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Abstract. Few-shot Dialogue State Tracking aims to predict the dialogue state 

with limited labeled data, especially when human annotation is scarce. Existing 

approaches that use the Self-Training framework often suffer from the gradual 

drift problem, which results in a noisy expanded labeled dataset. Moreover, ex-

cept model initialization process, the knowledge of the annotated data has not 

been fully investigated to accurately deal with unlabeled data. In this paper, we 

introduce Slot Value Imitation Reinforcement Learning into the Self-Training 

process to alleviate bias selection and improve the quality of pseudo-label. The 

reinforcement learning step encourages pseudo-labeled data to imitate the stand-

ard value representation of each slot, and then high-confidence pseudo labels are 

chosen by a dual selection strategy based on value probability and active slot 

accuracy. Experimental results on the MultiWOZ 2.0 and MultiWOZ 2.4 dataset 

demonstrate the effectiveness of our proposed model in few-shot DST scenarios. 

Compared to the original self-training method, Joint Goal Accuracy has a maxi-

mum improvement of 2.66% in MultiWOZ 2.0. 

Keywords: Dialogue State Tracking, Reinforcement Learning, Self-Training. 

1 Introduction 

Dialogue State Tracking (DST) tracks the intentions and goals by representing them as 

a dialogue state, comprising a set of slots and corresponding values, which has shown 

significant advancements in task-oriented dialogue systems. Fig.1 illustrates some ex-

amples of DST within a conversation, where the dialogue state is accumulated and re-

freshed after each turn. We consider train-departure and train-destination as slots, and 

their values can be obtained from the current context. In the first turn, their values are 

Stevenage and Cambridge, respectively. As the turn continues, we can obtain or update 

the slot values. Traditional supervised methods for training DST models typically rely 

on large amounts of dialogue corpus and manual annotation. However, data collection 

and labeling are time-consuming and labor-intensive. Therefore, few-shot DST task has 

been proposed in order to obtain high-performance DST models with limited annotated 

corpus and mitigate the issue of data sparsity. 
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  Hi, I need to catch a train from Stevenage to Cambridge.

  I can help you with that. What day will you be traveling?

  I need to arrive no later than 21:45.

  I have train TR4015 that leaves at 19:54,and arrives at 20:43. Is that to your liking?

  Thanks. Can you tell me anything about the castle galleries attraction?

  Sure it is a lovely museum and it is free to get in!

  Could I please get the phone number for that?

  The phone number is 01223307402.

User System Dialogue State

train-departure=Stevenage

train-destinaion=Cambridge

taxi-departure=Stevenage

taxi-destinaion=Cambridge

train-leaveAt=19:54

train-arriveAt=20:43

taxi-departure=Stevenage

taxi-destinaion=Cambridge

train-leaveAt=19:54

train-arriveAt=20:43

attraction-name=castle galleries

taxi-departure=Stevenage

taxi-destinaion=Cambridge

train-leaveAt=19:54

train-arriveAt=20:43

attraction-name=castle galleries

attraction-phone=01223307402
 

Fig. 1. The examples of DST task 

Previous works have attempted to leverage large-scale pre-trained language models 

to tackle the few-shot DST challenge, a task that requires substantial computational 

resources and access to general text corpora. Although the size of labeled DST data is 

small, there are abundant and available unlabeled dialogue corpora, which is highly 

beneficial in practice for the few-shot DST task. [1] proposed to assign pseudo labels 

for unlabeled data and iteratively enhanced the model’s capabilities. In particular, a 

DST model is first initialized on limited labeled data and used to generate pseudo labels 

for unlabeled samples, then the pseudo-labeled data was added to labeled dataset and 

the model will be recurrently trained on the expanded labeled samples. Yet, such Self-

Training (ST) strategy is plagued by the problem of gradual drift caused by noisy 

pseudo labels [2,3]. The noise in pseudo labels hinders the learning and optimization 

of the DST model. [4-6] attempted to apply ST on few-shot DST to improve the accu-

racy. But they either do not handle noisy labels or adopt a simple selection mechanism 

based solely on predicted probability to obtain high-confidence pseudo labels. Moreo-

ver, the scarcity of annotations can lead to selection bias. Consequently, the resulting 

data may not be clean enough for training, leading to unsatisfactory model accuracy. In 

DST tasks, active slot accuracy, serving as a key performance metric, measures to the 

proportion of correctly predicted slots mentioned in a conversation. This metric is able 

to judge the quality of the predicted dialogue state and objectively measure whether the 

DST model has successfully finished the user’s goals. 

