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Abstract. Recently, Asymmetric PD and Blind-Spot Network (AP-BSN) has 

shown effectiveness for real-world image denoising. However, when the noise-

related area is large, it uses the single-center pixel mask which cannot break the 

noise spatial correlation, therefore the blind spot recovered from the surrounding 

pixels still contains noise, resulting in obviously abnormal color spots in the 

denoised image. In addition, AP-BSN enlarges the receptive field by stacking 

multiple dilated convolutional layer (DCL), but these layers may lead to block 

artifacts and partial pixel detail information loss due to their interpolation and 

overlap operations. To address the above issues, we propose a multi-direction 

mask convolution kernel (MDMCK) to form a blind area to further destroy large-

scale spatial connection noise. We also propose a detail feature enhancement 

(DFE) module to supplement the detail lost by MDMCK and stacking DCL. 

Finally, we use a robust joint loss function to train our model, generating 

denoised images with clean and sharp detail while alleviating the block artifacts. 

Extensive quantitative and qualitative evaluations of the SIDD and DND datasets 

show that our proposed method performs favorably.   

Keywords: Self-supervised denoising, Real-world image, Multi-direction mask, 

Detail feature enhancement, Blind-area network. 

1   Introduction 

Image denoising aims to recover a clean image from its corresponding noisy 

observation. Learning-based methods have been widely used in image denoising in 

recent years due to their superior performance [1, 2]. Supervised methods usually use 

Additive White Gaussian Noise (AWGN) to synthesize massive noise-clean image 

training pairs. However, it is difficult to capture ground truth images in some cases, 

such as in the medical field.  

To address the above issue, a series of self-supervised image denoising methods that 

do not require ground truth images have been proposed [4, 5, 6, 7, 8, 15]. Noise2Void 

[6] proposes a Blind-Spot Network (BSN) denoising method based on the assumption 

that pixel signals of the input image are spatially correlated, and noise signals are 



spatially independent with zero-mean, which can be trained with only single noisy 

images. Most of the existing BSN denoising methods [9, 10, 11] use a mask convolution 

kernel based on the single-center pixel mask, such as AP-BSN [9]. However, it cannot 

sufficiently destroy the spatial connection of large-scale noise, resulting in the features 

extracted by the single-center pixel convolution kernel still containing unconducive 

information for denoising. The noise that has not been removed shows obviously 

abnormal spots on the denoised image. Furthermore, AP-BSN has repeatedly used the 

dilated convolutional layer (DCL) to enlarge the receptive field, but these layers may 

lead to block artifacts and partial pixel detail information loss due to the interpolation 

and overlapping receptive fields. 

In this paper, we propose a novel method, called MD-BAN, to solve these problems, 

including abnormal color spots, block artifacts, and the lack of detailed information. 

First, for breaking the spatial correlation of large-scale noise, we introduce a multi-

direction mask convolution kernel (MDMCK), which contains oblique, horizontal, and 

vertical directions, to for blind area to mask pixels. Second, for retaining more detail 

information, we introduce a detail feature enhancement (DFE) module that can not only 

supplement the detail destroyed by the MDMCK, but also reduce the loss of pixel detail 

information during multiple stacking DCL. Finally, for alleviating the block artifacts 

and make the denoised image smoother and more realistic, we combine the more robust 

Charbonnier loss with the sparse L1 norm to train the model. Compared with several 

representative image denoising methods on the SIDD validation dataset, SIDD 

benchmark dataset and DND benchmark dataset, our method performs well in terms of 

quantitative indicators and perceptual quality. We summarize our contributions as 

follows:  

⚫ We propose a novel self-supervised method called MD-BAN for real-world image 

denoising. It retains more detail while improving denoising performance, and 

significantly reduces block artifacts and abnormal color spots. 

⚫ Our MDMCK comprehensively breaks the spatial correlation of large-scale noise 

from oblique, horizontal and vertical directions. Our DFE module focuses on 

supplementing the lost detail of MDMCK and stacked DCL.  

