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Abstract. Sparse adversarial attacks have attracted increasing attention due to 

the advantage of low attack costs by limiting the number of modified pixels. 

However, some sparse attacks assume full access to information from deep neu-

ral networks (DNNs), often necessitating a large number of queries, making 

them impractical. Other methods only constrain the number of perturbed pixels, 

regardless of the size of the individual perturbation to each pixel, resulting in 

easily detectable in vision. To overcome these issues, we propose a two-stage 

black-box sparse attack approach that efficiently generates adversarial examples 

with small distortions. The proposed method first employs sparse attacks to 

generate an initial improved perturbation vector that meets the confidence score 

threshold, using Genetic Algorithm (GA). Subsequently, the size of the initial 

sparse perturbation vector is optimized to identify the final adversarial example 

with smaller perturbations through the application of Particle Swarm Optimiza-

tion (PSO). The experimental results demonstrate that our method can achieve 

attack success rates comparable to the state-of-the-art black-box sparse attack 

method within the same budget while introducing more imperceptible distor-

tions. This holds for untargeted and targeted attacks on CIFAR-10 classifiers 

trained conventionally and adversarially. 

Keywords: black attack, sparse attack, confidence scores, intelligent optimiza-

tion. 

1 Introduction 

Although DNNs have made impressive achievements in computer vision tasks such as 

image classification [1], speech recognition [2], and face recognition [3], recent stud-

ies have revealed that DNNs can be vulnerable to relatively small perturbations on 

original images, which brings out security concerns in safety-critical tasks [4,5]. Since 

existing works have shown that adversarial examples can strengthen the robustness of 

DNNs via adversarial training [6], increasing numbers of researchers have devoted 

themselves to proposing better adversarial attack methods. 

From the perspective of the number of modified pixels, two types of attack meth-

ods are included: one is dense attacks [7-13] that perturb all pixels and restrict the 

magnitude of perturbations, and the other is sparse attacks [14-24] that change only a 
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small number of pixels. Although dense attacks have been proven effective, develop-

ing novel sparse attack methods is necessary due to their provision of insight into 

DNNs’ interpretability and their practicality in the physical world. 

Current sparse attack methods can be classified into two major categories: white-

box sparse attacks [14-20] and black-box sparse attacks [21-24]. The former can ob-

tain all information on the target DNNs including the parameters and structures, 

which is infeasible in practical scenarios. In this case, perturbations usually are de-

termined by obtaining gradient information via back-propagation, which tends to 

require multiple access to the DNNs. The latter only needs access to the confidence 

scores for each class outputted by DNNs. In this scenario, the number of perturbed 

pixels is limited but the size of distortions is unbounded, the pixel-element huge per-

turbations caused by which hardly fool human eyes. 

Considering the above limitations of existing sparse attacks, a two-stage black-box 

sparse adversarial attack method is proposed. In our dual-stage approach, we employ 

intelligent optimization techniques to generate adversarial examples that are inde-

pendent of the target model's internal structure. The process initiates with the genera-

tion of an enhanced sparse adversarial example in the first stage, which involves un-

bounded modifications to individual pixels. Subsequently, these sparse perturbations 

are refined through optimization in the second stage. The two steps ensure the sparsity 

and invisibility of the perturbation vector together. 

To summarize, the main contributions of this paper are as follows: 

1. We propose a two-stage black-box sparse adversarial attack method to generate 

sparse and more imperceptible adversarial perturbations. 

2. In the first stage, we propose to incorporate a class confidence score to determine 

whether the perturbed pixel position obtained by the black-box sparse attack 

through GA is an important region. This aims to enhance the quality of the initial 

sparse perturbation vector. 

3. In the second stage, we put forward two strategies within the PSO framework to 

enhance the optimization of the initial sparse perturbation vector. The first strategy 

involves discarding a portion of the perturbations and setting the global optimum to 

the all-zero vector during the PSO initialization phase, considering both the large 

initial perturbation and the smaller, targeted perturbation. The second strategy is an 

adaptive mutation approach aimed at avoiding local optima during the optimization 

process. 

4. To evaluate the effectiveness of the proposed method, adversarial attacks on DNN 

classifiers conventionally and adversarially trained on the CIFAR-10 datasets are 

conducted considering both targeted and untargeted attack scenarios. Experiments 

indicate that our approach outperforms the state-of-the-art black-box sparse attack 

in terms of the size of perturbation and imperceptibility. 

The rest of this paper is organized as follows. The related work about sparse adver-

sarial attacks is introduced in Section 2, Some basic concepts and the proposed black-

box sparse adversarial attack method are elaborated in Section 3, the experimental 

studies are given in Section 4, and the conclusions are drawn in Section 5. 
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2 Related Work 

Existing sparse attacks that modify only a small number of pixels include two types of 

methods according to different levels of access to model information.  