To take full advantage of the existing annotation data and exploit the unique charac-

teristics of the DST task, we introduce an explicit slot-aware value feed-back as guid-

ance to strengthen the reliability of pseudo labels. Specifically, in addition to initializ-

ing the model with labeled data during self-training procedure, a pseudo-labeled in-

stance is encouraged to mimic the value representation of each slot obtained from the 

labeled data. This guidance fosters the generation of values in a positive way when 

predicting pseudo labels. Naturally, Reinforcement Learning (RL) is applicable to en-

courage this behavior. In our approach, RL is employed to design rewards as feedback 
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signals, steering the DST model to-wards generating more accurate values for the cor-

responding slot and making precise prediction of the dialogue state. Furthermore, this 

approach enhances the generalization capability of DST models in few-shot settings. 

In this paper, we propose SUNSET (involving Slot-aware valUe imitatioN rein-

forcement learning into Slot-specific sElectable self-Training) to handle few-shot DST. 

SUNSET is committed to fully exploiting the rich information of unlabeled and labeled 

data. And the quality of the newly extended labeled dataset is promoted significantly in 

two phases under a whole self-training framework, that is, during and after the genera-

tion step of pseudo labels. To summarize, the main contributions of our work are as 

follows: 

1. We propose a novel self-training process to gradually train a stronger DST model by 

iteratively allocating highly reliable pseudo labels for unlabeled data. A dual selec-

tion strategy based on label probability and active slot accuracy chooses high-confi-

dence pseudo labels into the labeled dataset to mitigate the issue of noise accumula-

tion. 

2. We develop a slot-aware value imitation reinforcement learning process that further 

urges the DST model to produce more exact pseudo labels during self-training pro-

cedure by estimating the slot value differences between labeled and unlabeled data. 

3. We demonstrate that SUNSET outperforms strong baselines. Extensive experiments 

and ablation study validate the effectiveness of the proposed method. 

2 Related Work 

DST constitutes a crucial element within task-oriented dialogue systems. While prior 

research has demonstrated substantial advancements on benchmark datasets, there re-

mains a dearth of exploration in real-world scenarios. We have limit well-labeled data 

primarily due to the high cost of annotation. Consequently, zero-shot and few-shot 

learning have been conducted to tackle such problem and exhibit strong generalization 

capabilities. 

 Few-shot DST task gained a lot of attention recently for the reason of the limited 

annotation data and the diminishing requirement for human supervision. Recent studies 

have shown that large-scale pretraining language models are effective few-shot learn-

ers, as they can leverage external resources to continue to train the language models, 

thereby adapting knowledge from other Natural Language Processing (NLP) tasks to 

the DST task [7,8]. For example, TOD-BERT [9] collected nine types of dialogue cor-

pus that contains 100,000 dialogues to further train BERT [10] model. PPTOD [11] 

collected and organized 11 kinds of dialogue corpora, and then constructed training 

data from over 2 million discourses and over 80 domains, which will be used to train 

T5 [12]. DS2 [13] transformed the dialogue state tracking task into a dialogue summary 

task and collected approximately 200,000 dialogue summary datasets for fine-tuning 

T5 and BART [14]. However, collecting a large amount of NLP corpora is laborious 

and expensive computational resources are needed during training. Self-training, a typ-

ical semi-supervised learning approach, utilizes limited labeled data to train a base 
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model and allocates pseudo labels to unlabeled instances, steadily expanding the la-

beled dataset and updating the model. Thus, the model can continue to train on the 

amplified labeled data to iteratively improve the ability of few-shot DST models. Since 

the pseudo labels may contain noise, directly adding pseudo labeled data is not a relia-

ble method. GradAug [4] and PPaug [5] calculate the confidence of each pseudo label 

based on the predicted probability and select those highly confident pseudo data. While 

CSS [6] did not perform any selection strategy. During each iteration, the model is 

retrained on a combination of all pseudo-labeled data and ground truth data, and this 

process is repeated until the model converges. Self-training eliminates the need for 

manual annotation by leveraging the predictive capability of the model itself, thus mit-

igating the cost associated with human labor. Yet, the method struggles with the issue 

of gradual drift, leading to noisy and potentially incorrect pseudo labels. 

Reinforcement Learning is a very popular NLP technique recently [15-17]. It facili-

tates the model to generate correct actions by a reward mechanism during training. 

However, there are relatively few related researches on DST task. DRQN [18] de-

scribed a deep reinforcement learning based end-to-end framework for DST and dialog 

policy tasks. It was evaluated on a 20 Question Game conversational game simulator 

and produced desirable results. [19] exploited REINFORCE algorithm [20] to optimize 

end-to-end task-oriented dialogue systems in DSTC2 and movie booking dataset. [21] 

also applied a deep reinforcement learning framework for on-line DST optimization 

and achieved promising performance in DSTC2 and DSTC3 datasets. 