⚫ The joint loss alleviates the block artifacts caused by stacking the dilated 

convolution, making the denoised image smoother and more realistic. Extensive 

experiments show our method achieves commendable performance. 

2   Related Work 

Due to the advancement of deep learning technology, deep network-based methods 

have achieved superior denoising results and become the mainstream denoising 

methods. In general, deep network-based methods can be further classified according 

to their training manners. 

2.1   Supervised Image Denoising  

Zhang et al. [12] first attempted to apply deep learning technology to image denoising 

tasks. They proposed DnCNN, which trains the model with a synthetic noise-clean 



image pair by manually adding AWGN to the clean image. This model not only 

improves the denoising performance, but also greatly reduces the amount of calculation. 

However, there are significant differences in the distribution between AWGN noise and 

real noise. To reduce the gap, Gou et al. [13] proposed a convolutional blind denoising 

network (CBDNet) specifically designed for real images. Under its framework, Zhao 

et al. [14] proposed SDNet, which achieves good results on both synthetic images and 

real noisy images. Unfortunately, these methods often rely on the quantity and quality 

of training data, and obtaining absolutely clean images is impractical in practical 

applications. Therefore, it makes methods that do not require clean images more 

valuable. 

2.2   Self-supervised Image Denoising  

To get rid of the dependence on clean images, many self-supervised methods [11, 18] 

that only use noisy images for training have been proposed. Noise2Noise [7] requires 

two completely aligned noise image pairs, which is difficult to obtain in practice. NAC 

[23] proposes to use the existing noise images and add new noise to the noisy images 

to form image pairs for training. Some researchers have developed denoising model 

that use a single noisy image for training, the most widely used is the BSN proposed in 

Noise2Void [6]. Subsequently, Noise2Self [4] proposes a general framework for 

denoising high-dimensional measurements. But a single sample training will cause the 

large variance. To overcome this problem, Self2Self [30] is trained with dropout on the 

pairs of Bernoulli-sampled instances of the input image. Blind2Unblind [17] used all 

the pixels for training by generating sub-masked images with pixels masked at different 

locations. Neighbor2Neighbor [5] synthesized two sub-noise images by randomly 

selecting two adjacent pixels from the neighborhood of the rawRGB image. CVF-SID 

[16] decomposes noisy images into clean images and noise components. Nevertheless, 

the denoising ability of the above method is limited by the assumption that the noise is 

spatially independent. Since the noise in the real world is usually spatially correlated, 

it does not conform to the assumption of BSN.  

To break the spatial correlation of real-world noise, AP-BSN [9] asymmetrically 

uses pixel-shuffle downsampling (PD) and the single-center pixel mask convolution 

kernel. However, if large-scale noise exists in the image, blindly increasing the PD 

stride will cause damage to the image details. Under this restriction, continuing to use 

the single center pixel mask will result in poor denoising effect. Li et al. [31] proposed 

the blind-neighborhood network (BNN), which is deformed from BSN but have 

different receptive field. Luiken et al. [32] proposed a new network whose receptive 

field excludes an entire direction. Zhang et al. [19] combined CNN with a window-

based Transformer to balance noise removal and preserve local detail. But transformer 

is computationally intensive. Instead, our method is more lightweight. We propose 

MDMCK to mask more pixels that are strongly noise correlated with the central pixel 

from different directions, the mask area is restored by using the pixels with weak noise 

correlation, resulting in the denoised image is clearer. We also propose a novel module 

DFE that combines the MDMCK to destroy large noise correlation while preserving 

texture details of the original image. Finally, the joint loss function is used to deal with 

the block artifacts, which makes the denoised image more real and clear. 



