer applicable as the complexity of data and models 

increases, as they ignore the inherent correlation and complementarity between 

different features, resulting in limited fusion effects. Therefore, researchers are 

committed to finding more effective feature fusion methods to adapt to higher 

dimensional and more complex task requirements [6]. 

As research delved deeper, scholars began exploring more sophisticated feature 

fusion techniques. Accompanied by the rapid advancements in deep learning 

technologies, the study of feature fusion methods has seen remarkable progress, the 

most typical example is ResNet proposed by He Kaiming et al. [7], has amassed over 

200,000 citations in the field of artificial intelligence. The residual connections in 

ResNet exemplify the rudimentary manifestation of the feature fusion paradigm. 

Building upon this successful groundwork, researchers have embarked on extensive 

investigations, integrating feature fusion technology with Convolutional Neural 

Network (CNN), Vision Transformer (ViT), Graph Convolutional Network (GCN), 

and Neural Architecture Search (NAS) techniques [8, 9, 10, 11]. It provides powerful 

performance improvements for various complex tasks. These technologies complement 

and promote each other, jointly driving continuous progress in the field of artificial 

intelligence. With the continuous development of technology and the expansion of 

application scenarios, feature fusion technology will play a more important role in the 

future, providing more efficient and accurate solutions for various complex tasks. 

This paper introduces the combination of feature fusion technology with CNN, ViT, 

NAS, and GCN in the Section 2, Section 3, Section 4, and Section 5. Several key 

representative works are listed for each technology, and the role of feature fusion ideas 

is explained. In the Section 6, each method mechanism is summarized and links to open 

source code for different technologies are organized. Summarize the entire article in 

Section 7. 

2 CNN and Feature Fusion Technology 

In well-designed CNN architectures, the notion of feature fusion has long been 

ingrained, exemplified by two prominent cases: Residual connections of ResNet [7],  
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where input feature maps are fused directly with the output of the last convolutional 

layer via a shortcut connection, with their sum serving as the output of the residual 

block. Another example is the feed-forward connections of DenseNet [12], which 

implement fusion functionality through concatenative depth-wise aggregation. These 

fusion strategies in both networks emerged during the nascent stage of feature fusion 

thinking and primarily involved straightforward addition or concatenation. Over time, 

the development and refinement of feature fusion techniques have led researchers to 

broaden their perspectives on CNN design. HRNet and CEDNet [13, 14], for instance, 

incorporate more sophisticated feature fusion methodologies, demonstrating 

formidable capabilities as a result. These networks reflect the evolution in which 

advanced feature fusion techniques are being increasingly integrated into CNN 

architectures. 

2.1 ResNet 

In 2015, the team led by Kaiming He proposed ResNet [7], still one of the most popular 

backbone networks in the field of computer vision. The central idea of ResNet revolves 

around residual learning, where residual blocks are ingeniously designed to constitute 

the fundamental building blocks for constructing deep networks, as depicted in Fig. 1. 

Within the residual block, the input feature map undergoes direct fusion with the 

output of the final convolutional layer via a residual connection, which subsequently 

becomes the output of block. Through this residual fusion concept, the degradation 

problem associated with vanishing gradients in progressively deeper layers is 

alleviated, thus allowing the network to reliably extract high-level semantic features 

from images. 

 

 

Fig. 1. Residual block structure diagram. 

2.2 DenseNet 

The design inspiration for DenseNet comes from ResNet [12], which builds a network 

based on dense blocks, as shown in Fig. 2. 

The primary distinction between dense blocks and residual blocks lies in the fact that 

dense blocks employ a more interconnected feedforward mechanism where any layer 

feature map is concatenated to all subsequent layers. This approach mitigates the issue 

of vanishing gradients, optimizes the feature propagation pathways, and promotes 
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feature reuse. Unlike the approach of element-wise summing of ResNet, DenseNet 

utilizes depthwise concatenation for feature fusion, which offers the advantage that 

when feature maps from two layers exhibit entirely different distributions, it does not 

hinder the flow of information through the network. 