In the white-box scenario, attackers tend to make use of the gradients of target 

DNNs to generate adversarial examples. Papernot et al. [14] construct an adversarial 

saliency map of the gradient based on the logit of each class to obtain the pixel posi-

tions that have the greatest contribution to misclassification. Perturbations only are 

added to these key pixels in each iteration until the attack is successful. Then, NT-

JSMA is proposed by Wiyatno and Xu [15] to conduct the untargeted attacks. Both 

methods require multiple visits to the target DNN to get a derivative of each pixel. 

Carlini and Wagner [9] propose the method ( 𝐶&𝑊 − 𝑙0 ) that eliminates the least 

important perturbations from an adversarial example different from adding key per-

turbations to a benign sample. Sparse-Fool introduced by Modas et al. [16] exploits 

the low mean curvature of the decision boundary to calculate the perturbations itera-

tively. During each update, Deepfool [8] is used to calculate the boundary point and 

project perturbation onto a point in the affine plane to obtain the next-generation solu-

tion. This method is efficient but not sparse enough and cannot achieve a targeted 

attack. Fan et al. [17] propose SAPF by modeling a sparse attack as a Mixed Integer 

Programming (MIP) task. This approach aims to optimize both the binary selection 

factor and the continuous perturbation magnitudes of all pixels simultaneously. The 

authors also impose cardinality constraints on the selection factor to explicitly regu-

late the sparsity 𝑙0. Dong et al. [18] propose the GreedyFool algorithm, which selects 

𝑘 most suitable pixels iteratively for modification according to the gradient infor-

mation until the attack is successful. Then the greedy strategy is used to reduce the 

unimportant pixels as much as possible to further improve sparsity. Zhu et al. [19] 

introduce the Homotopy attack, which generates increasingly sparse perturbations by 

adding a weighted 𝑙0 norm penalty term to the optimized loss function. The evolu-

tionary homotopy algorithm is leveraged to optimize the weight of the penalty term 

and the perturbation values. Tian et al. [20] propose a constrained evolutionary algo-

rithm based on two populations to perform sparse attacks, with one population used to 

find adversarial examples and the other population used to minimize the 𝑙0  and 𝑙2 

distances from the original image. 

In the black-box scenario, only the outputted confidence scores can be accessed. 

Narodytska and Kasiviswanathan [21] use a new local search-based technique to con-

struct a numerical approximation of the network gradient, which is then carefully used 

to construct a small set of pixels in the image for perturbation. Su et al. [22] adopt 

differential evolution to find one or several perturbed pixels and the corresponding 

perturbation size. This reflects that adversarial attacks can still be achieved in very 

limited scenarios, although the attack success rate is not very high. In contrast to the 

sparse attack approaches minimizing the 𝑙0 distance, Sparse-RS, introduced by Croce 

et al. [23], employs a random search technique to determine the perturbed pixels. This 

method fixes the number of perturbed pixels while enabling unlimited perturbation on 

each pixel. This is very efficient, but it is easy to detect due to large perturbations. 

The SA-MOO algorithm, introduced by Williams and Li [24], is a multi-target attack 
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method. Building upon Sparse-RS [23], it increases the likelihood of reducing the 

added perturbations to zero. Additionally, SA-MOO introduces a novel dominance 

criterion to evaluate solutions, giving precedence to minimizing the loss function 

followed by minimizing its  𝑙2  norm. This approach achieves 𝑙0 minimization when 

𝑙2  is minimized. SA-MOO is the most advanced black-box sparse attack method, 

which can achieve a high attack success rate and obtain adversarial examples with 

minimal perturbations. However, the method allows unlimited perturbations on indi-

vidual pixels, leading to perceptibility issues, particularly noticeable in smaller image 

datasets such as CIFAR-10. 

3 Methodology 

In this section, we first introduce some basic concepts of adversarial attacks in Sec-

tion 3.1 and then elaborate on the steps of the proposed algorithm in Section 3.2.  

3.1 Adversarial Attacks 

Let 𝑓: 𝑋 ∈ [0,1]ℎ×𝑤×𝑐 → 𝑅𝐾  be a DNN classifier that assigns a benign image 𝑥 ∈ 𝑋 

of heigh ℎ, width 𝑤 and channel 𝑐 to class 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈{1,2,…,𝐾}

𝑓𝑖(𝑥), where 𝐾 is the number of 

class labels and the dimensions of the output vector. Then, an untargeted attack can be 

formulated as the following optimization problem: 

  𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈{1,2,…,𝐾}

𝑓𝑖(𝑥 + 𝛿) ≠ 𝑦 , 𝛿 ∈ 𝑅ℎ×𝑤×𝑐 , min
�⃗⃗⃗�

𝐷𝑝(𝑥, 𝑥 + 𝛿) (1) 

Where 𝑦 represents the ground truth class label of the original image 𝑥 , 𝛿 signifies 

the perturbation vector, and 𝐷𝑝(𝑥, 𝑥 + 𝛿) indicates the discrepancy between the origi-

nal image 𝑥 and the perturbed image 𝑥 + 𝛿 typically reflecting 𝑙0 , 𝑙2 or 𝑙∞ distances. 

