
HiQuFlexAsync: Hierarchical Federated Learning with

Quantization, Flexible Client Selection and Asynchronous

Communication

Ze Zhao 1, Yifan Liu 1() , Donglin Pan 1, Yi Liu 2() , Xiaofei Li 2 , Zhenpeng Liu 1,2

1 School of Cyberspace Security and Computer, Hebei University, Baoding, China

lyf@hbu.edu.cn(Yifan Liu)

2 Information Technology Center, Hebei University, Baoding, China
liuyi@hbu.edu.cn(Yi Liu)

Abstract. In three-tier federated learning at the cloud-edge, uneven data distri-

bution can lead to a decrease in model performance, while the increased commu-

nication demands of multi-tier federated learning may impact system efficiency.

To mitigate the impact of these challenges on federated learning performance, a

novel method named HiQuFlexAsync has been introduced. HiQuFlexAsync is

an innovative asynchronous three-tier federated learning approach with quanti-

zation capabilities. Within the framework of HiQuFlexAsync, a new quantizer is

employed to naturally compress local and edge gradients, and an algorithm called

"Cost-Optimized Heterogeneous Client-Edge Association" (COHEA) is devel-

oped. This algorithm aims to optimize the client selection process for federated

learning by leveraging data heterogeneity and the physical diversity of clients.

Simulation experiments on the MNIST and CIFAR-10 datasets demonstrate that

compared to the traditional three-tier architecture HierFAVG, HiQuFlexAsync

achieves an approximate 5.6% increase in accuracy and a 12.2% enhancement in

efficiency.

Keywords: Federated Learning, Hierarchical Mechanism, Quantization, Client

Selection, Asynchronous Aggregation.

1 Introduction

In the era of information, data plays a pivotal role. However, traditional data training

methods are plagued by issues such as privacy breaches, centralization, and computa-

tional resource constraints [1]. To address these challenges, federated learning has

emerged as a distributed machine learning paradigm of interest, capable of conducting

model training across devices, regions, and institutions while safeguarding data pri-

vacy. Yet, the physical and data heterogeneity among participants may diminish the

efficacy of model training [2].

Scholars have emphasized the crucial role of selecting participants with similar de-

vice capabilities and data distributions in federated learning. This aids in mitigating

instability during model training and enhancing global convergence. Furthermore, in

2 Z. Zhao et al

the context of large-scale models and numerous participants, they have proposed the

concept of introducing a three-tier architecture encompassing cloud, edge, and end-

point. This approach aims to alleviate cloud computing resource constraints, while con-

currently improving communication efficiency and model training effectiveness [3]. In

addition, synchronous training in federated learning is plagued by significant commu-

nication overhead, prolonged training durations, and diminished system robustness.

However, the adoption of a hybrid synchronous and asynchronous training paradigm

within a three-tier federated learning framework holds promise in mitigating these chal-

lenges, thereby facilitating more efficient and secure model training. Furthermore, by

quantizing models, it is possible to reduce communication overhead and enhance the

efficiency of federated learning.

This paper introduces HiQuFlexAsync, an innovative asynchronous three-tier feder-

ated learning solution. The main contributions of this paper are as follows:

• An innovative approach called HiQuFlexAsync has been proposed, which is a novel

asynchronous three-tier federated learning method with quantization capability. In

the process of aggregating and updating the model, a novel quantizer is introduced,

enabling natural compression and quantization of local and edge gradients. Quantiz-

ing gradients helps reduce communication rounds, thereby enhancing the efficiency

of the federated learning process.

• An algorithm named COHEA is introduced, addressing the client selection problem

in federated learning. This algorithm comprehensively considers communication la-

tency, computational delay, and the similarity of data distribution. Through a cost

evaluation formula, it optimizes the selection of clients, enabling federated learning

to achieve better performance in heterogeneous environments.

• Simulation experiments conducted on the MNIST and CIFAR-10 datasets demon-

strate that HiQuFlexAsync, compared to the traditional three-tier architecture Hi-

erFAVG, achieves approximately a 5.6% increase in accuracy and about a 12.2%

improvement in efficiency.