 

Fig. 2. Dense block structure diagram. 

2.3 HRNet 

Wang et al. reviewed previous outstanding frameworks for backbone network 

architectures [13], encompassing AlexNet [15], ResNet [7], DenseNet [12], VGGNet 

[16], and GoogleNet [5], and observed that these networks adhere to the design 

principles established by LeNet [17], which involves progressively reducing the spatial 

dimensions of feature maps, cascading convolutions from high to low resolutions, and 

generating lower resolution representations for further processing in downstream tasks. 

However, for position-sensitive tasks such as semantic segmentation, human pose 

estimation, and object detection, high-resolution representations are actually required. 

Consequently, Wang et al. introduced the High-Resolution Network (HRNet). The 

HRNet begins with a high-resolution convolutional stream and incrementally fusions  

this high-resolution stream with progressively lower resolution streams, connecting and 

merging parallel multi-resolution streams throughout the process. The purpose of 

HRNet is to maintain high-resolution representations consistently throughout the entire 

computational pipeline, thereby catering to the demands of tasks that require fine-

grained positional information. 

Most fusion approaches aggregate high-resolution low-level features with 

upsampled high-resolution representations derived from low-resolution 

representations. However, HRNet adopts a distinct strategy by repeatedly engaging in 

multi-resolution fusion to enhance the interoperability between high-resolution and 

low-resolution representations, enabling the improvement of high-resolution 

representations with the aid of low-resolution ones and vice versa. Consequently, this 

tactic ensures that all high-resolution to low-resolution representations carry strong 

semantic information, thereby boosting the performance and generalization capacity of 

the model. 

2.4 CEDNet 

Zhang et al. define the feature fusion time as the ratio of the parameters of the 

subnetwork preceding the first fusion module to the total network parameters [14], 

where a smaller ratio indicates an earlier fusion stage. They analyze mainstream multi-

scale fusion methods such as Feature Pyramid Network (FPN) and (Bi-directional 
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Feature Pyramid Network) BiFPN [18, 19], pointing out that the feature fusion occurs 

relatively late in these networks since they allocate a substantial portion of 

computational resources to the classification backbone for extracting initial multi-scale 

features. For instance, in an FPN built upon ConvNeXt [8], the feature fusion time 

constitutes only 91.7%. There also exist methods that integrate multi-scale fusion at an 

earlier stage, with representative work being HRNet, which has a feature fusion time of 

2.7%. However, despite its early fusion strategy, HRNet delays the generation of 

advanced (low-resolution) features with strong semantic information until later stages. 

This limitation hampers the role of the model in guiding the learning of low-level (high-

resolution) features, which are critically important for tasks such as object detection. 

To address the aforementioned issues, Zhang et al. propose a Cascade Encoder-

Decoder Network, denoted CEDNet, which fusions multiple cascaded stages starting 

from a stem module that extracts initial high-resolution features. In CEDNet, a common 

encoder-decoder architecture is shared across all stages to generate multi-scale features. 

The fundamental building block of CEDNet is the CED unit, realized by a spatial 

feature interaction token mixer and a two-layer Multi-Layer Perceptron (MLP) for 

channel-wise feature interactions. The token mixer can adopt various existing designs, 

such as 3×3 convolutions in ResNet, 7×7 depthwise convolutions in ConvNeXt, or local 

window self-attention in the Swin Transformer [20]. The CEDNet explores three 

classical encoder-decoder structures: FPN [18], Hourglass [21], and U-Net [22]. It 

demonstrates superior performance when implemented on top of FPN, thereby 

providing further compelling evidence for the efficacy of feature fusion techniques. 

3 ViT and Feature Fusion Technology 

ViT is a Transformer like network model proposed by the Google team in 2020, which 

successfully applies Transformer, an architecture from the NLP field, to image 

classification tasks for the first time [23]. In the same year, FPT leveraged components 

from ViT to enhance feature fusion techniques [24], thus inspiring subsequent work. 

Subsequently, PVT emerged [25], being the first to seamlessly integrate a feature fusion 

structure with ViT, and following this innovation, classic hierarchical ViT architectures 

have been employed in the field of computer vision, demonstrating remarkable 

capabilities. 

