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Abstract. At present, in the field of sensor anomaly detection in avionics sys-

tems, most studies only consider the temporal anomalies of individual sensors, 

and rarely consider the hidden spatial position relationships between sensors, so 

the spatiotemporal anomalies of nodes cannot be fully considered. This article 

proposes the PropMat-DAE framework, which is an algorithm for diagnosing 

anomalies from both temporal and spatial perspectives. Based on sensor timing 

data, the graph structure learning algorithm is used to calculate the implicit spatial 

position relationship between nodes, and statistical methods are used to compress 

the original temporal features of nodes, thereby constructing a spatiotemporal 

attribute graph structure. Design a global attention mechanism to aggregate in-

formation from all nodes to the target node. Using matrix factorization and deep 

autoencoder, the reconstruction error of node attributes and structure is calculated 

as the spatiotemporal anomaly score of the node, and the top-k node with the 

highest anomaly value is selected as the fault node. After experimental verifica-

tion, the algorithm proposed in this article has better accuracy than the existing 

14 graph anomaly detection algorithms on small datasets. In the comparative ex-

periment, the attention mechanism and feature compression method designed in 

this article have significant effects in the field of avionics. 

. 
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1  Introduction 

It is widely acknowledged that avionics systems play a vital role in modern aircraft. 

Therefore, sensor fault detection has become a popular research area.Figure 1 shows 

the network topology structure of the various components and their composition in the 

spacecraft turbine engine.The main purpose of this article is to construct a node topol-

ogy structure based on sensor timing data, and then calculate node anomaly scores from 

both spatiotemporal and temporal perspectives, in order to diagnose faulty nodes. 

 

In the past few decades, a large amount of research has been conducted to detect 

sensor failures. Traditional fault detection methods are usually based on fault trees, 
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models [2,3], and data-driven [10]. There are also some studies based on genetic algo-

rithms[10,11] and particle swarm optimization[12] for fault diagnosis.  However, these 

methods require accurate mathematical models of the process, and cannot take ad-

vantage of the hidden position relationships between sensors in non-Euclidian space, 

so they are just suitable for small systems with fewer inputs and clear mathematical 

models. However, in the presence of unmodeled interference and uncertainty, these 

performance is greatly affected. In recent years, graph neural networks have emerged, 

and in the real world, failures can alter the running state of a process and lead to changes 

in the  

 

 
Fig.1 Schematic diagram of spacecraft turbine engine structure 

 

dependencies between measurements. Based on this understanding, the researchers be-

gan to explore GNN for fault diagnosis tasks. A large number of researchers start from 

the perspective of the system topology diagram and use the method based on the struc-

ture diagram[4,8]to diagnose whether the sensor has a fault. 

Although deep neural network models[7] show excellent performance in the field of 

fault detection, we still need to face four key problems. First, most of the current meth-

ods mainly focus on anomaly prediction or classification of tabular data to calculate 

anomaly scores for fault diagnosis, but do not fully consider the correlation hidden in 

the Non-Euclidean space between sensor data. Secondly, GNN method usually needs 

to obtain the connection topology of sensor network accurately. But in practical appli-

cation, it is often quite difficult to obtain this information. Third, current fault detection 

methods based on GNN mostly focus on regression tasks of temporal anomalies and 

detect sensor anomalies from the perspective of root causes, but do not achieve direct 

sensor anomaly detection in one step. Finally, in the field of graph anomaly detection, 

the abnormal scores of nodes in the graph are often detected by autoencoder or matrix 

decomposition, but they don’t take the different dimension between sensor network 

topology and attribute into account. 

In order to overcome these limitations, this paper constructs a sensor network topol-

ogy based on sensor timing data, and proposes a new node anomaly detection algorithm 

based on property matrix decomposition and deep autoencoder fusion of graph structure 

(PropMat-DAE) to obtain node anomaly scores. We use two parallel exception score 

markers in PropMat-DAE for the link structure and attribute of the node, respectively. 