3   Method 

In this section, we describe the proposed method in detail. The overview is displayed 

in Fig. 1. First, the original noisy image is sampled into multiple small images after 

PD5, and the sampled images are passed through a 1 × 1 convolution layer for linear 

transformation. Second, there are two branches in parallel, aiming at breaking the 

spatial connection and detail feature supplement, respectively. For the detail feature 

supplement branch, we apply 3 × 3 MDMCK to extract more complete information 

feature. For breaking the spatial connection branch, we apply 5 × 5  MDMCK to 

further break the spatial correlation. Subsequently, both branches pass through 𝑚 =
12 stacked DFE modules to address the problem of detail loss during stacking dilated 

convolution layers. Finally, the model is optimized by the joint loss function. 

 

Fig. 1. The overall architecture of MD-BAN. Our method mainly contains two branches. For 

each branch, the input after PD5 and linear transformation first goes through an MDMCK, then 

further processed by the DFE module for deep features. Finally, the output of two branches is 

fused. Then a full-sized output is reconstructed using PD5
−1 to calculate loss with noise image. 

Note the 3 × 3 branch of the MDMCK we all use a center single pixel mask convolution kernel.  

3.1   Multi-direction Mask Convolution Kernel (MDMCK)  

It is mentioned above that AP-BSN is inefficient in breaking the spatial correlation of 

large-scale noise by only using a single-center pixel mask. The blind spot recovered 

from the surrounding pixels will still contain noise and show obvious abnormal color 

spots in the denoised image, as shown in Fig. 4. 

Motivated by the visualization of spatial correlation in noise between the center pixel 

and other pixels in the LG-BSN [20]. By masking more parts that are strongly correlated 

with the central pixel, we can avoid the blind area recovered from the surrounding 

pixels still containing noise, and achieve the effect of breaking the spatial correlation 

of large-scale noise. Based on the above analysis, we propose several combinations of 

oblique, horizontal, and vertical MDMCK as shown in Fig. 2 (take the OHHV mask as 



an example) to further destroy the spatial correlation of large-scale noise. MDMCK is 

obtained by different multi-direction masks as shown in Fig. 3.  

 

Fig. 2. The OHHV MDMCK of the 5 × 5 branch is shown. 

Among them, the oblique refers to the noise in the diagonal direction of the image. 

When the noise correlation area is large, the combination of different directions can 

more comprehensively consider the various noise distributions in the image and break 

its connection, to achieve more accurate and effective large-scale noise denoising. At 

the same time, this MDMCK helps to improve the robustness and applicability of the 

image denoising model, so that it can deal with various complex noise situations.  

  

Fig. 3. The multi-direction masks are shown on 5 × 5 kernel. Locations with 0 mean this pixel 

needs to be masked. (a) represent only oblique mask. (b) represent the mask containing oblique 

and vertical. (c) represent the mask containing oblique and horizontal. (d) represent the mask 

containing oblique, vertical and horizontal. (e) represent the mask containing oblique, vertical 

and two horizontals. (f) represent the mask containing oblique, horizontal and two verticals. 

 
Fig. 4. The AP-BSN method fails to break the spatial correlation of large-scale noise, resulting 

in abnormal color spots in the denoised image. Our method can obtain cleaner denoising results 

through the MDMCK.  

 



However, as the mask area increases, the pixel detail information of the image itself 

is more and more destroyed. How to preserve more detail information while destroying 

the large-scale noise spatial connection is also a challenge. Therefore, the DFE module 

is proposed to deal with this problem. 

3.2   Detail Feature Enhancement (DFE) 

The DFE module connects the features of the previous layer which contains complete 

detail with the more global features obtained by the dilated convolution layer, so that 

the model can comprehensively utilize the features of different levels. In Fig.1, because 

the features extracted by the 3 × 3 MDMCK contain complete information, then more 

detail can be retained by passing through several DFE modules, but this branch cannot 

sufficiently break the noise correlation. On the contrary, the 5 × 5 MDMCK masks 

more surrounding pixels, which can more effectively break the spatial connection of 

noise, but it loses more pixel detail. Therefore, we can combine the features extracted 

by the 3 × 3 branch to provide more details and the 5 × 5 branch to break the spatial 

correlation of noise and reinforce each other to obtain better denoising results.  