3.1 FPT 

Zhang et al. were the first to attempt leveraging ViT technology to enhance feature 

fusion performance [24], combining the ideas of Transformer architecture and feature 

pyramid fusion, proposing an inter-spatial and cross-scale feature interaction fusion 

structure termed FPT (Feature Pyramid Transformer).  

Unlike simple feature pyramid fusion structures, FPT adopts the self attention 

mechanism of Transformer, allowing for global information exchange between features 

at different levels, thus better integrating contextual information and multi-scale 

features. The FPT sequentially feeds multi-scale features generated by the backbone 
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network into three ViT-based components: ST (Self-Transformer), GT (Grounding 

Transformer), and RT (Rendering Transformer). The ST aims to capture co-existing 

target features within a feature map, adopting the classical non-local interactions 

proposed in literature [26], where both input and output maintain the same scale ratio. 

The GT performs non-local interactions in a top-down manner, grounding the concepts 

from high-level feature maps onto lower-level pixels, resulting in an output that has the 

same scale ratio as the lower-level feature maps. The RT operates in a bottom-up 

fashion, aiming to present higher-level concepts by incorporating visual attributes into 

low-level pixels, with its output having the same scale ratio as the higher-level feature 

maps. Through these three components, FPT transforms any feature pyramid fusion 

structure into one of equal size but enriched contextually. 

3.2 PVT 

Wang et al. propose a pure ViT based backbone network [25], named PVT (Pyramid 

Vision Transformer), which constitutes the first entirely convolution-free attempt at a 

target detection framework. The core idea lies in the introduction of a progressively 

shrinking pyramid that utilizes simple yet effective feature fusion techniques to flexibly 

learn multi-scale and high-resolution features. As depicted in Fig. 3, the block 

embedding component in PVT integrates and consolidates features originating from 

diverse data sources by fusing different feature maps, thereby enabling the model to 

more efficiently capture essential information about target objects. In the decoder of 

the PVT architecture, the principle of feature fusion is similarly employed. The PVT 

model adopts a bottom-up decoding approach, progressively merging lower-level 

features upwards, allowing for high-level features to better express the semantic 

information of target objects, thus enhancing the ability of model to accurately identify 

and localize such objects. Crucially, the design of PVT incorporates a progressive 

shrinking pyramid that generates four distinct scales of feature maps, which can be 

effortlessly integrated with feature fusion techniques like FPN, thereby yielding richer 

feature representations. Due to its outstanding performance, the PVT model achieved 

the TOP1 accuracy in the target detection methods of that year. 

 

Fig. 3. PVT network architecture diagram. 
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4 NAS and Feature Fusion Technology 

Since the advent of the feature fusion structure FPN, NAS technology was among the 

earliest to be combined with it, giving rise to Auto-FPN and NAS-FPN [27, 28]. NAS, 

which automatically optimizes neural network architectures, transcends the confines of 

traditional manual design paradigms. Upon integration with feature fusion techniques, 

NAS not only seeks optimal solutions at the macroscopic structural level but also 

refines the micro-level feature representations. Thus, it gives rise to more potent hybrid 

feature representations. 

4.1 Auto-FPN 

With the advancements in NAS techniques in the field of image classification, feature 

fusion technology has also explored NAS applications. Xu et al. posit that higher-level 

neurons tend to be sensitive to overall object shapes [27], whereas other neurons are 

more likely to be activated by local textures. To accommodate all possible connection 

patterns, they propose an Automatic Feature Pyramid Network (Auto-FPN), devising 

an automated fusion module (represented by the green dashed box in Fig. 4) embedded 

within a fully connected search space (indicated by the purple dashed box in Fig. 4). 

This module employs a variety of operations, such as dilated convolutions, residual 

connections, and depthwise separable convolutions, to provide ample spatial awareness 

and receptive field coverage for the feature fusion process. By doing so, it searches for 

the optimal spatial arrangements and architectural configurations. 