This frame can adaptively calculate anomaly scores, according to high and low dimen-

sions data, and aggregate the structure anomaly and attribute anomaly into the final 

anomaly scores of nodes. The main contributions of this work are summarized as fol-

lows: 
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(1) Spatial relationship extraction: We adopt an algorithm named Gumbel-softmax 

in this study to determine whether two sensors are connected through probability cal-

culation. 

 

Fig. 2 Three abnormal situations in the avionics system 

(2) PropMat-DAE algorithm: We introduce PropMat-DAE algorithm to solve the 

problem of large dimensional differences between graph structure and node attributes. 

(3) Attention design: We design an all pair attention mechanism that can capture the 

influence of distant neighbors on the target node in a short step. 

This article is mainly divided into the following parts:The second section intro-

duces the problem to be solved in this article and how to transform it into an anomaly 

detection problem on the graph. The third section introduces the PropMat-DAE frame-

work. And detailed explanations were provided from three aspects: graph structure 

learning, attribute anomaly detection, and structural anomaly detection. The fourth sec-

tion conducts experimental evaluation using two types of spacecraft time series data, 

and compares it with other graph anomaly detection algorithms, attention mechanisms, 

and graph embedding algorithms. Section 5 provides a summary of the entire article 

and analyzes its limitations and future research directions. 

2  Problem Formulation 

We will discuss sensor anomalies that may cause malfunctions in the avionics sys-

tem. The abnormal behavior of sensor topology network nodes can be captured through 

their link structure, attributes, or a combination of both, as shown in Figure 2. More 

specifically, network failures in the avionics system are mainly caused by three types 

of sensor anomalies. One of them is abnormal sensor interaction. In a sensor network, 

some nodes have far more edges connected to other nodes than others, which can be 

interpreted as an abnormal situation called a center node anomaly. The second is ab-

normal sensor timing characteristics. Under normal circumstances, attribute values may 

fluctuate within a certain range or change over time, but in some cases, attribute values 

may deviate from normal expected patterns and exhibit abnormal behavior. The third 

is the spatiotemporal anomaly of sensors, where nodes belong to the same community 

structurally but belong to different communities in terms of attribute similarity. Our 

goal is to learn an encoding and decoding structure that calculates the difference be-

tween sensor nodes after decompression and the original representation.Figure 4 shows 

the framework of the entire algorithm. 
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3  Solution Approach:PropMat-DAE 

3.1 Gumbel-Softmax Sampling 

In this section, we mainly explain how to learn the spatial connection position rela-

tionship between various sensors through time series data. Obtaining the sampling pro-

cess of discrete data from sensor nodes in temporal data is non-differentiable, which 

leads to the inability to perform backpropagation optimization of network structures in 

structural learning. [6] introduced the Gumbel-Softmax distribution, it is a differentia-

ble alternative for discrete variables in random sampling. This method enables approx-

imate sampling from a categorical distribution, achieving differentiability in continuous 

variables. 

For a candidate node set M,we define 𝑉𝑖,𝑗 as the connectivity control variable for any 

pair of nodes i and j in M.The one-way probability from node i to j is defined 

 

Fig.3. Assuming there are three sensors (N1,N2,N3), the dependency relationship between 

them is hidden. The main idea of the connection learning strategy is to use the Gumbel-Soft-

max sampling strategy to sample a random classification vector to determine whether any di-

rected connections can be established between two nodes. For temperature and humidity sen-

sors, if the value of P1,2is relatively large, it indicates that the temperature sensor is highly 

likely to point towards the humidity sensor, and vice versa. 