It is worth noting that 𝑓𝑖(𝑥) in this paper are the confidence score of class 𝑖 , not logit. 

It is easy to achieve a successful attack but more detectable with a larger 𝐷𝑝. Con-

versely, a smaller 𝐷𝑝 typically indicates greater imperceptibility but may result in a 

failed attack. In terms of sparse attacks, the number of modified pixels 𝑙0 should be 

limited. Similarly, the goal of a targeted attack is to craft a perturbation vector  𝛿 such 

that 

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈{1,2,…,𝐾}

𝑓𝑖(𝑥 + 𝛿) = 𝑦𝑡 , 𝛿 ∈ 𝑅ℎ×𝑤×𝑐 , min
�⃗⃗⃗�

𝐷𝑝(𝑥, 𝑥 + 𝛿) (2) 

Where 𝑦𝑡 is the target class label. Therefore, we employ the margin loss in untargeted 

attacks and the cross-entropy loss in targeted attacks following SA-MOO [24] as fol-

lows.  

 𝐿(𝑓, 𝑥 + 𝛿, 𝑦) = 𝑓𝑦(𝑥 + 𝛿) − 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖≠𝑦

𝑓𝑖 (𝑥 + 𝛿) (3) 
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 𝐿(𝑓, 𝑥 + 𝛿, 𝑦𝑡) = − log 𝑓𝑦𝑡
(𝑥 + 𝛿) (4) 

Recent sparse attacks either involve accessing the gradient information of the target 

DNN to determine the perturbed pixels or limiting the number of perturbed pixels 

while permitting unbounded perturbations. Our objective is to identify the positions of 

sparse perturbed pixels without the knowledge of the gradient information of the tar-

get DNN, followed by the search for perturbations characterized by restricted 𝑙0 and 

small 𝑙2 distances. The fitness functions for untargeted and targeted attacks are em-

ployed to quantify the success of an attack with small perturbations, as illustrated 

below. 

 𝐹(𝑓, 𝑥 + 𝛿, 𝑦) = 𝐶1 ∗ max (𝑓𝑦(𝑥 + 𝛿) − 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖≠𝑦

𝑓𝑖(𝑥 + 𝛿) , 0) + ‖𝛿‖
2
 (5) 

 𝐹(𝑓, 𝑥 + 𝛿, 𝑦𝑡) = 𝐶1 ∗ max (𝑎𝑟𝑔𝑚𝑎𝑥
𝑖≠𝑦𝑡

𝑓𝑖(𝑥 + 𝛿) − 𝑓𝑦𝑡
(𝑥 + 𝛿),0) + ‖𝛿‖

2
 (6) 

Where 𝐶1 indicates a large positive number used to punish unsuccessful attacks. 

3.2 Two-Stage Sparse Attack 

The proposed Two-Stage Sparse Attack method (TSSA) aims to identify perturbed 

key pixels in the first stage using sparse attacks that allow unbounded or zero pertur-

bation on each perturbed pixel. Optimization can be achieved by modifying a portion 

of perturbed pixels in the current solution along with the corresponding perturbation 

values. This approach differs from gradient-based methods as it does not depend on a 

continuous set for optimization. GA is a method of optimization based on natural 

selection and genetic mechanisms. It explores and optimizes solution space through 

crossover, mutation (introducing new changes while retaining some features), and 

selection. Therefore, GA with discrete encoding is introduced to search for the initial 

sparse perturbation vector. 

In the second stage, the perturbation size of the initial perturbation vector is fine-

tuned while maintaining adversarial. PSO simulates the foraging behavior of birds 

and searches for optimal solutions through collaboration and information sharing. Due 

to its rapid convergence capability, PSO efficiently reaches optimal solutions and 

adapts well to high-dimensional space. This is achieved by continuously adjusting 

particle velocities and positions like simulating a real gradient update direction. Con-

sequently, PSO with continuous encoding is introduced to optimize the initial pertur-

bation vector. The diagram of the optimization search is shown in Fig. 1. 
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Fig. 1. Diagram of TSSA. (a) indicates the diagram of a classifier classifying two classes (col-

or-coded; the darker the lower the confidence scores). It searches for an initial adversarial ex-

ample with a higher adversarial class confidence score, which is in a better position for the next 

optimization. (b) describes the steps and strategies of searching for a better solution based on 

the initial perturbation vector with PSO. 