The remaining sections of this paper are organized as follows: Section 2 provides an

overview of relevant work in federated learning. In Section 3, the process of gradient

quantization, the HiQuFlexAsync framework, and the client selection algorithm

COHEA are detailed. Section 4 presents the conducted simulation experiments and the

analysis of their results. Finally, Section 5 concludes the paper.

2 Related Work

2.1 Client Selection

Nishio et al. [4] have proposed the FedCS protocol, which leverages a greedy algorithm

to maximize the inclusion of eligible clients. Wang et al. [5] proposed the Acct frame-

work, which ingeniously combines change detection with multi-armed bandit tech-

niques. Zheng et al. [6] have proposed a heuristic algorithm based on an energy-

 Hierarchical Federated Learning with Quantization and Flexible Communication 3

accuracy balance, aimed at optimizing client selection to achieve a balance between

energy consumption and learning accuracy.

2.2 Gradient Quantization

Gradient quantization technology compresses and approximates parameter gradients in

deep neural networks to reduce computational and communication costs while main-

taining model performance, which has been widely applied across various domains. For

instance, Chen et al. [7] successfully applied quantization techniques to edge intelligent

vehicle networks to reduce training computational complexity and achieve efficient

training. Lu et al. [8] leveraged quantization technology in the field of computer vision,

yielding significant results. Furthermore, Dupuy et al. [9] utilized gradient quantization

in natural language processing, achieving favorable outcomes.

2.3 Layered Federated System

The three-tier architecture has found extensive application within federated learning

paradigms. Luo et al. [10] proposed the HFEL framework, which achieves low latency

and high energy efficiency in machine learning by performing partial model aggrega-

tion on edge servers. Lim et al. [11] introduced a layered federated learning framework

tailored for edge intelligence environments. Chen et al. [12] adopted the TP-DDPG

framework to learn multiple decisions using a DDPG-based approach, introducing a

new algorithm for client association and bandwidth allocation, taking into account the

issue of client procrastination.

3 System Model

To alleviate the impact of device heterogeneity and network latency on federated learn-

ing performance, a new scheme utilizing a cloud-edge-end three-tier architecture for

federated learning, named HiQuFlexAsync, is proposed. This section details the pro-

posed system model for the cloud-edge-end federated learning architecture. The entire

system model is illustrated in Figure 1.

Fig. 1. Overview of System Mode.

4 Z. Zhao et al

Table 1 displays the key symbols and their meanings used in this paper.

Table 1. Key Notations

Symbols Definition

Ci Client i

Ej Edge Sever j

S Set of clients connected to an edge server

N Number of clients

M Number of Edge Severs

Di Dataset on client i

gi Total number of CPU cycles required for executing dataset Di

Bi Bandwidth capacity of client i

c Transmission power density

hi Channel gain

N0 Background noise

Si Size of the training model of Ci

di,j Distance from client Ci to edge server Ej

wi(t) Local parameters of client i

wj(t) Local parameters of edge server j

wt Global parameters

3.1 Gradient Quantization

Gradient quantization, a technique aimed at compressing single-precision floating-

point numbers into finite bits, mitigates transmission bandwidth demands and acceler-

ates the SGD training process of deep neural networks. By encoding and quantizing

gradient parameters after each descent iteration and transmitting them to subsequent

nodes, this method significantly boosts training efficiency. In our study, a method was

devised where local clients transmit quantized model parameters to edge servers. On

the edge servers, the quantized model parameters are decoded and aggregated. Subse-

quently, the aggregated edge parameters are re-quantized and sent to the cloud. At the

cloud, decoding is performed, enabling further global model aggregation. Figure 2 il-

lustrates this process. This approach of quantized model updates helps reduce commu-

nication overhead and safeguard data privacy.

Fig. 2. Transmission framework for quantized stochastic gradient descent.