 

{𝜌0
𝑖,𝑗

, 𝜌1
𝑖,𝑗

},where𝜌0
𝑖,𝑗

+ 𝜌1
𝑖,𝑗

= 1,and 𝜌1
𝑖,𝑗

  represents the flow of information between 

i and j, as illustrated in Figure 3.By applying the Gumbel-Max strategy, we can sample 

the connectivity between any i and j as shown in formula (1): 

 Vi,j = argmax(logρa
i,j

+ ga
i,j

) (1) 

where 𝑔0, 𝑔1  is an independent identically distributed sample sampled from the 

standard Gumbel distribution.By ploting u ∼ Uniform(0, 1) and calculating g =
−log(−logu), it is easy to use inverse transform sampling for sampling.We further use 

the Softmax reparameterization technique (also known as the Gumbel-Softmax 

method) to re- place the argmax operation, as the function is non differentiable. The 

replaced formula is shown in formula (2): 
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Fig.4 PropMat-DAE algorithm frame 

 𝑉𝑎
𝑖,𝑗

=
𝑒𝑥𝑝((𝑙𝑜𝑔𝜌𝑎

𝑖,𝑗
+𝑔𝑎

𝑖,𝑗
)/𝜇)
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𝑖,𝑗

+𝑔𝑎
𝑖,𝑗

)/𝜇)𝑣𝜖{0,1}

 (2) 

 

Where aϵ{0,1} and μ is the smoothing coefficient controlling the Gumbel-Softmax 

distribution. When μ approaches 0, the current connection probability also approaches  

0, making it identical to the one-hot encoding distribution. Due to the randomness of  g 

and independence of ρ ,we can use gradient descent to optimize the connection strat-

egy.Compared with previous methods that select the top-k neighbors as connections,  

this approach reduces the subjectivity in choosing the value of k and optimizes the time  

complexity from O(𝑀2) to O(1), since it does not require computing the dot product  

between node embedding vectors. 

3.2 Sensor Attribute Representation Learning 

After the above steps, we can obtain the sensor attribute map of the avionics system. 

We believe that the temporal data of sensors can be reduced to low dimensional data 

through statistical feature extraction(such as mean, variance, etc). Therefore, for node 

attribute embedding, we choose an automatic encoder based on matrix decomposition. 

For the attribute graph learned before, the attribute representation of node i can be ex-

pressed by the i-th row of the attribute matrix A.Let 𝐺′𝜖𝑅𝑁×𝑘  be the embedding rep-

resentation of the original graph G.Thus, 𝐺𝑖
′ represents the K-dimensional representa-

tion of node i.Introduce a utility K ×N dimensional matrix H to construct our loss 

function:∑ ∑ (𝐴𝑖𝑗 − 𝐺𝑖)
𝑁
𝑗=1

𝑁
𝑖=1

2, where 𝐺𝑖 ∙ 𝐻𝑖  denotes the dot product operation, and 

the k-th row of H is then-dimensional attribute description of the k-th sensor,where 

k = 1, 2, ..., K. 

The above loss function aims to maintain a small distance between the lower- 

dimensional embeddings and the original matrix. However, if there are outlier 

nodes in the graph, they will negatively impact the embeddings of other normal 
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nodes. To mitigate this negative impact in the loss function, we introduce an anom-

aly factor oi,where 0 < oi < 1, which represents the abnormality of each sensor 

node’s attributes. The larger oi, the higher the likelihood of the node being abnor-

mal, and its influence on the overall embedding should be relatively small. After 

introducing the anomaly factor, the loss function is as shown in formula (3): 

 𝐿𝑎 = ∑ ∑ 𝑙𝑜𝑔(
1

𝑜𝑖
)𝑁

𝑗=1
𝑁
𝑖=1 (𝐴𝑖𝑗 − 𝐺𝑖 ∙ 𝐻𝑖)2

 (3) 

In the above equation, it can be observed that when the 𝑜𝑖  value is very high,it 

suppresses the value of ∑ 𝑙𝑜𝑔(
1

𝑜𝑖
)(𝐴𝑖𝑗 − 𝐺𝑖 ∙ 𝐻𝑖)2𝑁

𝑗=1 , thus making the contribution of  

that node negligible to the global context. Conversely, when oi  is very low, the 

node is considered significant. Therefore, the optimization of the loss function will 

pay more attention to those normal nodes. 

In the updates of G,H within the loss function, we employ a method of control-

ling variables, updating only one variable at a time and alternating minimization. 

We need to compute the partial derivative for each variable and set 

 

Fig.5 all pair attention graph 

it to zero.For example, taking a partial derivative of the submatrix 𝐺𝑖 of the ad-

jacency matrix of node i and assigning it to formula(3), the result is shown in for-

mula(4),formula(5). 