3 Methodology 

As illustrated in Fig.2, the proposed framework SUNSET consists of three modules: 

Base DST Model, Slot-aware valUe imitatioN reinforcement learning step (SUN) and 

Slot-specific sElectable self-Training process (SET). 

 

 

Fig. 2. The overview architecture of SUNSET. 

The limited labeled dialogues are first used to derive an initial Teacher Model and 

then it assigns pseudo labels on abundant unlabeled samples. The SUN step learns a 

policy that aims to maximize the similarity between the expected value representation 
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of the remaining pseudo-labeled data and the standard representation acquired from 

labeled data for each slot during the SET process, guiding the Teacher Model towards 

the correct vector space for value generation. Next, the refined Teacher Model is used 

in the selection step. Different from the previous selection works, SUNSET not only 

relies on the predicted label probability, but also focuses on the active slot accuracy for 

further filtering, as it is a more representative measure of the model’s dialog state pre-

diction accuracy. The filtered pseudo-labeled data and initial labeled data are used to 

train a Student Model from scratch, which then becomes the Teacher Model for the 

subsequent iteration. Such iteration will continue until all unlabeled dialogues are 

picked out or the Student Model converges. 

3.1 Base DST Model 

We employ a baseline DST model based on the BERT value matching framework, 

shown in Fig. 3. The model comprises two BERT encoders to process dialogue utter-

ances, slots, and values. Additionally, a slot-token attention module is incorporated to 

capture slot-specific contextual information. Furthermore, a slot-value match module 

is utilized to calculate scores for candidate values of each slot and the one with highest 

score will be the final predicted result. 

 

Fig. 3. The framework of Base DST Model. 

For turn 𝑡, a dialogue utterance can be represented as 𝑍𝑡  = 𝑅𝑡  ⊕ 𝑈𝑡, 𝑅𝑡 and 𝑈𝑡 rep-

resent the system response and user utterance at turn 𝑡. And ⊕ is the sequence concat-

enation operator. The dialogue history denotes as 𝑋𝑡 = 𝑍1 ⊕ 𝑍2 ⊕ ⋯ ⊕ 𝑍𝑡−1. For 𝑗-th 

slot 𝑆𝑗 in the predefined slot set 𝑆 = {𝑆1, 𝑆2, ⋯ , 𝑆𝐽} and its corresponding value 𝑉𝑡

𝑆𝑗
 in 

the candidate value space 𝒱𝑗 , we can describe a dialog state 𝐵𝑡  as several slot-value 

pairs: 𝐵𝑡 = {(𝑆𝑗 , 𝑉𝑡

𝑆𝑗
)|1 ≤ 𝑗 ≤ 𝐽}. 
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We apply a fine-tuned and parameter-fixed BERT model to obtain context and slot 

and value representations respectively: 

 𝐻𝑡 = 𝐵𝐸𝑅𝑇𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒([𝐶𝐿𝑆] ⊕ 𝑈𝑡 ⊕ [𝑆𝐸𝑃] ⊕ 𝑋𝑡 ⊕ [𝑆𝐸𝑃])  (1) 

 ℎ
[𝐶𝐿𝑆]

𝑆𝑗
=  𝐵𝐸𝑅𝑇𝑓𝑖𝑥𝑒𝑑([𝐶𝐿𝑆] ⊕ 𝑆𝑗 ⊕ [𝑆𝐸𝑃]) (2) 

 ℎ
[𝐶𝐿𝑆]

𝑉𝑡

𝑆𝑗

=  𝐵𝐸𝑅𝑇𝑓𝑖𝑥𝑒𝑑 ([𝐶𝐿𝑆] ⊕ 𝑉𝑡

𝑆𝑗
⊕ [𝑆𝐸𝑃]) (3) 

Then, a slot-token multi-head attention mechanism captures slot-specific dialogue 

information. We further feed it into a linear layer and layer normalization to obtain the 

predicted value representation: 

 𝑐𝑡

𝑆𝑗
 =  𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (ℎ

[𝐶𝐿𝑆]

𝑆𝑗
, 𝐻𝑡 , 𝐻𝑡) (4) 

 𝑣𝑡

𝑆𝑗
= 𝐿𝑁(𝐿𝑖𝑛𝑒𝑎𝑟(𝑐𝑡

𝑆𝑗
)) (5) 

In multi-domain dialogues, the dialogue history typically encompasses intricate and 

varied information. It is essential to retrieve the most relevant and valuable dialogue 

information for each slot individually. 