Based on the above analysis. The input feature 𝐼𝐷 ∈ 𝑅𝐶×𝐻×𝑊 is sequentially passed 

through one dilated convolution layer and LeakyReLU, 𝐶𝑜𝑛𝑣𝑟=2(∙) or 𝐶𝑜𝑛𝑣𝑟=3(∙) 

with a convolution kernel size of 3 × 3, where 𝑟 denotes the dilated rate, and the 

feature information 𝑂𝑐𝑎𝑡 ∈ 𝑅2𝐶×𝐻×𝑊  is obtained by using 𝐶𝑜𝑛𝑐𝑎𝑡(∙)  to channel-

summing from the dilated convolution layer and the features of the previous layer. The 

complete calculation process is shown in Eq. (1): 

𝑂𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐼𝐷 , 𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣𝑟=𝑠𝑡𝑟𝑖𝑑𝑒(𝐼𝐷))). (1) 

Then, feature fusion and channel processing are performed using 1 × 1 

convolution layer, 𝐶𝑜𝑛𝑣(∙) on 𝑂𝑐𝑎𝑡 ∈ 𝑅2𝐶×𝐻×𝑊. Finally, the skip connection is used 

to transfer the shallow feature information to the deeper convolution layer to output the 

feature 𝑂𝐷 ∈ 𝑅𝐶×𝐻×𝑊. The complete calculation process is shown in Eq. (2): 

𝑂𝐷 = 𝐼𝐷 + (𝐶𝑜𝑛𝑣(𝑂𝑐𝑎𝑡)) (2) 

In addition, partial pixel detail information loss due to the interpolation and 

overlapping receptive fields can also be alleviated by introducing the DFE module. The 

ablation experiments of the DFE module are detailed in Section 4.5 Table 3. 

3.3   Loss function 

Since the L1 norm is linear, it is relatively insensitive to outliers. Self-supervised with 

the Charbonnier loss function in Eq. (3) can better deal with outliers and improve 

performance, introducing a constant 𝜖 to better deal with outliers. When the 𝑑𝑖𝑓𝑓 is 

small, the value of the loss function is mainly determined by the constant 𝜖, that is, the 

loss remains smooth near 𝜖. On the contrary, When the 𝑑𝑖𝑓𝑓  is large, the loss is 

mainly determined by the square root of the 𝑑𝑖𝑓𝑓, which can slow down the impact of 

outliers on the loss. 



ℒ𝐶ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 𝐿𝑜𝑠𝑠 = √𝑑𝑖𝑓𝑓2 + 𝜖2 (3) 

Where ℒ𝐶ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 𝐿𝑜𝑠𝑠  is the Charbonnier penalty function, 𝑑𝑖𝑓𝑓  is the 

difference between the denoising output and the noisy image of the model; We 

empirically set 𝜖 to 1e − 3.  

Combined with the sparsity of L1 norm, it can help to extract important features. At 

the same time, the smoothness of Charbonnier Loss and the robustness of outliers are 

used. By combining these two loss functions, the denoising performance and 

generalization of the model can be improved. Furthermore, the block artifacts caused 

by overlapping dilated convolution layers are weakened, which has been verified in 

ablation in the fourth and fifth rows of Fig. 5. The formula is as follows in Eq. (4): 

ℒ𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 = 𝑤ℒ𝐿1 𝑛𝑜𝑟𝑚 + (1 − 𝑤)ℒ𝐶ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 𝐿𝑜𝑠𝑠 (4) 

Where the hyperparameter 𝑤 imply the contribution weight of each loss function. 

4   Experiments 

4.1   Datasets and Evaluation Metrics 

Smartphone Image Denoising Dataset (SIDD) [3].  Contains five smartphone 

cameras that captured 10 different scenes under 4 specific settings and conditions, each 

of which captured 150 consecutive image sequences. For training, we used 320 noisy 

sRGB image pairs from the SIDD Medium dataset. For validation and evaluation, we 

used sRGB images from the SIDD validation set and SIDD benchmark set, respectively. 