Generation of the initial sparse perturbation vector using GA. The class confi-

dence scores of DNN output can better reflect the relationship between the sample 

and the DNN decision boundary. We argue that when facing similar distortions, ad-

versarial examples with higher adversarial class confidence scores have greater poten-

tial to find adversarial examples with smaller perturbations as shown in Fig. 1 (a). 

Therefore, the adversarial class confidence score of the perturbed sample is used to 

determine the initial sparse perturbation vector by adding unbounded or zero perturba-

tions to finite pixels. The following steps are the same as SA-MOO [24] as shown 

below. The details of generating the initial sparse perturbation vector using GA under 

untargeted attacks are shown in Algorithm 1, while targeted attacks follow similar 

steps. The difference is that the confidence score threshold 𝐶 represents the difference 

between the true class confidence score and the adversarial class confidence score of 

the perturbed sample under untargeted attacks. However, in the case of targeted at-

tacks, the adversarial class confidence score of the perturbed sample is represented.  

Initial population. The initialization process involves randomly selecting 𝑘 indices 

from ℎ × 𝑚  pixels and applying perturbations (1, −1,0) to the three channels with 

probabilities of (
1− 𝑝𝑟0

2
,

1− 𝑝𝑟0

2
, 𝑝𝑟0), where 𝑝𝑟0 represents zero-sampling probability.  

Crossover. The crossover operator aims to generate a superior offspring individual by 

combining the strengths of two high-performing individuals. This is accomplished by 

swapping pixel locations and their associated perturbation values between the two 

parent individuals. 

Mutation. The primary objective of the mutation operator is to introduce a controlled 

level of randomness to enhance the diversity within the population. This is achieved 

(b) Stage 2:opitimizing the size of the initial adversarial perturbation with PSO 

initial population

mutation strategy

optimization process

direction of particle movement
direction of mutation
particle initialization

initial adversarial example

local optimum

global optimum

initial global best

(a) Stage 1:searching for an initial adversarial example with GA

Class A

Class B

adversarial areas

with smaller perturbations
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by randomly selecting a subset of perturbed pixels and resetting their perturbation 

values to zero. Subsequently, an equivalent number of unperturbed pixels are chosen 

and initialized with unbounded or zero perturbations. The adoption of a dynamic 

method, which adjusts the mutation rate as the attack process advances, has demon-

strated superior efficiency compared to maintaining a constant mutation rate through-

out the optimization process. 

Evaluation. A perturbation vector with perturbed locations 𝑀 and perturbed values ∆ 

is reshaped to match the shape of input 𝑥 and added into 𝑥  to generate a perturbed 

sample. The fitness values of the candidate solution are evaluated by Equation (3) and 

Equation (4) under the untargeted and targeted attacks, respectively. 

Selection. The purpose of the selection operator is to select outstanding individuals as 

parents for crossover and mutation, aiming to move closer to the optimum. Conse-

quently, solutions with lower fitness values 𝐿 or in cases where 𝐿 is equal, solutions 

with smaller 𝑙2  values will be prioritized. 

 

Algorithm 1. Generation of the initial sparse perturbation vector using GA 

1: Input: input 𝑥, ground truth label 𝑦 or target label 𝑦𝑡 , query budget 𝑁 ,sparsity 

𝑘, population size 𝑠1,zero-sampling probability 𝑝𝑟0,confidence scores threshold 

𝐶, query budget threshold 𝑁𝑇 , initial query budget 𝑄 = 0 

2: 𝑀 ← 𝑘 perturbed pixel indices  

3: ∆← perturbation values 

//initial population 

4: 𝑃, 𝑃′ ← {(𝑀1, ∆1), … , (𝑀𝑠1
, ∆𝑠1

)} 

//fitness value evaluation 

5: 𝐿, 𝐿′ ← {𝐿(𝑥, (𝑀1, ∆1)), … , 𝐿 (𝑥, (𝑀𝑠1
, ∆𝑠1

))} 

6: 𝑄 = 𝑄 + 𝑠1 

7: while 𝑄 ≤ 𝑁 do 

8:      for 𝑖 ← 0 ; 𝑖 < 𝑠/2 ; 𝑖 ← 𝑖 + 1 do 

9:           𝑝1, 𝑝2 ← sorting 𝐿 //selecting parents 

10:         𝑝1
′ , 𝑝2

′ ←  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝1, 𝑝2) 

11:         𝑝1
′′, 𝑝2

′′ ← 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑝1
′ , 𝑝2

′ ) 

12:         𝑃′ = 𝑃′ ∪ 𝑝1
′′ ∪ 𝑝2

′′ 

13:         𝐿′ = 𝐿′ ∪ 𝐿(𝑝1
′′) ∪ 𝐿(𝑝2

′′) 

14:    𝑃 = 𝑃′ 

15:    𝐿 = 𝐿′ 

16:    optimal value 𝑂 = min
𝑗

(𝐿1, … , 𝐿2𝑠) 