 Lastly, the DST model predicts the value of each slot 𝑆𝑗 via the Euclidean distance 

between 𝑣𝑡

𝑆𝑗
 and its candidate value 𝑉𝑡

𝑆𝑗
. The value with the smallest distance is se-

lected as the final prediction: 

 𝑝 (𝑉𝑡

𝑆𝑗
|𝑋𝑡 , 𝑆𝑗) =

𝑒
(−∥𝑣𝑡

𝑆𝑗
−ℎ

[𝐶𝐿𝑆]

𝑉𝑡

𝑆𝑗

∥2)

∑ 𝑒
(−∥𝑣𝑡

𝑆𝑗
−ℎ

[𝐶𝐿𝑆]

𝑉𝑗
′

∥2)

𝑉𝑗
′ ∈𝒱𝑗

 (6) 

The distance will be used as one of the confidence scores in the selection strategy. 

The objective is to maximize the joint probability of all slots with the sum of the nega-

tive log-likelihood: 

 ℒ𝑡 = ∑ −𝑙𝑜𝑔 (𝑝 (𝑉𝑡

𝑆𝑗
|𝑋𝑡 , 𝑆𝑗))𝐽

𝑗=1  (7) 

3.2 Slot-specific Selectable Self-Training 

The proposed SUNSET utilizes both labeled data 𝒟𝑙 = (𝑋𝑡 , 𝐵𝑡) with 𝑁 dialogues as 

well as unlabeled data 𝒟𝑢 = (𝑋�̃�) during training. We first initialize a teacher model 

with 𝒟𝑙. The student model and teacher model all adopt base DST Model framework. 

Then the teacher model predicts pseudo label 𝐵�̃�  for each unlabeled instance 𝑋�̃�. Before 

we add the pseudo-labeled dataset 𝒟𝑝 = (𝑋�̃� , 𝐵�̃�) to expand original labeled corpus 𝒟𝑙, 

there is a fresh selection operation on 𝒟𝑝. 
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Traditionally, the distance 𝑝 (𝑉𝑡

𝑆𝑗
|𝑋𝑡 , 𝑆𝑗) calculated by DST model is generally used 

as the confidence score. For each piece of pseudo data, we calculate the distance score 

for all slots and take the average as the confidence score for that piece of data: 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
1

𝐽
∑ 𝑝 (𝑉𝑡

𝑆𝑗
|𝑋𝑡 , 𝑆𝑗)𝐽

𝑗=1  (8) 

The smaller the distance, the higher the confidence level. However, a conversation 

may not necessarily mention all slots, so we need to concentrate on the slots involved 

in current dialogue contexts and exploit the accuracy of those active slots as a criterion 

for predicting a dialogue state. Suppose a dialogue mentions only 𝐽′(1 ≤ 𝐽′ ≤ 𝐽) slots, 

the number of slots correctly predicted is 𝑛(1 ≤ 𝑛 ≤ 𝐽′), then the active slot accuracy 

can be denoted as: 

 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛

𝐽′ (9) 

In this way, our selection strategy can be divided into two stages. Firstly, the top-

k% pseudo-labeled instances from 𝒟𝑝 with highest probability based on Equation (8) 

will be chosen preliminarily. For hyper-parameter 𝑘, we experimentally use 40. Then, 

we calculate the active slot accuracy of these top-𝑘% samples separately and the aver-

age accuracy. Only those samples that exceeds the average accuracy will be finally 

picked out, denoting as 𝒟𝑠. After the pseudo labeling and a two-stage selection process, 

we finally update an extend labeled dataset 𝒟𝑙  with 𝒟𝑠  and use it to train a student 

model: 

 𝒟𝑙 ← 𝒟𝑙 ∪ 𝒟𝑠 (10) 

 𝒟𝑢 ← 𝒟𝑢 − 𝒟𝑠 (11) 

The best student model for validation dataset will become the teacher model in next 

iteration. We reinitialize the student model in each iteration to avoid over-fitting. ST 

procedure will iterate until the student model converges or 𝒟𝑢 becomes depleted. 

3.3 Slot-aware Value Imitation Reinforcement Learning 

SUNSET aims to minimize the noise and enhance the robustness of the pseudo labels 

with less labeling biases and errors especially with limited annotations during ST pro-

cess. To achieve this goal, we individually obtain the value representation under 𝒟𝑙 of 

each slot when initializing the teacher model as the guideline. The average value rep-

resentation 𝑣
𝑙

𝑆𝑗
 of slot 𝑆𝑗 on 𝒟𝑙 can be computed as: 

 𝑣𝑙

𝑆𝑗
=

∑ 𝑣𝑡

𝑆𝑗

𝑁𝑆𝑗

 (12) 

𝑁𝑆𝑗
 is the number of conversations in the 𝒟𝑙 that contain slot 𝑆𝑗. Then, assuming that 

the smaller the distance between the value representation of a pseudo-labeled sample 
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(𝑋�̃� , 𝐵�̃�) and the standard representation, the more accurate the pseudo label will be. In 

view of the hypothesis, we develop a slot-aware value imitation step with a reinforce-

ment learning framework. 