Regarding neural architecture search methods, approaches based on Evolutionary 

Algorithms and Reinforcement Learning typically necessitate extensive retraining and 

evaluation of candidate architectures [29, 30], resulting in high computational demands 

even for low-resolution image classification tasks. Inspired by the differentiable 

formulation in NAS [31], Auto-FPN adopts a continuous relaxation of the discrete 

structures of its two modules. Subsequently, it conducts architecture search directly on 

high-resolution images of 800×800 pixels using stochastic gradient descent, thereby 

addressing the computational complexity issue. 

 

Fig. 4. Auto-FPN network architecture diagram. 
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4.2 NAS-FPN 

Ghiasi et al. consider the application of NAS from another angle [28], an atomic 

architecture has been discovered in a new scalable search space that covers all cross 

scale connections, has the same input and output feature levels, and can be repeatedly 

applied to overcome the large search space of pyramid architecture, making modular 

search space possible. Based on this discovery, they proposed the Neural Architecture 

Search Feature Pyramid Network (NAS-FPN), the structure of which is depicted in Fig. 

5. 

 

Fig. 5. NAS-FPN network architecture diagram. 

In previous approaches, the rationale for feature fusion has been consistent, with the 

necessity to integrate features across different scales. Therefore, Ghiasi et al. devised a 

Merge Unit Module, where the entire NAS-FPN is composed of such Merge Units, the 

configuration of which is illustrated in Fig. 6. The construction of these Merge Units is 

determined by an RNN [32], which selects any two candidate feature layers with 

differing resolutions for binary operations, thereby combining them into a new feature 

layer. Specifically, this process comprises the following five steps: 

(1)Select one feature from the pool of candidate features.  

(2)Without replacement, select another feature from the candidate features.  

(3)Determine the resolution of the output feature layer.  

(4)Choose a binary operation (either global pooling or summation, which does not 

introduce any additional trainable parameters) to combine the two features selected in 

steps (1) and (2), thereby generating a feature layer with the resolution chosen in step 

(3).  

(5)The newly generated feature layer is appended to the existing list of input 

candidate features and becomes a new candidate for the next Merge Unit. 

During the architecture search phase, there may exist multiple candidate features 

sharing identical resolutions. To mitigate computational overhead within the 

architecture and to avoid selecting features with larger strides for intermediate Merge 

Units during Step 3, five Merge Units are designed to output a Feature Pyramid. This 

strategy ensures that redundancy is reduced and unnecessary upscaling or downscaling 

operations are minimized, thereby constructing an efficient feature hierarchy. 
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Fig. 6. Schematic diagram of merging units. 

5 GCN and Feature Fusion Technology 

In the context of GNN, a typical application of feature fusion is the integration of 

signals across different graph depths to bolster the expressive power and understanding 

of complex graph structures of model. Representative works that combine GCN with 

feature fusion techniques include GraphFPN and LFPN [33, 34]. 

5.1 GraphFPN 

Zhao et al. argue that some advanced feature fusion technologies [33], such as BiFPN 

and RFPN [19, 35], introduce learnable weights and still perform feature interactions 

on neural network spaces and scales with fixed topologies, whereas the intrinsic 

structures of different images vary significantly. To address this, they introduce graph 

convolutional technology into the feature fusion method, thus proposing the Graph-

Feature Pyramid Network (Graph-FPN), which dynamically models the part-whole 

hierarchies akin to human visual perception in different images. This network structure, 

depicted in Fig. 7, adaptively captures the part-whole relationships within scenes 

according to their specific structures. 

 

Fig. 7. Graph-FPN network architecture diagram. 
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Graph-FPN defines a multi-level superpixel hierarchy representing the inherent 

image structure, where each level consists of a set of non-overlapping superpixels that 

delineate the segmentation of the input image. Features are extracted from the same 

hierarchical segmentation across all levels for the input image. Consequently, 

superpixels at adjacent levels in the hierarchy bear close relationships; each superpixel 

at a higher level is a union of superpixels from the lower level. This one-to-many 

correspondence between superpixels across two adjacent levels inherently defines the 

part-whole relationship. Graph-FPN inherits its structure from this superpixel 

hierarchy, incorporating attention mechanisms akin to those in SENet and DAN within 

its contextual graph layer and hierarchical graph layer embeddings [36, 37]. This 

enables enhanced feature interaction not only within the same scale but also across 

different scales, thereby promoting a more comprehensive and adaptive understanding 

of the part-whole relationships within the image content. 