Both contain 1280 patches with a size of 256 × 256, which also provide ground truth 

images for the validation set. 

Darmstadt Noise Dataset (DND) [21].  Contains 50 noisy images for benchmarking, 

including indoor and outdoor scenes without the ground truth provided. The denoising 

results can only be obtained through the online system. Since our method does not need 

to consider ground truth images. Therefore, we directly use DND as the training and 

test set. 

Metrics.  Two metrics are used to evaluate the performance of the method, including 

peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [22]. The larger 

value of PSNR and SSIM implies better fidelity. LPIPS [33] results on SIDD validation 

dataset to measure the perceptual quality, which the lower the better and shows that 

denoised images are most perceptually similar to the clean images.  

4.2   Training Detail 

The computer hardware environment used in the whole experiment is NVIDIA Titan V 

GPU; the software environment is Windows 10 operating system; the running 

environment is Python3.8, PyTorch1.8.2, and Pycharm2022.3.3. The learning rate is 

initially set to 1𝑒-4, where the Adam optimizer is adopted. The number of epochs is set 



to 30 and the batch size is set to 8. We adopt a joint loss function between noisy image 

and denoising output for training. We set the PD stride as 5 for training and 2 for testing, 

and the same post-processing as AP-BSN [9].   

4.3   Quantitative Results 

We validate the effectiveness of our method for real-world image denoising on the 

commonly used SIDD validation, SIDD benchmark, and DND benchmark datasets. In 

Table 1, we compare our method with some recent works, our method delivers 

competitive results. Compared with unsupervised methods trained on unpaired clean-

noisy data, our method does not rely on additional data for synthesizing training pairs. 

For self-supervised methods, Noise2Void [6] and Noise2Self [4] cannot handle the 

noise in sRGB images due to their spatially independent noise assumptions. CVF-SID 

does not consider the strong spatial correlation in real noise; AP-BSN cannot break the 

spatial connection of large-scale noise because the PD stride factor cannot be too large; 

I2V requires more model parameters; Moreover, AP-BSN and CA-BSN still use a 

single-center pixel mask convolution kernel to generate blind-spot. 

Specifically, our proposed method improves the PSNR by 1.18, 1.24 and 0.3 dB, and 

the SSIM also grows by 2 %, 1 % and 0.2 %, compared with the AP-BSN. 

Table 1.  Quantitative results on the SIDD validation, SIDD benchmark, and DND benchmark 

datasets. Supervised denoising and unpaired image denoising approaches leverage paired clean-

noisy images while self-supervised learning methods rely on only noisy images in SIDD Medium 

dataset. The “AP-BSN” here is consistent with value of “AP-BSN+R3” in the paper [9], and “-” 

indicates that the result was not reported in the related paper. The best and the second-best results 

among self-supervised methods are pointed out in bold and underlined (tilted), respectively. 

 
Method 

SIDD validation SIDD benchmark DND benchmark 
PSNR/SSIM/LPIPS↓ PSNR↑/SSIM↑ PSNR/SSIM 

Non-learning 

based 

BM3D [24] 31.75/0.706/0.657 25.65/0.685 34.51/0.851 

WNNM [25] 26.31/0.524/0.635 25.78/0.809 34.67/0.865 

Supervised 

Synthetic pairs 

DnCNN [12]  26.20/0.441/0.712 23.66/0.583 32.43/0.790 

CBDNet [13] 30.83/0.754/0.288 33.28/0.868 38.05/0.942 

Supervised 

Real pairs 

DnCNN [12] 35.34/0.885/0.245 35.34/0.885  37.83/0.929 

RIDNet [26] 38.76/0.913/- 37.87/0.943 39.25/0.952 

N2C [27] 38.98/0.954/0.201 38.92/0.953 39.37/0.954 

Unpaired C2N [28] + 

DIDN [29]  

35.39/0.891/0.192 35.35/0.930 38.14/0.941 

 

 