17:    𝑃(𝐿), 𝑃′(𝐿′) ←  fitness sorting 𝑃(𝐿) 

18:    𝑄 = 𝑄 + 𝑠1 

19:    if  𝑄 ≤ 𝑁𝑇 and 𝑂 < 𝐶 or 𝑄 > 𝑁𝑇 and 𝑂 < 0 then 

20:        𝑁1 = 𝑁 − 𝑄 

21:        return (𝑀𝑗 , ∆𝑗), 𝑁1 
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Generation of the final sparse perturbation vector using PSO. The modified pix-

els, identified as the critical feature region, are determined by the initial sparse pertur-

bation vector that meets the confidence scores condition. Subsequently, the perturba-

tion values of the initial sparse perturbation vector are further optimized to explore a 

more effective adversarial vector in this section. The details of generating the final 

sparse perturbation vector using PSO are shown in Algorithm 2 and Fig. 1 (b). 

 

Algorithm 2. Generation of the final sparse perturbation vector using PSO 

1: Input: the initial perturbation vector 𝛿 = ∆= (𝛿0, 𝛿1, … , 𝛿𝑘−1), population size 

𝑠2, query budget 𝑁1, the discarded perturbated pixels ratio 𝑝𝑟1 , the retained per-

turbations ratio 𝑝𝑟2, velocity threshold 𝐵, iterations between mutation intervals 𝐼 

//initialize particle swarm  
2: for 𝑖 ← 0 ; 𝑖 < 𝑠2 ; 𝑖 ← 𝑖 + 1 do 

3:       for 𝑗 ← 0 ; 𝑗 < 𝑘 ;𝑗 ← 𝑗 + 1 do 

4:             if  𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑝𝑟1 then 

5:                 𝛿𝑗
𝑖 =  𝛿𝑗 × 𝑝𝑟2 

6：     𝑝𝑏𝑒𝑠𝑡
𝑖 = 𝛿𝑖⃗⃗⃗⃗  

7: 𝑔𝑏𝑒𝑠𝑡 = [0,0, … ,0]𝑘 

//Optimization  

8: for 𝑛 ← 1 ; 𝑛 <
𝑁1

𝑠2
; 𝑛 ← 𝑛 + 1 do 

9:       for 𝑖 ← 0 ; 𝑖 < 𝑠2 ; 𝑖 ← 𝑖 + 1 do 

10:           𝑣𝑖 = 𝑤𝑣𝑖 + 𝐶1𝑟1(𝑝𝑏𝑒𝑠𝑡
𝑖 − 𝛿𝑖⃗⃗⃗⃗ ) + 𝐶2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝛿𝑖⃗⃗⃗⃗ )// update velocity 

11:           𝑣𝑖 = 𝑐𝑙𝑖𝑝(𝑣𝑖 , −𝐵, 𝐵) 

12:           𝛿𝑖 = 𝛿𝑖 + 𝑣𝑖// update position 

13:           𝑥𝑖 = 𝑐𝑙𝑖𝑝(𝑥 + 𝛿𝑖⃗⃗⃗⃗ , 0,1) 

14:           if  𝐹(𝑥𝑖) < 𝐹(𝑝𝑏𝑒𝑠𝑡
𝑖 ) then 

15:                𝑝𝑏𝑒𝑠𝑡
𝑖 = 𝛿𝑖⃗⃗⃗⃗  

16:           if  𝐹(𝑥𝑖) < 𝐹(𝑔𝑏𝑒𝑠𝑡) then 

17:                𝑔𝑏𝑒𝑠𝑡 = 𝛿𝑖⃗⃗⃗⃗  

// Adaptive mutation strategy 

18:     if  𝑛 % 𝐼 = 0 then 

19:         for 𝑖 ← 0 ; 𝑖 < 𝑠2 ; 𝑖 ← 𝑖 + 1 do 

20:              𝑝𝑟𝑜𝑏 = (
𝑁1

𝑠2
− 𝑛)/

𝑁1

𝑠2
 

21:              if  𝑟𝑎𝑛𝑑𝑜𝑚() <  𝑝𝑟𝑜𝑏 then 

22:                  for 𝑗 ← 0 ; 𝑗 < 𝑘 ; 𝑗 ← 𝑗 + 1 do  

23:                         if  𝑟𝑎𝑛𝑑𝑜𝑚() <  𝑝𝑟𝑜𝑏 then 

24:                             if  𝛿𝑗
𝑖 = 0 then 

25:                                 𝛿𝑗
𝑖 = 𝑝𝑟𝑜𝑏 × 0.05  

26:                             else  

27:                                 𝛿𝑗
𝑖 = 𝑝𝑟𝑜𝑏 × 0.5 × 𝛿𝑗

𝑖 

28: return the best sparse perturbation vector 𝑔𝑏𝑒𝑠𝑡  
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Initialize particle swarm. The perturbation vector has 3𝑘  dimensions, each corre-

sponding to the magnitude of a perturbation at a pixel location obtained in the first 

stage. When optimizing for smaller perturbations, initialization of particles involves 

discarding part of the perturbations to improve solutions. Specifically, each particle's 

perturbed pixel retains 𝑝𝑟2's perturbations with probability 𝑝𝑟1.To guide the particle 

swarm towards small perturbations, the initial global best is set to an all-zero vector, 

considering the initial sparse and large perturbation vector. 