5.2 LFPN 

Similarly capitalizing on the idea of graph convolution, Xie et al. [34], building upon 

the design of GloRe [38], take feature maps into a latent space and utilize graph 

convolutions on the projected space to model long-range dependencies, thus proposing 

the Latent Feature Pyramid Network (LFPN), whose structure is illustrated in Fig. 8. 

 

Fig. 8. LFPN network architecture diagram. 

LFPN mainly consists of four parts: 

(1)Projection: In grid space, feature fusion tends to lack long-range dependencies. 

Consequently, LFPN learns a projection matrix to map features onto a lower-

dimensional latent space. 

(2)Intra-Scale Fusion: Aimed at capturing the intra-scale relationships among 

different feature vectors, LFPN employs graph convolutional layers to learn these 

relations in an end-to-end manner, initializing and updating the adjacency and 

parameter matrices randomly. 

(3)Cross-Scale Fusion: After intra-scale fusion, the combined features are linked 

together and fed through graph convolutional layers to capture long-range dependencies 

among multi-level features. 
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(4)Back-projection: Via an inverse projection matrix, the features are back-projected 

from the latent space back to the original grid space. 

By conducting intra-scale and cross-scale feature fusion in the latent space, LFPN 

models long-range dependencies both within and across scales, thereby enriching the 

feature representation and enhancing its discriminative capability. 

6 Summary and Assess 

In the domain of CNN, feature fusion techniques are primarily manifested in two 

aspects: multi-scale feature fusion and cross-layer feature fusion. Multi-scale feature 

fusion involves the integration of feature information across different scales, allowing 

the model to simultaneously capture both global context and local details, thereby 

enhancing its performance in tasks such as image recognition and object detection. 

Cross-layer feature fusion, on the other hand, entails the blending of features from 

different network layers. This technique combines low-level features containing fine-

grained detail with high-level features embodying abstract semantic information. By 

doing so, it reinforces the expressive power and robustness of model. 

Secondly, in ViT models, feature fusion techniques also play a critical role. When 

tackling sequential data and image recognition tasks, ViT combines features from 

different Transformer layers to garner richer contextual information and more precise 

feature representations. This style of feature fusion not only enhances the robustness of 

model but also boosts its generalizability, enabling it to cope more effectively with 

complex and varied input data. 

Furthermore, the integration of NAS technology with feature fusion techniques 

provides a fresh perspective for model optimization. NAS technology, through its 

automated search strategies, identifies optimal network architectures and feature fusion 

methodologies. During the feature fusion process, NAS adapts the fusion strategies and 

network parameters according to the requirements of the task and the characteristics of 

the data, thereby yielding models with improved performance. This combination not 

only enhances the efficiency of model design but also imbues the models with increased 

adaptability and generalization capabilities.  

Finally, GCN, as specialized neural network models for processing graph-structured 

data, exhibit unique applications in the realm of feature fusion technology. In the 

context of GCN, the application of feature fusion techniques mainly manifests in two 

aspects: node feature aggregation and global information fusion. Node feature 

aggregation refers to the process where GCN gather and combine the attributes of 

neighboring nodes to update the representation of the target node, encapsulating local 

neighborhood characteristics. Global information fusion, on the other hand, signifies 

the holistic incorporation of information from all nodes in the graph, facilitating the 

transmission and aggregation of global context. 

We have summarized the quantitative experimental results of some classic methods 

on the MS-COCO dataset [39], all of which use Faster RCNN as the basic model [40]. 