A universal reinforcement learning framework consists of 5 parts: agent, environ-

ment, actions, rewards and states. Fig. 4 shows the basic reinforcement learning pro-

cess. The agent receives the states and rewards from the environment and feeds back a 

series of actions to the environment.  

 

Fig. 4. The reinforcement learning process 

Agent: We treat the base DST model as the agent, which will interact with the envi-

ronment and is responsible for understanding user input and taking actions based on its 

observations. 

Environment: The environment provides feedback to the agent based on its actions. 

In a dialogue system, changes in the environment are driven by interactions between 

the user and the system. 

Action: The action is to generate a series of slot value pairs given the dialogue con-

text. Such actions have an impact on the environment, leading to a transition from one 

state to another. The agent’s objective is to learn a policy that maps states to actions in 

a way that maximizes a cumulative reward. 

State: In a dialogue system, states refer to the current context of the conversation, 

including the user’s input, the system’s response, and the dialogue history. The goal is 

to empower the agent to make better decisions based on the current state. 

Reward: Rewards could be the evaluations of the agent’s accuracy that the environ-

ment provides to the agent as feedback for its actions. Positive rewards encourage de-

sirable actions, while negative rewards discourage undesirable ones. More concretely, 

we measure the cosine similarity between 𝑣𝑙

𝑆𝑗
 and the value representation 𝑣𝑝

𝑆𝑗
 of a 

pseudo-labeled data (𝑋�̃� , 𝐵�̃�): 

 𝑤𝑆𝑗
=

(𝑣𝑙

𝑆𝑗
)

𝑇

𝑣𝑝

𝑆𝑗

∥
∥
∥

𝑣𝑙

𝑆𝑗

∥
∥
∥

2∥
∥
∥

𝑣𝑝

𝑆𝑗

∥
∥
∥

2

 (13) 

The average cosine distance of all slots in a piece of data is regarded as a reward in 

he T-th time step: 
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 𝑊𝑇 = ∑ 𝑤𝑆𝑗

𝐽
𝑗=1  (14) 

For those pseudo-labeled samples with 𝑊𝑇 > 𝜆 (threshold), denoted as 𝒟𝑟, we add 

them to 𝒟𝑙 and correct the standard value representation corresponding to each slot: 

 𝒟𝑙 ← 𝒟𝑙 ∪ 𝒟𝑟  (15) 

 𝑣𝑙

𝑆𝑗
←

1

𝑁𝑆𝑗
+1

(𝑁𝑆𝑗
𝑣𝑙

𝑆𝑗
+ 𝑣𝑝

𝑆𝑗
) (16) 

In this manner, the positive feedback can attribute the improvement of DST model 

to produce correct label for next unlabeled data (State). For optimization, the 

REINFORCE algorithm, a special kind of policy gradient algorithm, is applied to en-

hance the accuracy of generating pseudo labels. Finally, the DST model will be tuned 

on each batch using the following loss: 

 ℒ = ∑ 𝑊𝑇 ×
1

𝐽
∑ (−𝑙𝑜𝑔 (𝑝 (𝑉𝑡

𝑆𝑗
|𝑋𝑡 , 𝑆𝑗)))𝐽

𝑗=1
𝒯
𝑇=1  (17) 

where 𝑊𝑇 is the similarity weight, or the reward, 𝑙𝑜𝑔 means the negative log-likeli-

hood function. 𝒯 denotes the overall time steps in reinforcement learning process and 

is same as the batch size number. We minimize ℒ by the gradient descent method to 

obtain optimal DST model. During the process of calculating loss, SUNSET follows 

the Markov’s decision process and the labeled data 𝒟𝑙 and standard value representa-

tion 𝑣𝑙

𝑆𝑗
 will be dynamically corrected by the selected pseudo-labeled data 𝒟𝑟. 

4 Experiment 

4.1 Experimental Setup 

Dataset. We evaluate our approach on three gradually refined task-oriented dialogue 

datasets: MultiWOZ 2.0 and the latest MultiWOZ 2.4, containing over 10,000 multi-

turn dialogues, covering 7 different domains (taxi, train, hotel, restaurant, attraction, 

hospital and police). MultiWOZ 2.4 mainly corrects the annotation errors in MultiWOZ 

2.0. Since hospital and police are not included in the validation set and test set, we use 

only the remaining 5 domains in the experiments in consistent with previous studies. 

Evaluation metric. We compute the Joint Goal Accuracy (JGA) on the test set as 

the evaluation criteria, which defined over a dataset is the ratio of dialogue turns where 

all slots have been filled with the correct values according to the ground truth. 