Optimization. Due to the limitation of the number of queries to the target DNN, we 

optimize the solution with a relatively small population and multiple iteration rounds. 

The value of the inertia weight 𝑤 is determined through a linearly decreasing function 

that considers the number of queries made to the target DNN as shown below. 

 𝑤 = 𝑤 × (1 −
𝑄

𝑁1
) (7) 

Where 𝑄 indicates the number of queries submitted to the target DNN and 𝑁1 is the 
query budget. At the same time, to control the size of the perturbation, the speed 

each update is limited. The fitness values of the updated particles are evaluated to 

update new 𝑝𝑏𝑒𝑠𝑡   and 𝑔𝑏𝑒𝑠𝑡  by Equation (5) and (6) under the untargeted and targeted 

attacks, respectively. 

Adaptive Mutation Strategy. The strategy of adaptive mutation, inspired by the dy-

namic mutation strategies in GA, aims to increase the diversity of particles, enabling 

them to escape the local optima and approach the global optimum. As the number of 

iterations increases, both the discarded perturbated pixels ratio and the retained per-

turbation values ratio gradually decrease. Meanwhile, a specific channel of perturbed 

pixels that has a perturbation size of zero is subjected to an additional perturbation 

that gradually decreases as the number of iterations increases, which helps explore 

better solutions. 

4 Experiments 

In this section, the proposed method TSSA is evaluated by experiments to verify its 

effectiveness. We first outline the experimental setup including dataset and model 

settings, parameters settings, and evaluation metrics in Section 4.1. To determine the 

effectiveness of each strategy, an ablation study is conducted in Section 4.2. Then, the 

hyperparameter selection is carried out in Section 4.3 to get better solutions. Finally, 

TSSA is compared with the state-of-the-art black-box sparse attack SA-MOO to 

demonstrate its superiority in Section 4.4. 
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4.1 Experimental Setup 

Dataset and Model Settings. The proposed method TSSA is conducted on DNNs 

trained on CIFAR-10. 1000 correctly classified images of the test set are chosen to 

implement both untargeted and targeted attacks. For targeted attacks, a random target 

class is chosen, distinct from the ground truth label of each image. The max number 

of model queries is set to 1000 following the work of Phoenix et al. [24]. Two adver-

sarial trained models AT0, AT1 and a conventionally trained model Standard are 

selected as attack models, consistent with SA-MOO [24]. At the same time, another 

two models are also chosen to validate the generalization of our method. The specific 

accuracy information of these models is shown in the following Table 1. 

Table 1. Accuracy of models attacked. 

Model AT0 AT1 Standard [9]1 Resnet20 

Accuracy 0.8948 0.8750 0.9478 0.7877 0.9260 

Parameters settings. We maintain the same parameters settings as Phoenix et al [24] 

during the search for the initial perturbation vector. Specifically, we keep the sparsity 

𝑘 = 24, population size 𝑠1 = 2, and zero-sampling probability 𝑝𝑟0 = 0.3. The query 

budget threshold 𝑁𝑇  is set to 300 and 500 under untargeted attacks and targeted at-

tacks respectively. This is to make the initial perturbation vector meet the confidence 

condition and give more access times to the subsequent optimization. We set the pop-

ulation size 𝑠2 = 10, velocity threshold 𝐵 = 0.8, iterations between mutation inter-

vals 𝐼 = 10 and constant 𝐶1 = 1000 in Equation (5) and (6) for the search of the final 

perturbation vector.  

Evaluation Metrics. We assess the efficacy of algorithms in generating adversarial 

examples by utilizing all available queries. The attack success rate (ASR), the average 

adversarial perturbations 𝑙2 with the limited perturbed pixels, as well as the average 

structural similarity index measure (SSIM) which measures the similarity between the 

original image and the corresponding adversarial example, are the main three metrics 

of evaluating the performance. 

4.2 Ablation Study 

To demonstrate the contribution of each strategy, an ablation study is launched on two 

models trained with conventional and adversarial methods respectively. 100 images 

classified correctly by the target DNNs are chosen to carry out the untargeted attacks 

and the targeted attacks. The following Table 2 describes the selection of relevant 

hyperparameters: the confidence score threshold 𝐶, the discarded perturbated pixels 

ratio 𝑝𝑟1 and the retained perturbations ratio 𝑝𝑟2. 