Self-supervised 

Noise2Void [6]  27.48/0.664/0.592 27.68/0.668 - 

Noise2Self [4] 29.94/0.782/0.556 29.59/0.808 - 

NAC [23] - - 36.20/0.925 

CVF-SID [16]  34.17/0.872/0.423 34.71/0.917 36.50/0.924 

AP-BSN [9] 36.02/0.872/0.281 35.97/0.925 38.09/0.937 

CA-BSN [11]  - 36.92/0.932  38.24/0.939  

 I2V [15] 36.63/0.888/- 36.52/0.931 38.08/0.938 

 Li et al. [31] 37.39/0.934/0.176 37.41/0.934 38.18/0.938 

 MD-BAN(Ours) 37.20/0.892/0.140 37.21/0.935 38.39/0.939 



4.4   Quantitative Results 

In Fig. 5, we show five large-scale noise images from the SIDD benchmark processed 

by different denoising models in Table 1. C2N+DIDN denoising image still contains 

obvious noise in Fig. 5 (b). CVF-SID does not consider the spatial correlation of real-

world noise, and the edge of the denoised image is very blurred in Fig. 5 (c). AP-BSN 

generates denoising results with more color spots and block artifacts in Fig. 5 (d). In 

contrast, the denoised image by our method contains relatively clean and sharp detail 

in Fig. 5 (e). Visualization results of AP-BSN and MD-BAN on the SIDD validation 

dataset and DND benchmark dataset can be found in Fig. 6. 

In general, our proposed method can break the spatial connection of noise from 

multi-direction and preserve more detail. The color spots in the image are removed 

more thoroughly in the first and second rows of Fig. 5, the detail is displayed more 

clearly in the third row of Fig. 5, and the block artifacts are also weakened in the fourth 

and fifth rows of Fig. 5. 

 

Fig. 5. Visual comparison of SIDD benchmark. In the SIDD benchmark, PSNR and SSIM of the 

image is not available. We zoomed in locally for a more visual comparison with the original 

noisy image, C2N+DIDN, CVF-SID, AP-BSN and MD-BAN(Ours). 



 

Fig. 6. Visual comparison of SIDD validation dataset and DND benchmark dataset. In SIDD 

benchmark dataset, the PSNR and SSIM of each image are reported below.   

4.5   Ablation Studies 

Effect of MDMCK.  To demonstrate the effect of MDMCK, we remove the joint loss 

function. Since the 5 × 5 MDMCK will cause the loss of some pixel information, and 

the DFE module can complement this loss, the combination of MDMCK and DFE for 

ablation study can more intuitively and accurately find the most suitable MDMCK 

method. As shown in Table 2, it was found that OHHV had the best effect, we speculate 

that this is because it combines the three directions of O, V and H, and the dataset 

contains more horizontal noise distribution. In addition, we also performed ablation of 

OV and OHHV separately, and found that OHHV had a better effect, which confirmed 

our thought.  

Table 2.  Ablation study of DFE module with different MDMCK methods and separate 

experiment of the OV and OHHV, on SIDD validation dataset and SIDD benchmark dataset with 

PSNR (dB)/SSIM. The best result is marked in bold. 

3 × 3 MDMCK 5 × 5 MDMCK DFE 
SIDD validation SIDD benchmark 

PSNR (dB)/SSIM PSNR (dB)/SSIM 

center OV × 31.31/0.778 31.20/0.837 

center OHHV × 34.23/0.832 34.15/0.892 

center O √ 37.15/0.880 37.13/0.934  

center OV √ 37.17/0.878 37.15/0.934 

center OH √  37.04/0.880 37.01/0.933 

center OVH √ 37.09/0.877 37.09/0.933 

center OHHV √  37.20/0.880 37.18/0.935 

center OVVH √ 37.15/0.880 37.14/0.934 



Effect of DFE.  To validate the effect of the DFE module. We performed ablation 

study on the two branches respectively in Table 3. The results of case 1 and case 2 show 

that the supplement of 5 × 5 branch detail mainly comes from the branch of 3 × 3. 