Training Details. Following with [17], we randomly select 1%, 5%, 10% and 25% 

labeled training data to simulate few-shot scenarios. For the ST process, 50% of the 

training data will be treated as unlabeled data and excluded from the labeled training 

data. We utilize the pre-trained BERT-base-uncased model as the dialogue context en-

coder and slot encoder. The training batch size is 4. The maximum input sequence 

length is set to 512. For slot-token attention module, we set the number of attention 

heads to 4. We use Adam optimizer and set the warmup proportion to 0.1. The LR 
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decay linearly follows after the warmup phase. The initial learning rate is set to 1e-4 

and dropout is 0.3. To determine the optimal threshold 𝜆 in the reinforcement learning 

process, we employed Grid Search across a range of potential values, from 0.3 to 0.7. 

After extensive evaluation, we identified 0.5 to be the most effective in minimizing the 

validation error. To optimize computational resource efficiency, each teacher model is 

trained for 50 epochs and each student model is trained over 6 iterations with 10 epochs 

for each loop. We run our model several times with different seeds in our machine and 

finally the average performance is presented. 

4.2 Comparison Models 

We compare our model with the following few-shot DST models. 

• TRADE [22] is an initial model that experimented on the MultiWOZ dataset in zero-

shot and few-shot settings. 

• TRADE+SS preserves latent consistency by utilizing stochastic word dropout to be 

robust to unseen data. 

• MinTL [23] leverages a plug-and-play pre-trained seq2seq model to jointly learn 

DST and response generation. 

• STAR [24] propose a slot self-attention mechanism that can learn the slot correla-

tions automatically. 

• TOD-BERT is a BERT-based model trained on 9 public human-human dialogue 

datasets. 

• DS2 reformulates DST as a dialogue summarization task using state-to-summary 

templates and summary-to-state converter. 

• CSS combines self-training and contrastive self-supervised to train a DST model. It 

expands all predicted pseudo-labels to the initial labeled dataset and is then used to 

train the student model. 

• GradAug selects the top-k instances from pseudo-labels with the highest cosine sim-

ilarity and a text augmentation technique to expand labeled dataset for predefined 

ontology DST. 

• PPaug chooses top-k instances with the average softmax value for generative DST 

models and a data augmentation method is proposed to get more accurate pseudo 

label. 

• ST-DST is the Base DST Model introduced in section 3.1 with an original self-train-

ing process without any selection and reinforcement learning algorithm. Fig.5 shows 

its architecture. The predicted pseudo-labeled data in the ST-DST is directly added 

to the annotated dataset to train the student model. In the next iteration, it will con-

tinue to predict the same unlabeled dataset. Until the student model converges, the 

iteration terminates. 
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Fig. 5. The overview of ST-DST 

4.3 Main Results 

Table 1 shows the JGA of our model in comparison to various few-shot DST models 

on the test set of MultiWOZ 2.0. Because there is limited research on conducting four 

different scenario few-shot experiments on the MultiWOZ 2.4 dataset, we did not delve 

into this dataset extensively. Our exploration on this dataset was confined to the abla-

tion experiments, where we investigated the performance of our model. 

Table 1. The JGA on MultiWOZ 2.0 in 4 few-shot cases. 

Model Pre-trained Model 
JGA (%) 

1% 5% 10% 25% 

TRADE - 9.70 29.38 34.07 41.41 

MinTL BART-large 9.25 21.28 30.32 - 

STAR BERT-base 8.08 26.41 38.45 48.29 

TOD-BERT BERT-base 10.30 27.80 38.80 44.30 

CSS BERT-base 14.06 41.14 47.96 51.88 

GradAug TOD-BERT 9.9 - 28.3 - 

PPaug T5-small - - 44.09 - 

DS2 T5-large 36.15 45.14 47.61 - 

ST-DST BERT-base 15.47 41.41 47.83 52.28 

SUNSET BERT-base 16.45 43.31 50.49 53.69 

 

As can be seen, our approach outperforms all the baseline models with fewer param-

eters and achieves the best performance in 10-shot and 25-shot settings. In the 1-shot 

and 5-shot cases, SUNSET exhibits a slight inferiority to DS2 and the reason maybe 

that it uses a pre-trained language model with larger parameters and stronger learning 

capability and utilizes external data from the dialogue summary task. Specially, com-

pared with ST-DST, SUNSET performs much better and the JGA improved by 0.98%, 

1.9%, 2.66%, and 1.41% in four different shot cases respectively, which indicates the 

remarkable contribution of reinforcement learning framework and self-training selec-

tion strategy. The clean pseudo-labeled data, contributes to effective model learning, 
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completed by reinforcement strategies employed during the learning process, signifi-

cantly enhancing training efficiency. It is worth noting that TOD-BERT [9] introduces 

external dialogue annotation data to train a language model, yet it still does not perform 

as well as our model and the performance has lagged significantly behind. Both PPaug 

and GradAug adopt a data augmentation technique by leveraging masked language 

models to generate more accurate pseudo labels during self- training process and further 

enhancing the accuracy of self- training process. Even though they use larger pre-

trained models, they are less effective than SUNSET in some few-shot cases. Besides, 

compared to MinTL, STAR and TOD-BERT, SUNSET outperforms those approaches 

utilizing pre-trained models with similar parameter scales. 