 
𝜕𝐿𝑎

𝜕𝐺𝑖
= 0 (4) 

 ∑ log(
1

oi
)(Aij − Gi ∙ Hi)(−Hj) = 0N

j=1  (5) 

 

 

Propose 𝐺𝑖  and consider the decomposition dimension k to obtain the update 

formula for the decomposition sub matrix 1, as shown in formula(6). 

 𝐺𝑖𝑘 = 𝑙𝑜𝑔(
1

oi
) ∑ (𝐴𝑖𝑗 − ∑ 𝐺𝑖𝑘′𝐻𝑘′

𝑗𝑘.≠𝑘 )𝐻𝑘𝑗
𝑁
𝑗=1  (6) 
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Similarly, we can obtain the update rule of H,as shown in formula(7). 

 𝐻𝑘𝑗 =
∑ 𝑙𝑜𝑔(

1
oi

)(𝐴𝑖𝑗−∑ 𝐺
𝑖𝑘′𝐻𝑘′

𝑗𝑘.≠𝑘 )𝐺𝑖𝑘
𝑁
𝑖=1

∑ 𝑙𝑜𝑔(
1

oi
)𝐺𝑖𝑘

2𝑁
𝑖=1

 (7) 

 

Then we can update oi by(8). 

 𝑜𝑖 =
𝜇∙∑ (𝐴𝑖𝑗−𝐺𝑖∙𝐻𝑖)2𝑁

𝑗=1

∑ ∑ (𝐴𝑖𝑗−𝐺𝑖∙𝐻𝑖)2𝑁
𝑗=1

𝑁
𝑖=1

 (8) 

3.3 Sensor Structure Characterization Learning 

Due to the complex interaction between sensors, this article believes that the link 

structure data of sensor nodes is high-dimensional data, and adopts a deep learning 

encoding and decoding structure to calculate the anomaly score. The network topology 

of the raw data is from algorithm,so the connections between sensors may not neces-

sarily have practical physical significance in the real world. Therefore, we introduces a 

global attention mechanism to dynamically update the embedded representation of each 

sensor node, as shown in Figure 5.We call it the diffusion coefficient S(Z(t), t), it de-

termine show information flows between instances and the direction of instance state 

evolution.The specification is greatly flexible, for example, a basic choice is to fix 

S(Z(t), t) as an identity matrix, which limits feature propagation to self cycling, and the 

model degenerates into an MLP that independently handles all instances.We can also 

specify S(Z(t), t) as the observed graph structure, so that the model evolves into a GCN 

model.In this case, the information flow is limited by adjacent nodes in the graph.In our 

work, we specify the form of S as shown in formula (9).Under this form, S can learn 

the embedding information of all layer nodes. This diffusion process can serve as an 

inductive bias, guiding the model to use information from other instances at each layer 

to learn informative instance representations. 

 𝑆𝑖𝑗
(𝑘)

=
𝑓(||𝑧𝑖

(𝑘)
−𝑧𝑗

(𝑘)
||2

2

∑ 𝑓(||𝑧
𝑖
(𝑘)

−𝑧
𝑗
(𝑘)

||2
2)𝑁

𝑙=1

, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (9) 

Where 𝑧𝑖
(𝑘)

 represents the embedded representation of the i-th node in the k-th 

layer.The selection of f  in  the above formula is not arbitrary and it must be a non 

negative decreasing function of 𝑧2 ,in order to ensure that the loss function is non de-

creasing concave.Firstly,because of  ||𝑧𝑖 − 𝑧𝑗 ||2
2 = ||𝑧𝑖||2

2 + ||𝑧𝑗||2
2 − 2𝑧𝑖

𝑇𝑧𝑗, we can 

convert 𝑓(||𝑧𝑖 − 𝑧𝑗 ||2
2 ) to g(𝑧𝑖

𝑇𝑧𝑗)  through variable transformation while keeping 

||𝑧𝑖||
2 unchanged.In practical applications, we have added layer normalization in trans-

former for each layer and used a linear function g(x) = 1 + x.The updated function 