A low-precision quantizer tailored for natural compression of parameters was selected

for gradient quantization. The definition of this quantizer is as follows:

 Hierarchical Federated Learning with Quantization and Flexible Communication 5

Q(wk) = ||w||
2
sgn(wk)Ck(wk) (1)

Where

 sgn(wk) = {
1, wk > 0
-1, wk ≤ 0

 (2)

And

 Ck(wk) =
1

1+e-|wk-μ |/σ
 (3)

The sign function, sgn(wk), determines the quantized symbol based on the positivity or

negativity of the weight wk . Aimed at minimizing quantization error, the adaptive

quantization coefficient Ck(wk) is defined in relation to the gradient's sensitivity and

distribution, with μ and σ representing the mean and standard deviation of the gradient

distribution, respectively. This function is designed to offer higher quantization preci-

sion for gradient values near the mean, while allowing coarser quantization for values

far from the mean, thereby balancing efficiency and accuracy.

3.2 The processs of HiQuFlexAsync

The proposed architecture comprises a set of client devices C={C1, C2, C3.... , CN}, a

set of edge servers E = {E1, E2, E3, ..., EM} (where M<N), and a central node located in

the cloud. The entire federated learning process encompasses two pivotal aggregation

update mechanisms: synchronous aggregation updates between edge servers and cli-

ents, and asynchronous aggregation updates between edge servers and the cloud. The

choice of implementing synchronous aggregation updates between edge servers and

clients is driven by the objective to achieve real-time and low-latency model updates.

On the other hand, asynchronous aggregation updates between edge servers and the

cloud are designed to fully leverage the cloud's computational resources and storage

capacity for handling large-scale data and complex model updates. This division of

labor effectively balances the demands for real-time processing in edge computing en-

vironments with the cloud's capability to manage large-scale data processing. The spe-

cific steps are as follows:

Step 1 The central node in the cloud initializes the model and sends the initial model

to various edge servers. These edge servers then select client devices to participate in

the federated learning training.

Step 2 After the edge servers select the clients for federated learning, they distribute

the initial model to these clients. Upon receiving the initial model, clients conduct local

training. The clients update the model using the Stochastic Gradient Descent (SGD)

algorithm, where t represents the update step index, and α represents the gradient de-

scent step index. Moreover, In order to mitigate overfitting during the local model train-

ing process, we have implemented gradient regularization as a preventive measure. The

local model parameters are updated during the training process as follows:

wi(t)= wi(t - 1) - α∇G
i
(wi(t - 1)) (4)

Where Gi(wi(t)) = Fi (wi(t) +
λ

2
||wi(t) - wi(0)||

2

2 and Gw = ∑
DiGi

(w)

D

n
i=1

,
n∈ {1, . . . ,N}

Step 3 Upon completion of local training, the clients quantize their updated local

parameters and transmit the quantized data to the connected edge server Ej. Upon

6 Z. Zhao et al

receiving the data, the edge server performs decoding followed by edge aggregation to

update the edge parameters according to formula (5). In equation (5), qj represents the

number of clients managed by edge server Ej, Di is the total number of data samples of

client i, and Dj is the total number of data samples of all clients connected to Ej.

wj(t)=
∑ DiQ(wi(t))

qj

i=1

Dj
 (5)

Step 4 After completing the aggregation update between the edge servers and the

local clients, the edge servers quantize the updated parameters and send the quantized

edge parameters to the cloud. During the aggregation process between the edge servers

and the cloud, an asynchronous aggregation method is used to update the model. A

staleness function and a hybrid hyperparameter αt are defined, where αt controls the

impact of the edge model on the global model. The criteria for selecting the staleness

function consider the following three aspects:

• Exponential decay functions have desirable characteristics in handling time differ-

ences, effectively reflecting the impact of time intervals on model update speed.

• The positive coefficient k in the function can control the decay speed, thus flexibly

adjusting the time step of model updates to accommodate different edge node latency

scenarios.

• The chosen function should reasonably reflect the latency of edge nodes, and for

nodes with significant delays, it should effectively reduce the speed of model updates

to avoid excessive impact on the overall model aggregation process.

Therefore, the exponential decay function s(x) is chosen as the standard for the staleness

function due to its reasonableness and flexibility on the time scale. This function is

well-suited to meet the needs of asynchronous aggregation in federated learning.

 s(x)= e(-k*x) (6)

In this staleness function s(x), x represents the time difference, and k is a positive co-

efficient controlling the decay speed. The function s(x) outputs an adjustment factor

based on the delay situation, which is used to update the time step, adapting to the

performance differences of edge nodes. During the model aggregation process, two for-

mulas are used to implement the update of global parameters.