 
1  The same DNN model as in the 𝐶&𝑊 attack. 
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Table 2. Selection of hyperparameters in ablation study. 

Model 
Untargeted attack Targeted attack 

𝑝𝑟1 𝑝𝑟2 𝐶 𝑝𝑟1 𝑝𝑟2 𝐶 

[9] 0.2 0.6 -0.8 0.2 0.6 0.7 

AT1 0.1 0.8 -0.5 0.1 0.8 0.5 

Table 3. The effectiveness of strategies under untargeted attack 

Model 
Untargeted attack 

Strategy ASR 𝑙2 𝑙2
2

 SSIM 

[9] 

𝑁𝑜 0.99 2.9376 9.7027 0.9003 

1𝑠𝑡 0.99 2.4673 6.9524 0.9205 

2𝑛𝑑 0.99 2.0415 5.1573 0.9403 

3rd 0.99 1.5435 3.0945 0.9573 

AT1 

𝑁𝑜st 0.87 3.3917 13.2197 0.8780 

1𝑠𝑡 0.82 2.5203 7.6941 0.9123 

2nd 0.82 2.3213 6.5863 0.9231 

3𝑟𝑑 0.84 2.2800 6.5248 0.9277 

Table 4. The effectiveness of strategies under targeted attack 

Model 
Targeted attack 

Strategy ASR 𝑙2 𝑙2
2

 SSIM 

[9] 

No 0.87 3.4712 13.0160 0.8639 

1𝑠𝑡 0.88 3.2716 11.7259 0.8759 

2𝑛𝑑 0.88 3.0410 10.6371 0.8874 

3rd 0.88 2.5590 7.8523 0.9042 

AT1 

No 0.40 3.9033 16.0045 0.8355 

1𝑠𝑡 0.36 3.2270 11.7782 0.8712 

2nd 0.36 3.2128 11.7055 0.8716 

3𝑟𝑑 0.36 3.0522 10.5273 0.8769 

𝑁𝑜 indicates the proposed algorithm with no strategies. 1𝑠𝑡 shows the strategy of us-

ing confidence scores as the condition of searching for the initial adversarial vector in 

GA. Strategy 2𝑛𝑑 demonstrates setting the initial global best 𝑔𝑏𝑒𝑠𝑡  of particle swarm to 

the all-zero vector. 3𝑟𝑑 expresses the proposed adaptive mutation strategy. 

Experiments show that all three strategies are quite efficient in improving the size 

of adversarial perturbation for models trained with the conventional method as shown 

in Table 3 and Table 4. The implementation of strategy 1𝑠𝑡 improves the quality of 

the initial perturbation vector. This allows for more opportunities to find smaller per-

turbations while still maintaining adversarial. The strategy 2𝑛𝑑  guides the initial 

phase of optimization to help the particle swarm find a solution with less disturbance. 

Implementing strategy 3𝑟𝑑 in the particle swarm optimization process increases di-

versity, allowing for escaping local optima and exploring better solutions. 

Strategy 1𝑠𝑡 has a greater impact on reducing perturbations in defense models than 

strategies 2𝑛𝑑 and 3𝑟𝑑 . However, strategies 2𝑛𝑑 and 3𝑟𝑑  have additional enhance-
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ment effects when combined with strategy 1st, resulting in better perturbation vectors 

overall. 

4.3 Hyperparameter Selection 

The key parameters that affect the performance of our algorithm are 𝑝𝑟1, 𝑝𝑟2, 𝐶. To 

simplify the process of obtaining a better set of parameters, non-duplicate sampling is 

used for 𝑝𝑟1 and 𝑝𝑟2. This results in multiple groups (𝑝𝑟1, 𝑝𝑟2), with the values of 𝑝𝑟1 

and 𝑝𝑟2 ranging from 0.1 to 0.7 with an interval of 0.1 for untargeted attacks (0.1 to 

0.8 for targeted attacks). For each group (𝑝𝑟1, 𝑝𝑟2), we conduct a grid search for 𝐶, 

with values ranging from -0.9 to -0.4 for untargeted attacks and from 0.4 to 0.9 for 

targeted attacks, with an interval of 0.1 on model [9]. For model AT1, the search is 

conducted with values ranging from -0.7 to -0.2 for untargeted attacks and from 0.3 to 

0.8 for targeted attacks. 

The results are shown in Fig. 2. ASR in each subgraph should ideally be similar to 

one another. However, due to the impact of random numbers, there may be minor 

variations when different hyperparameters are used. The hyperparameters mostly 

influence the perturbation size. It is noticeable that smaller perturbations are typically 

obtained when the initial adversarial examples have high confidence scores for the 

adversarial class. To achieve better attack results for the comparative experiments, we 

choose parameters (𝑝𝑟1, 𝑝𝑟2, 𝐶)  that achieve both a high attack success rate and a 

small perturbation. For the conventional models under untargeted and targeted at-

tacks, the parameters (0.3,0.5, −0.9)   and (0.7,0.7,0.9)  are used. For the defense 

models under untargeted and targeted attacks, the parameters (0.7,0.7, −0.7)   and 

(0.4,0.4,0.7)  are chosen. 