The evaluation indicators adopt single class average accuracy APS, APM, APL, AP50, 

AP75 , where S represents the category of smaller-sized objects in the dataset, M 
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represents the category of medium-sized objects, and L represents the category of 

larger-sized objects, 50 and 70 represent IoU thresholds. The Params and GFLOPs 

represent parameters and Giga Floating-point Operations Per Second , respectively. The 

results are shown in Table 1. In addition, we have summarized the mechanisms and 

access links of classic models combining feature fusion techniques with CNN, ViT, 

GCN, and NAS, as shown in Table 2. 

Table 1. Quantitative detection results of some classic methods on the MS COCO dataset. 

Method Size 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params GFLOPs 

Auto-FPN [27] 640×640 40.5 61.5 43.8 25.6 44.9 51.0 32.6 - 

NAS-FPN [28] 640×640 37.7 54.5 41.1 5.5 44.5 56.9 68.2 103.0 

FPT [24] 800×1000 38.0 57.1 38.9 20.5 38.1 55.7 88.2 346.2 

GraphFPN [33] 800×1000 39.1 58.3 39.4 22.4 38.9 56.7 100.0 380.0 

LFPN [34] 800×1000 38.7 60.4 41.9 23.6 42.5 49.2 - - 

 

Table 2. The mechanism and access links of classic models combining feature fusion 

techniques with CNN, ViT, GCN, and NAS. 

Type Method Mechanism and Access Links 

CNN 

ResNet[7] 
Residual Connections, Deep Network Design 

Access Links: https://github.com/GarsonWw/resnet-garson.git 

DenseNet[12] 
Dense Connectivity, Feature Reuse 

Access: Links: https://github.com/liuzhuang13/DenseNet 

HRNet[13] 
High-Resolution Representations, Progressive Parallel Connections 

Access: Links: https://github.com/HRNet 

CEDNet[14] 
Spatial Feature Interaction Token Mixer, Channel Feature Interaction 

Access: Links: https://github.com/zhanggang001/CEDNet 

ViT 

FPT[24] 
Bidirectional Information Propagation Paths, Adaptive Feature 

Access Links: https://github.com/dongzhang89/FPT 

PVT[25] 
Parallel Feature Pyramids, Spatial Pyramid Pooling 

Access Links: https://github.com/whai362/PVT 

NAS 

Auto-FPN[27] Fully Connected Search Space, Optimal Search, Continuous Relaxation 

NAS-FPN[28] 
Scalable Search Space, Modular Search, Merge Units 

Access Links: https://github.com/open-mmlab/mmdetection 

GCN 
GraphFPN[33] 

Part-Whole Hierarchy, Dynamic Modeling 

Access Links: https://github.com/GangmingZhao/GraphFPN-Graph-

Feature-Pyramid-Network-for-Object-Detection 

LFPN[34] Latent Space, Intra-Scale Fusion, Cross-Scale Fusion 

https://github.com/GarsonWw/resnet-garson.git
https://github.com/liuzhuang13/DenseNet
https://github.com/HRNet
https://github.com/zhanggang001/CEDNet
https://github.com/dongzhang89/FPT
https://github.com/whai362/PVT
https://github.com/open-mmlab/mmdetection
https://github.com/GangmingZhao/GraphFPN-Graph-Feature-Pyramid-Network-for-Object-Detection
https://github.com/GangmingZhao/GraphFPN-Graph-Feature-Pyramid-Network-for-Object-Detection
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7 Conclusion 

The research on feature fusion technology has become the mainstream in the field of 

computer vision, and efficient and high-precision model structures have become the 

goal pursued by countless researchers. The feature fusion method, due to its powerful 

feature reuse ability, integrates multi-scale features and integrates contextual 

information during the fusion process, thereby extracting more discriminative features, 

improving the robustness and generalization ability of the algorithm, which is very 

beneficial for improving the accuracy of object detection. 

In this article, we provide a detailed introduction to the combination of feature fusion 

technology with four technologies: CNN, ViT, GCN, and NAS. We list several classic 

models and explain the key role of feature fusion ideas in each model. Finally, we have 

conducted a comprehensive summary, hoping to provide a clear idea for subsequent 

related research. 
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