 αt← α × s(T - τ) (7)

wt←(1 – αt)wt-1 + αtQ(w
j
(t)) (8)

Equation (7) is utilized to adjust αt, where T−τ represents the latency in the model up-

date of the edge nodes. By employing Equation (8), the global model parameter wt is

aggregated.

Step 5 Once the cloud receives the quantized edge parameters sent by the edge

server, it begins by decoding these edge parameters before updating the global param-

eter wt. After the update is completed, the global parameters are sent back to the edge

server that provided the edge parameters. Subsequently, the edge server disseminates

the global parameters to its connected clients, who, upon receiving the updated global

parameters, initiate a new round of local training.

 Hierarchical Federated Learning with Quantization and Flexible Communication 7

Table 2. Algorithm 1 illustrates the procedural framework of the HiQuFlexAsync algorithm.

Algorithm 1: Hierarchical Asynchronous Federated Learning with Quantization

Input: learning rate γ ，number of local updates k

Output: global model parameters wt

1: procedure Hierarchical Federated Flexible Asynchronous

2: Initialize：global model parameters w0，max local update rounds t=0，

 local update rounds for client I, ti =0

3: use the Algorithm 2 to assign clients to edge servers

4: while t <k do

5: Client update:

6: for each client i ∈ {1，2，3...,N } do

7: Receive wi(t-1)

8: update wi(t)= wi(t - 1) - α∇G
i
(wi(t - 1))

9: Q(w
i
(t)) ←||w||

2
sgn(wi)C i(wi)

10: send Q(w
i
(t)) to the connected edge servers.

11: if i received updated parameters from edge server

12: Start a new round of local training

13: ti +=1，and t=max(ti)

14: end if

15: end for

16: Edge sever update:

17: for each edge node m ∈ {1，2，3...,M } do

18: Receive Q(w
i
(t))

19: update wj(t)=
∑ DiQ(w

i
(t))

qj

i=1

Dj

20: Q(wj(t)) ←||w||
2
sgn(wj)Cj(wj)

21: send (Q(wj(t)), τ) to the cloud

22: if received updated parameters from cloud

23: Send the wt to the connected client

24: end if

25: end for

26: Cloud update:

27: receive (Q(wj(t)), τ)

28: update αt← α × s(T - τ)

29: update wt←(1 – αt)wt-1 + αtQ(w
j
(t))

30: Send wt to the corresponding edge node

31: end while

32: return the global model parameters wt

3.3 The Cost-Optimized Heterogeneous Client-Edge Association Algorithm

Edge servers establish a designated set of connected clients, referred to as S. Initially,

within their respective communication ranges, these edge servers transmit information

to the clients. Upon receipt of this information, the clients are tasked with deciding

whether to participate in federated learning. If a client consents, it is obliged to send its

status information back to the edge server. Consequently, the edge server is enabled to

select clients based on the information received from them. To initiate this process,

Formula (9) is employed for the computation of the data transmission rate.

8 Z. Zhao et al

 ri=Blog
2
(1+

pihi
2

N0
) (9)

ri symbolizes the data transmission rate. The bandwidth capacity of the clients, denoted

as B, is assumed to be uniform across all clients. The transmission power density is

indicated by pi, channel gain by , and noise power by N0. After calculating the data

transmission rate, Formulas (10) and (11) are used to compute the client's transmission

delay and propagation delay.

 δi
T
=

si

ri
 (10)

 δi,j
P

=
di,j

c
 (11)

In Formula (10), si denotes the size of the model information being transmitted. In For-

mula (11), di,j represents the distance from client Ci to the edge server Ei, with c signi-

fying the speed of light. Following the computation of the client's transmission and

propagation delays, Formula (12) is employed to calculate the communication delay,

and Formula (13) is used to determine the client's computational delay.

 TCOM=δi
T
+δi,j

p
 (12)

 TCMP =
gi

ki
 (13)

In Formula (13), gi indicates the total number of CPU cycles required to execute Di,

and ki denotes the CPU frequency of Ci. Having calculated the client's communication

and computational delays, the total delay Ttotal is simply the sum of these two delays,

as shown in Formula (14).