𝑓(||𝑧𝑖 − 𝑧𝑗 ||2
2) is shown in formula(10). 
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 f(||z̃i
(k)

− z̃j
(k)

||2
2) = 1 + (

𝑧𝑖
(𝑘)

||𝑧
𝑖
(𝑘)

||2

)T
𝑧𝑗

(𝑘)

||𝑧
𝑗
(𝑘)

||2

 (10) 

We assume z̃i
(k)

=
zi

(k)

||z
i
(k)

||2

, z̃j
(k)

=
zj

(k)

||z
j
(k)

||2

, The above formula(10) can be written as 

f(z2) = 2 −
1

2
z2, this will get a non-negative result,and decreasing on the interval [0,2] 

where 𝑧2 is located.We bring (10) into (9) and calculate ∑ 𝑆𝑖𝑗
(𝑘)

𝑧𝑖
(𝑘)𝑁

𝑗=1 , as shown in for-

mula(11): 

 ∑ 𝑆𝑖𝑗
(𝑘)

𝑧𝑖
(𝑘)

= ∑
1+(𝑧𝑖

(𝑘)
)𝑇𝑧𝑗

(𝑘)

∑ (1+(𝑧
𝑖
(𝑘)

)𝑇𝑧
𝑗
(𝑘)

)𝑁
𝑙=1

𝑁
𝑗=1 𝑧𝑗

(𝑘)
=

∑ 𝑧𝑖
(𝑘)

+(∑ 𝑧𝑗
(𝑘)

∙𝑁
𝑗=1 (𝑧𝑗

(𝑘)
)𝑇)∙𝑧𝑖

(𝑘)𝑁
𝑗=1

𝑁+(𝑧
𝑖
(𝑘)

)𝑇 ∑ 𝑧𝑙
(𝑘)𝑁

𝑙=1

𝑁
𝑗=1  (11) 

 

 

 

 
(a) (b) (c)

 

Fig.6 Avionics network topology diagram and anomaly injection 

The two summation terms of the above formula can be calculated once and shared 

with each instance i, which can reduce the complexity of each iteration to O(N).Next,we 

introduce the state update formula(12) to update the embedding vector of each layer 

node i. 

 𝑧𝑖
(𝑘+1)

= (1 − 𝜏 ∑ 𝑆̃𝑖𝑗
(𝑘)𝑁

𝑗=1 )𝑧𝑖
(𝑘)

+ 𝜏𝑆̃𝑖𝑗
(𝑘)

𝑧𝑗
(𝑘)

, 1 ≤ 𝑖 ≤ 𝑁 (12) 

Where τ ϵ (0,1), numerical iteration can stably converge. We can use the state after 

a finite number of k propagation steps for the final embedding representation. Next, we 

introduce the loss function as shown in formula(13). 

 𝐿𝑠𝑡𝑟(𝑍, 𝑘; 𝜎) = ||𝑍 − 𝑍(𝑘)||𝐹
2 + 𝜆 ∑ 𝜎(||𝑧𝑖 − 𝑧𝑗||2

2)𝑖,𝑗  (13) 

Where𝜎is defined as a non-decreasing and concave function on our set interval.And 

enhance the robustness of the maximum difference between any pair of nodes. For-

mula(13) assigns an energy scalar to each state in 𝑅𝑑, which can be used to regularize 

the updated state (towards the lower energy required).The weight 𝜆 has two effects:1) 
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for each instance i, states not far from the current state 𝑧𝑖
(𝑘)

have lower energy; 2)For all 

instances, the smaller the difference in their states, the lower the energy generated.Ul-

timately, our loss function should satisfy formula(14). 