4.4 Ablation Study 

In order to further validate the promotion of SUN and SET on few-shot DST, we con-

duct an ablation experiment on MultiWOZ 2.0 and MultiWOZ 2.4, and explore the 

effects of the two modules separately using 25% training data. We can observe from 

Table 2, ST-DST w/ SUN and ST-DST w/ SET both increase the baseline JGA to vary 

degrees and show more significant improvement when used together (SUNSET) in two 

datasets. The train data size represents the size of the new training dataset, which is 

composed of the currently selected pseudo-labeled data and the initial label data. 

Table 2. Ablation study on MultiWOZ 2.0 and MultiWOZ 2.4 in 25-shot DST. 

Model 
MultiWOZ 2.0 MultiWOZ 2.4 

Train data size JGA (%) Train data size JGA (%) 

ST-DST 41359 52.28 41361 71.09 

ST-DST w/ SUN 41359 52.42 41361 71.59 

ST-DST w/ SET 29518 53.00 27212 71.21 

SUNSET 32100 53.69 27719 71.96 

 

Concretely, ST-DST w/ SUN does not have a selection strategy in contrast to 

SUNSET, yet the performance gains show that the reinforcement learning method is 

able to boost Teacher Model to predict more accurate pseudo labels, which will be used 

in subsequent self-training process. Fig. 6 draws the tendency of the JGA of pseudo-

labeled data during the self-training iteration on MultiWOZ 2.0 and MultiWOZ 2.4 

dataset in 25-shot setting. As the iteration goes on, the JGA on unlabeled data increases. 

The main purpose of SUN is to guide Teacher Model to generate less noisy pseudo 

labels (a set of slot value pair) using labeled dataset and optimize label consistency. 

SUN minimizes the spatial distance between the standard value vector obtained from 

labeled data and the value representation of the corresponding slot for each pseudo data. 

The improvement in effectiveness indicates that the model has learned to imitate the 

value representation on labeled data when generating pseudo label, and strives to gen-

erate slot values along this direction. 
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Fig. 6. The tendency of JGA of pseudo-labeled data on two datasets. 

ST-DST w/ SET chooses the pseudo labels with high confidence, thus further reduc-

ing the noise of the augmented labeled dataset. Besides, it utilizes less training data 

while achieving higher JGA. We should clearly state that ST-DST model does not ex-

ploit any selection strategy on pseudo-labeled data, leading to too much noise in the 

dataset and interfering with the learning process, which may be one of the reasons for 

its low JGA. The same conclusion can be drawn from the comparison between the CSS 

model and the SUNSET model in Table 1. 

SUN enhances the quality of the generated pseudo labels by strengthening their re-

liability during generating, while SET further picks out the effective pseudo labels, and 

only the reliable pseudo-labels are finally augmented. Thus, SUNSET gets the newly 

training dataset from two different perspectives and diminishes error accumulation ef-

fectively, facilitating the learning of Student Model. 

5 Conclusion 

In this paper, we propose a novel semi-supervised model SUNSET involving reinforce-

ment learning into self-training process for low resource DST. SUNSET seeks to boost 

the reliability of pseudo labels and obtains a more refined labeled dataset from two 

different perspectives. On the one hand, the two-stage selection strategy for pseudo 

labels based on the probability of predicted values and the active slot accuracy will 

filter out noisy samples. On the other hand, SUNSET encourages pseudo-labeled data 

to imitate the standard value representation of labeled data under a policy gradient op-

timization algorithm, which enables the DST model to yield more precise pseudo dia-

logue states. Our proposed model effectively alleviates the gradual drift problem suf-

fered by traditional self-training methods. Experiments on two dialogue benchmarks 

demonstrate the effectiveness of SUNSET in the few-shot DST scenario, showcasing 

its ability to improve performance with limited labeled data. 