 Ttotal=TCOM+ TCMP (14)

Upon calculating the total delay for a client, we utilize the Bhattacharyya distance to

measure the similarity of label distributions between the client seeking to join and those

already connected to the edge server. The Bhattacharyya distance ranges from 0 to 1,

where a distance of 0 indicates that the two probability distributions are identical (we

use the label distribution of the client's data to represent its probability distribution).

The definition of the Bhattacharyya coefficient is as follows:For discrete values, the

Bhattacharyya coefficient is defined as

 BC(p,q)= ∑ √p(x)q(x) (15)

,and for continuous values,it is defined as

 BC(p,q)= ∑ √p(x)q(x)dx (16)

After obtaining the Bhattacharyya coefficient, the Bhattacharyya distance can be de-

fined as

DB(p,q)=−ln(BC(p,q)) (17)

Suppose the data distribution of the client to be selected is p1, and the average data

distribution of the clients already connected to the server is q1. In that case, the similar-

ity between the two distributions can be calculated using the Bhattacharyya distance:

DB(p1,q1)=−ln(BC(p1,q1)) (18)

The smaller the value of DB(p1,q1), the more similar the two data distributions are. We

use Formula (19) to evaluate the cost of participating in federated learning for potential

clients, obtaining their EXP (EXP refers to EXPENSE, indicating the training cost of

participating in federated learning):

EXPk =Ttotal+λDB(
|Dm|· FDm + |Dk|· FDk

|Dm| + |Dk|
 , FDm) (19)

 Hierarchical Federated Learning with Quantization and Flexible Communication 9

In Formula (19), λ serves as a weight parameter that balances the trade-off between

resource heterogeneity and data heterogeneity. FDk is the label distribution of the cur-

rent client to be selected. FDm is defined as

FDm=(p1,p2,p3,...,pn) (20)

which is a distribution containing various labels and their corresponding probabilities.

Here, pi represents the occurrence probability of label i in clients connected to edge

node m. Note that the length of FDm is equal to the number of labels, and the sum of all

probability values is 1. By calculating the EXP of the client to be selected, EXPk, the

smaller the value of EXPk , the less the total delay of the newly joined client and the

more similar its data distribution is to the clients already connected to the edge server.

This approach not only considers the physical heterogeneity of devices but also the

heterogeneity of data, reducing the impact of heterogeneity on federated learning from

both aspects, thereby enhancing the efficiency of federated learning.
Having determined the EXP of the client to be selected, we can commence the client

selection process. The specific strategy for edge servers to select clients is as follows:

• If the client cluster of edge node E is empty, the edge node selects the client with the

least response delay from the unassociated clients within its communication range.

Otherwise, the edge node selects the client k with the lowest cost EXP.

• If a client is currently selected by multiple edge nodes, the client will randomly

choose one edge node.

• The bilateral selection process continues until all clients are associated with an edge

node.

Fig. 3. Edge Server Diagram Connected to Different Clients.

For example, as depicted in Figure3, edge servers 1 and 2 are connected to different

clients. For edge server 1, having already selected client1 and client4, if the selection

were based solely on communication delay, the optimal choice would be client 5. How-

ever, our client selection algorithm takes into account both communication delay and

the data heterogeneity of clients. Therefore, edge server 1 compares the EXP values of

the two devices and, finding that EXP6 is lower than EXP5, selects client 6 to join the

federated learning network. Similarly, for edge server 2, the COHEA algorithm was

employed to account for client heterogeneity, leading to the selection of client 5.

10 Z. Zhao et al

Table 3. Algorithm 2 delineates the process of the COHEA algorithm.

Algorithm 2：Cost-Optimized Heterogeneous Client-Edge Association Algorithm

Input ： the response latency {Ti}i=1
N ， Label distribution of all the clients

 {FDk}k=1
N

Output: client cluster for each edge node cj for j ∈{1, 2,...,M}.