 E(Z(k+1), k; 𝜎) ≤  E(Z(k), k − 1; 𝜎), k ≥ 1 (1) 

4  Experimental Evaluation 

4.1 Dataset and outlier insertion 

To our knowledge, there is currently no publicly available attribution network with 

true outliers. Therefore, we use the real spacecraft telemetry data of the Curiosity Mars 

Rover (MSL)[3] and aircraft turbine engine data(C-MAPSS), as well as injects abnor-

mal attributes and structures[5] as our detection object,as shown in the table1.The 

original dataset contains 27 sensors and 1564 temporal data. Due to the continuous 

nature of time series data, we can calculate the statistical characteristics of various sen-

sor values during this period, including mean, maximum and minimum values, standard 

deviation, mean absolute deviation, quartile, dispersion coefficient, skewness coeffi-

cient, and kurtosis coefficient.The original 1564 ×27 dimensional data can be reduced 

to 8 ×27 dimensional data. This is also inline with the applicability of our proposed 

algorithm low dimensionality of attributes and high dimensionality of structures. Based 

on the Gumbel-Softmax sampling method proposed in section3.1, construct the topol-

ogy of the spacecraft sensor network, as shown in Figure 6(a). 
 
 

Table 1. Dataset Introduction 
 

Name Nodes Edges Attribute dimension outliers 

MSL 27 247 9 10 

C-MAPSS-T2 21 168 9 10 

C-MAPSS-T67 21 189 9 8 

C-MAPSS-T69 21 170 9 8 

C-MAPSS-T83 21 185 9 8 

C-MAPSS-T92 21 200 9 8 

C-MAPSS-T96 21 195 9 8 

 

Next, we inject random structural outliers to simulate the abnormal behavior of ab-

normal sensors disguised as legitimate sensor devices in the avionics system, and at- 

tempt to connect to the system for frequent interaction.As shown in Figure 6(b).Finally, 

we inject random attribute outliers to simulate the abnormal behavior of enemy aircraft 

modifying the attribute data of sensors inside our avionics system, in order to transmit 



10  T. Li et al. 

false information to the avionics system.As shown in Figure 6(c), with purple nodes 

representing attribute exception nodes. 

 
(a) 

 
(b) 

 
(c)

Fig.7 Baseline Algorithm Comparison Chart 

4.2 Baseline 

To compare and evaluate proposed algorithm, a wide range of baseline experiments 

were designed for each datasets.In terms of algorithm performance, we have selected 

14 of the most classic attribute graph anomaly detection algorithms currently available. 

This includes SCAN based on clustering; Radar, ANOMALOUS, ONE based on matrix 

decomposition; GAE, DOMINANT, AnomalyDAE, OCGNN, CoLA, GUIDE, 

CONAD based on GNN principles; DONE and AdONE with MLP as the backbone; 

And GAAN algorithm based on GAN. 

To verify the rationality of the attention mechanism designed in this article, we se- 

lected three mainstream attention mechanism design schemes, MLP, GCN, and GAT, 

as benchmarks. Thus, it is verified that the attention design scheme considering single 

layer and multi-layer neighbors is not as effective as the full attention  mechanism in 

sensor anomaly detection tasks.To verify the rationality of the graph embedding algo-

rithm in this article, we selected four classic graph embedding algorithms as benchmark 

algorithms, namely Deepwalk, Node2vec, LINE, and SDNE. 

4.3 Sensor anomaly detection 

In this section, we will see the performance of all algorithms in detecting outliers we 

implant in the MSL dataset. PropMat-DAE directly provides the anomaly scores of each 

sensor node in the sensor topology diagram. Since we only injected 10 abnormal nodes, 

during the evaluation process, we selected the node with the highest abnormal score as the 

sensor fault node. By comparing the algorithm proposed in this article with the base- line 

graph outlier detection algorithm, the effectiveness of PropMat-DAE was verified by com-

paring the number of real abnormal nodes in top 10. The experimental results are shown 

in the figure 7. Where (a) is a node attribute.The last column in the three images is the 

algorithm proposed in this article. It can be observed that in attribute anomaly detection, 

the algorithm proposed in this article performs equally well compared to existing base-

line algorithms; In structural anomaly detection, our algorithm is far ahead of other 

baseline algorithms; In comprehensive anomaly detection, the PropMat-DAE also pro-

duce the optimal results in sensor fault detection in avionics systems. 
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In addition, we also compared different datasets. NASA’s C-MAPSS (Commercial 