References 



14  Yang et al. 

 
1.  Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self- training of object 

detection models. In: IEEE Workshop on Applications of Computer Vision (2005) 

2.  Curran, J., Murphy, T., Scholz, B.: Minimising semantic drift with mutual exclusion boot-

strapping (2007) 

3.  Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning re-

quires rethinking generalization (2016) 

4.  Mi, F., Zhou, W., Cai, F., Kong, L., Huang, M., Faltings, B.: Self- training improves pre-

training for few-shot learning in task-oriented dialog systems. arXiv preprint 

arXiv:2108.12589 (2021) 

5.  Lee, J., Lee, C., Kim, Y., Lee, G.G.: Self-training with purpose preserving augmentation 

improves few-shot generative dialogue state tracking. arXiv preprint arXiv:2211.09379 

(2022) 

6.  Zhang, H., Bao, J., Sun, H., Luo, H., Li, W., Cui, S.: Css: Combining self-training and self-

supervised learning for few-shot dialogue state tracking. arXiv preprint arXiv:2210.05146 

(2022) 

7.  Gao, S., Agarwal, S., Chung, T., Jin, D., Hakkani-Tur, D.: From machine reading compre-

hension to dialogue state tracking: Bridging the gap. arXiv preprint arXiv:2004.05827 

(2020) 

8.  Lin, Z., Liu, B., Madotto, A., Moon, S., Crook, P., Zhou, Z., Wang, Z., Yu, Z., Cho, E., 

Subba, R., et al.: Zero-shot dialogue state tracking via cross-task transfer. arXiv preprint 

arXiv:2109.04655 (2021) 

9.  Wu, C.S., Hoi, S., Socher, R., Xiong, C.: Tod-bert: Pre-trained natural language understand-

ing for task-oriented dialogue. arXiv preprint arXiv:2004.06871 (2020) 

10.  Jacob D., et al.: BERT: Pre-training of Deep Bidirectional Transformers for Language Un-

derstanding[C]. In Proceedings of the 2019 Conference of the North American Chapter of 

the Association for Computational Linguistics: Human Language Technologies, Volume 1 

(Long and Short Papers). 2019: 4171-4186. 

11.  Su, Y., Shu, L., Mansimov, E., Gupta, A., Cai, D., Lai, Y.A., Zhang, Y.: Multi-task pre-

training for plug-and-play task-oriented dialogue system. arXiv preprint arXiv:2109.14739 

(2021) 

12.  Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified 

text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485-

5551. 

13.  Shin, J., Yu, H., Moon, H., Madotto, A., Park, J.: Dialogue summaries as dialogue states 

(ds2), template-guided summarization for few-shot dialogue state tracking. arXiv preprint 

arXiv:2203.01552 (2022) 

14.  Lewis M, Liu Y, Goyal N, et al. BART: Denoising Sequence-to-Sequence Pre-training for 

Natural Language Generation, Translation, and Comprehension[C]. In Proceedings of the 

58th Annual Meeting of the Association for Computational Linguistics. 2020: 7871-7880.  

15.  Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., Jurafsky, D.: Deep reinforcement learning 

for dialogue generation. arXiv preprint arXiv:1606.01541 (2016) 

16.  Su, P.H., Gasic, M., Mrksic, N., Rojas-Barahona, L., Ultes, S., Vandyke, D., Wen, T.H., 

Young, S.: On-line active reward learning for policy optimisation in spoken dialogue sys-

tems. arXiv preprint arXiv:1605.07669 (2016) 

17.  Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: Sequence generative adversarial nets with 

policy gradient. In: Proceedings of the AAAI conference on artificial intelligence. vol. 31 

(2017) 



 Value Imitation Reinforcement Learning in Self-Training Dialogue State Tracking 15 

 
18.  Zhao, T., Eskenazi, M.: Towards end-to-end learning for dialog state tracking and manage-

ment using deep reinforcement learning. arXiv preprint arXiv:1606.02560 (2016) 

19.  Liu, B., Tur, G., Hakkani-Tur, D., Shah, P., Heck, L.: End-to-end optimization of task-

oriented dialogue model with deep reinforcement learning. arXiv preprint arXiv:1711.10712 

(2017) 

20.  Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Reinforcement learning pp. 5-32 (1992) 

21.  Chen, Z., Chen, L., Zhou, X., Yu, K.: Deep reinforcement learning for on-line dialogue state 

tracking. In: National Conference on Man-Machine Speech Communication. pp. 278-292. 

Springer (2023) 

22.  Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Transferable 

multi-domain state generator for task-oriented dialogue systems. arXiv preprint 

arXiv:1905.08743 (2019) 

23.  Lin, Z., Madotto, A., Winata, G.I., Fung, P.: Mintl: Minimalist transfer learning for task-

oriented dialogue systems. arXiv preprint arXiv:2009.12005 (2020) 

24.  Ye, F., Manotumruksa, J., Zhang, Q., Li, S., Yilmaz, E.: Slot self-attentive dialogue state 

tracking. In: Proceedings of the Web Conference2021. pp. 1598-1608 (2021) 