1: Initialize: client cluster for each edge node: cj= ∅, j ∈{1，2，3...,M} ,and

 empty edge set for each client sk=∅, client k ∈{1，2，3...,N }

2: Initialize: a client cluster U= {1，2，3...,N}

3: while U ≠ ∅ do

4: for j ∈{1，2，3...,M} do

5: if cj= ∅ then

6: Select the client k with the minimum response latency

7: And set cj={k}

8: Remove client k from U

9: else

10: Select client k by minimizing(19)

11: sk = skU {j}

12: end if

13: end for

14: for k ∈{1，2，3...,N} do

15: if sk ≠ ∅ then

16: Randomly select an edge node j from sk

17: cj = cjU{k}

18: Remove client k from U and clear sk

19: end if

20: end for

21: end while

22: return cj for j ∈{1, 2,...,M}

4 Experiment

4.1 Simulation Settings

We designed a simulation environment using Matlab R2019a, considering a large num-

ber of work nodes, varying client proportions, edge nodes, and the quantity of local

aggregation. The area covered by the edge computing network in the simulation envi-

ronment measures 5 km × 5 km. The background noise level in the simulated environ-

ment is set at -100 dB, the communication range of edge nodes is 350 meters, the CPU

frequency of edge nodes is 1.5 GHz, and the transmission power of edge nodes is 2.2

W.

The hierarchical federated learning system comprises 100 clients, 10 edge servers,

and 1 cloud server. Each edge server is assigned an equal number of clients, and each

client possesses an equal amount of training data. In this system, we undertook a classic

image classification task using the MNIST dataset and the CIFAR-10 dataset for train-

ing. For the MNIST dataset and the CIFAR-10 dataset, we employed a Convolutional

Neural Network (CNN) with 21,840 trainable parameters. This CNN model is used for

 Hierarchical Federated Learning with Quantization and Flexible Communication 11

the task of handwritten digit classification, encompassing 10 different categories. To

train this model, we utilized the Mini-batch Stochastic Gradient Descent (SGD) algo-

rithm, with each batch containing 20 samples. The initial learning rate was set at 0.01,

updated at an exponentially decaying rate of 0.995 per epoch.

All experiments were conducted on a Windows 11 operating system, powered by a

12th Gen Intel(R) Core(TM) i7-12700 CPU at 2100 MHz, featuring 12 cores and 20

logical processors. The system was equipped with 16GB of RAM, and we used Python

3.7 and PyTorch on PyCharm 2020 version for our experiments. In our proposed hier-

archical federated learning system, to simulate the characteristics and distribution of

data from different clients in the real world, we have taken into account the scenarios

of non-identically distributed (Non-IID) data and physical device heterogeneity. Our

Non-IID setting involves the allocation of samples from two categories to each client,

with 10 clients on each edge server covering a total of 5 label categories. The datasets

between edge servers exhibit non-identical distributions. To simulate the physical het-

erogeneity of devices, we have categorized clients based on three bandwidth levels—

100Mbps, 150Mbps, and 200Mbps—and also three CPU utilization rates—50%, 60%,

and 70%. This approach aims to more closely resemble the heterogeneous characteris-

tics of different devices in the real world, providing a more comprehensive and practical

data simulation for our research.

4.2 Experimental process

Under both IID (Independent and Identically Distributed) and Non-IID settings, we

compared our HiQuFlexAsync scheme with other federated learning approaches. The

following is an introduction to these comparative schemes:

• FedAvg[13]: This is a cloud-based synchronous aggregation federated learning ap-

proach.

• FedAsync[14]: This is a cloud-based asynchronous federated learning algorithm. It

updates the global model without waiting for slower clients to process.

• FedAT[15]: A hierarchical federated learning approach that combines synchronous

intra-layer training with asynchronous inter-layer training. FedAT clusters clients

based on their response delays, without considering the heterogeneity of client data.

• HierFAVG[16]: A hierarchical federated learning scheme based on cloud-edge-cli-

ent architecture. It conducts synchronous updates in both client-edge aggregation

and edge-cloud aggregation.

• HiFlash[17]: A layered federated learning paradigm that integrates mobile edge

computing, employing synchronous client-edge model aggregation and asynchro-

nous edge-cloud model aggregation.