The result of case 3 is the best, since the DFE module not only complements the detail 

destroyed by the OHHV mask, but also alleviates the pixel information lost in the 

process of using dilated convolution. Note that DCL is the module used by AP-BSN. 

Table 3.  Ablation study of DFE module on SIDD benchmark dataset, where 3 × 3 represents 

the branch using a 3 × 3 central single pixel mask convolution kernel, 5 × 5 indicates that the 

branch uses the OHHV mask convolution kernel. The best result is marked in bold. 

Case Method PSNR (dB) SSIM Params (M) 

1 Replacing 3 × 3 DCL with DFE 37.16 0.935 4.8 

2 Replacing 5 × 5 DCL with DFE 37.10 0.934 4.8 

3 3 × 3 and 5 × 5 both DFE 37.18 0.935 5.0 

4 3 × 3 and 5 × 5 both DCL 34.15 0.892 3.7 

 

Effect of Loss Function.  To validate the effect of joint loss function, we performed 

ablation study of hyperparameter 𝑤 in Table 4, which can observe that the best result 

is achieved when 𝑤 = 0.9. As illustrated in Fig. 7, the network optimized with L1 

norm (green point curve) requires more iterations to achieve comparable performance 

with our model (red solid curve). In the fourth and fifth rows of Fig. 5, we show that 

the network trained with only L1 norm generates denoised results with more block 

artifacts. In contrast, using joint loss function contains relatively clean and sharp detail. 

Table 4.  Ablation study of hyperparameter 𝑤 in SIDD benchmark dataset.  

w 0.9 0.8 0.7 0.6 0.5 

PSNR (dB)/SSIM 37.21/0.935 37.15/0.934 37.10/0.934 37.15/0.934 37.10/0.934 

 

Effect of Full Model.  To validate the effect of the MDMCK, DFE module and joint 

loss function. As illustrated in Table 5 and Fig. 7, we replace each component with the 

existing method. From the results, we can observe that incorporating each component 

has a clear contribution. Moreover, in Fig. 8 we vividly illustrate our method can 

effectively remove large-scale noise.  

Table 5.  Ablation study of MDMCK, DFE module and joint loss function in SIDD validation 

dataset and SIDD benchmark dataset.  

Contribution SIDD validation SIDD benchmark 

MDMCK DFE Joint loss function PSNR (dB)/SSIM PSNR (dB)/SSIM 

center   36.02/0.872 35.97/0.925 

√   34.23/0.832 34.15/0.892 

 √  36.98/0.879 36.96/0.932 

  √ 36.86/0.878 36.83/0.932 

√ √  37.20/0.880 37.18/0.935 

 √ √ 37.02/0.881 37.00/0.933 

√ √ √ 37.20/0.892 37.21/0.935 



 

Fig. 7. Convergence analysis on the MDMCK, DFE module, and joint loss function. Our model 

(red solid curve) converges faster and achieves improved performance. 

 

Fig. 8. Quantitative comparison of large-scale noise removal. Among them, (a)-(f) are images 

with large-scale noise, by comparing PSNR values of epoch from 5 to 30 of AP-BSN and MD-

BAN (full model) in the above images. MD-BAN has higher PSNR than AP-BSN at each epoch, 

this phenomenon proves the effectiveness of MD-BAN which can better remove large-scale noise.  

5   Conclusion 

In this paper, we propose MD-BAN for self-supervised real-world image denoising, 

aiming to remove more large-scale noise image while retaining the detail information 

of the image. First, we propose MDMCK to comprehensively break the spatial 

connection of large-scale noise from multi-direction, which cannot be commendably 

removed by PD with a stride factor of 5 and the single-center pixel mask. Second, we 

propose the DFE module, which effectively combines MDMCK and supplements detail 

lost by MDMCK and stacking dilated convolution layers. Finally, we train our model 

with a robust joint loss function and generate denoised images with cleaner and sharper 

detail. Extensive results on real-world sRGB benchmark datasets reveal the superior 

denoising performance of MD-BAN.  
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