Modular Aviation Propulsion System Simulation) dataset (Turbofan Engine Degrada-

tion Simulation Dataset) is a widely used benchmark data. C-MAPSS data includes 

sensor data for different operating and fault conditions. Due to the inclusion of several 

turbine engines, this article only selects the six turbine engines(numbers are 

2,67,69,83,92, and 96 respectively) with the largest sensor data for evaluation. Among 

them, the timing data records the sampling values of each time series during the com-

plete cycle of the sensor from normal to fault. The comparison results of 14 algorithms 

are shown in the figure 8.From the graph, it can be observed that the PropMat-DAE 

algorithm can achieve optimal results on all six datasets, which also confirms the gen-

eralization of our algorithm in the research of sensor fault detection problems. 

Due to the fact that the time series data of sensor nodes in the avionics field can be 

compressed into low dimensional vectors by statistical information, in order to demon-

strate the rationality of our algorithm using matrix decomposition to calculate node 

anomaly scores for node attributes, we compared PropMat-DAE with deep learning 

algorithm DONE on different attribute dimensions, as shown in the figure 11. The re-

sults indicate that as the dimension of node attributes decreases, the performance of 

anomaly detection algorithms based on automatic encoders gradually decreases, while 

the matrix decomposition based gradually increases. 

The PropMat-DAE is essentially an encoder. Therefore, next, we compare the per- 

formance of our algorithm with existing mainstream graph node embedding algorithms, 

such as deepwalk, node2vec, etc. The results are shown in the figure 9. The graph em- 

bedding algorithm only considers the graph structure without considering node fea-

tures. Therefore, we can observe that in the experiment, our algorithm performs best in 

detecting abnormal nodes. This also proves that in the field of sensor fault detection, 

we should simultaneously consider the spatiotemporal attributes of nodes. 

To verify the effectiveness of our designed all pair attention, we comprehensively 

compared the expression abilities of different attention matrices, including MLP, GCN, 

etc. The results are shown in the figure 10. We can observe that if we only consider the 

information of single-layer neighbors or their own nodes at different network layers, 

We tend to overlook the impact of distant nodes on target nodes. However, the interac-

tions between various components in sensor networks are complex, so we must con-

sider global attention. Considering the impact of all neighbors on the target node, we 

will achieve better results. 
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5  Conclusion 

In this article, we introduce PropMat-DAE, a sensor fault detection framework 

that improves on previous graph anomaly detection algorithms. After optimization, we 

use matrix decomposition to calculate the reconstruction error of low dimensional at-

tribute information, and use the all pair attention mechanism combined with AE think-

ing to calculate the high-dimensional reconstruction error of the manuscript, thereby 

calculating the node anomaly score. In the experiment, we validated its effectiveness 

over the latest graph anomaly detection algorithms and graph embedding algorithms. It 

also proves the feasibility of matrix decomposition and all pair attention. Although our 

proposed algorithm has achieved good results in this article, our goal in the future is to 

provide more rigorous analysis and further achieve sensor fault detection across differ-

ent fields.  

However, this article still has some limitations. Firstly, the dataset selected in this 

article is relatively small and not suitable for large-scale datasets. Secondly, the graph 

dataset used in this article was calculated by the algorithm and may differ significantly 

from the actual structure. Therefore, in terms of engineering implementation, it is im-

portant to focus on the actual topology structure. Finally, the global attention mecha-

nism designed in this article has a relatively large time consumption, but performs well 

in information aggregation. Therefore, the all air attention in this article is not suitable 

for large-scale graph data. 

Finally, the contribution made in this article is mainly reflected in considering the 

abnormal situation of sensor nodes from both time and space perspectives, which com-

pensates for the shortcomings of most sensor anomaly detection. Moreover, due to the 
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high confidentiality of spacecraft topology, the graph structure learning algorithm in-

troduced in this paper can also provide new ideas for this limitation and lay the foun-

dation for subsequent related research. 
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