 

Fig. 2. (a) and (b) show the average 𝑙2 norm (first row) and ASR (second row) for 

different parameter combinations, respectively, when launching untargeted and tar-

geted attacks on the model [9]. (c) and (d) describe the attack situation of model AT1. 

(a) (b) (c) (d)
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4.4 Comparison 

The proposed method is compared with the advanced black-box sparse attack method 

SA-MOO [24] to demonstrate its advancement. The following experiments are carried 

out under the above optimal parameters. The SA-MOO [24] algorithm follows the 

experimental setup described in the original paper. Some adversarial images are rep-

resented in Fig. 3. 

The experimental results under untargeted and targeted attacks are shown in Table 

5 and Table 6 respectively. It is evident that adversarially trained models consistently 

exhibit lower attack success rates and larger adversarial perturbations compared to 

conventionally trained models across the two distinct attack methods. This observa-

tion further indicates the effectiveness of enhancing model robustness through adver-

sarial training. The proposed method TSSA achieves similar attack success rates with 

SA-MOO in almost all DNNs. In adversarially and conventionally trained models, the 

improvement of adversarial perturbations using TSSA are almost greater than 0.5 and 

0.3 under untargeted attacks and close to 0.5 in almost all models under targeted at-

tacks. The decrease in disturbance is also manifested in the increase of SSIM. This 

imply that our method TSSA can provide a significantly more accurate assessment of 

model robustness. Furthermore, the difference in the mean magnitude of perturbations 

of the models shows some fluctuations compared to SA-MOO, but the relative size 

relationship remains the same. 

 

Fig. 3. This illustrate displays adversarial images and their corresponding perturba-

tions generated by two different algorithms, the proposed method TSSA and SA-

MOO. (a) and (b) depict untargeted and targeted attacks on the Standard model, while 

(c) and (d) represent untargeted and targeted attacks on the defense model AT1. 

SSIM:0.9937

𝑙2:0.6156

SSIM:0.9886

𝑙2:1.1660

SSIM:0.9925

𝑙2:0.6467

SSIM:0.9757

𝑙2:1.5683

SSIM:0.9722

𝑙2:1.2315

SSIM:0.9355

𝑙2:2.0027

SSIM:0.9752

𝑙2:1.0704

SSIM:0.9062

𝑙2:2.2385

Proposed method Proposed method SA-MOOSA-MOO

Proposed method Proposed method SA-MOOSA-MOO

(a) (b)

(c) (d)
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Table 5. Comparison Results under untargeted attack 

 SA-MOO TSSA 

Model ASR 𝑙2 𝑙2
2 SSIM ASR 𝑙2 𝑙2

2 SSIM 

AT0 0.736 2.9047 9.8199 0.9048 0.757 2.3368 6.7425 0.9208 

AT1 0.817 2.8073 9.1856 0.9101 0.836 2.3039 6.6331 0.9255 

Standard 0.997 1.7214 3.5227 0.9595 0.998 1.4525 2.5976 0.9647 

[9] 0.997 1.8028 3.9198 0.9528 0.992 1.4980 2.9356 0.9587 

Resnet20 1.000 1.5822 2.9593 0.9639 1.000 1.2797 2.0491 0.9705 

Table 6. Comparison Results under targeted attack 

 SA-MOO TSSA 

Model ASR 𝑙2 𝑙2
2 SSIM ASR 𝑙2 𝑙2

2 SSIM 

AT0 0.350 3.5021 13.2865 0.8661 0.347 3.0442 10.4608 0.8814 

AT1 0.414 3.3927 12.4996 0.8703 0.402 2.8401 9.0950 0.8897 

Standard 0.958 2.4743 6.8114 0.9277 0.937 2.0075 4.6524 0.9417 

[9] 0.923 2.8472 8.9909 0.8999 0.916 2.5427 7.4834 0.9069 

Resnet20 0.981 2.4692 6.8750 0.9277 0.974 2.0030 4.6998 0.9410 

5 Conclusion 

In this paper, we propose a two-stage black-box sparse attack method called TSSA. 

This method determines the perturbed pixels based on the confidence score of the 

adversarial class. Additionally, two new strategies, namely zeroing and adaptive mu-

tation are implemented in the PSO algorithm to reduce perturbations. As a result, our 

method achieves a more imperceptible attack compared with the state-of-the-art 

method SA-MOO. This method also provides a useful tool to evaluate and strengthen 

the robustness of DNNs. 
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