During experimental phase, HiQuFlexAsync and its counterpart models consistently

involve the same quantity of clients in every training round. First, we will explore the

optimal value of α in HiQuFlexAsync, and then evaluate the performance of HiQuFlex-

Async by comparing its test accuracy, loss data, and communication efficiency with

those of other federated learning schemes.

12 Z. Zhao et al

4.3 Experimental Results and Analysis

A. Parameters Adjustment

Prior to comparing the performance with other federated learning methods, we con-

ducted an assessment of the parameters in the proposed HiQuFlexAsync framework.

The evaluation started with the asynchronous weight parameter α, with values system-

atically tested in the range of 0.1 to 0.9, aiming to determine the optimal α value. This

process contributes to optimizing the performance of the HiQuFlexAsync model and

provides robust support for subsequent performance comparisons.

(a) Mean accuracy (b) Mean loss

Fig. 4. The mean values obtained by testing α from 0.1 to 0.9 on the MNIST dataset at quanti-

zation levels s of 1, 2, 4, 8, and 16, respectively.

 (a) Mean accuracy (b) Mean loss

Fig. 5. The mean values obtained by testing α from 0.1 to 0.9 on the CIFAR-10 dataset at quan-

tization levels s of 1, 2, 4, 8, and 16, respectively.

As shown in Figures 4 and 5 of the experimental results, during the gradual testing of

α values from 0.1 to 0.9, it was observed that prior to setting α to 0.5, the model perfor-

mance was suboptimal. Even after the same number of communication rounds, the loss

 Hierarchical Federated Learning with Quantization and Flexible Communication 13

function remained convergent at a higher level, and the model accuracy consistently

lagged behind. However, upon setting α to 0.5, an improvement in model performance

was noted. At this point, the average value of the loss function exhibited a decreasing

trend, while the accuracy gradually increased. Further observations revealed that when

α exceeded 0.6, the training performance of the model started to rebound, indicating a

potential overfitting phenomenon. Therefore, the decision was made to confirm α = 0.5

as the optimal training value. Considering all factors, α was set to 0.5 for subsequent

comparative experiments.

Subsequently, we evaluated the weight parameter λ by testing the model's accuracy

and convergence time in HiQuFlexAsync under different λ values, aiming to select the

optimal λ value.

(a) MNIST (b) CIFAR-10

Fig. 6. Fig.6 Test accuracy corresponding to different values of λ on the MNIST and CIFAR-

10 datasets.

(a) MNIST (b) CIFAR-10

Fig. 7. Convergence time corresponding to different values of λ on the MNIST and CIFAR-10

datasets.

From Figure 6, it can be observed that the test accuracy of HiQuFlexAsync reaches its

peak when λ is between 350-400, regardless of whether in IID or Non-IID settings.

Furthermore, Figure 7 indicates that the model's convergence time is minimal when λ

14 Z. Zhao et al

falls within the range of 300-400. Taking into account both model accuracy and effi-

ciency, λ value of 360 was chosen as the optimal parameter setting. In subsequent com-

parisons with other federated learning approaches, λ was fixed at 360.

B. Model Accuracy Comparison

We conducted a performance comparison between HiQuFlexAsync and other feder-

ated learning schemes. After 100 training rounds on the MNIST dataset, the accuracy

changes of various federated learning schemes are depicted in Figure 8. Similarly, after

100 training rounds on the CIFAR-10 dataset, the accuracy changes of various feder-

ated learning schemes are shown in Figure 9.

(a) IID (b) Non-IID

Fig. 8. Test accuracy of MNIST dataset under different data distributions w.r.t the total number

of training epochs on the clients.

 (a) IID (b) Non-IID

Fig. 9. Test accuracy of CIFAR-10 dataset under different data distributions w.r.t the total

number of training epochs on the clients.

From Figures 8 and 9, it is evident that HiQuFlexAsync has achieved a level of training

performance comparable to that of HiFlash. This can be attributed to our adoption of a

three-tier federated learning architecture with quantization capability, integrating the

COHEA algorithm. The key advantage of this algorithm lies in its consideration of

client heterogeneity during the client allocation process, which promotes personalized

optimization and efficient resource utilization, thereby enhancing model performance.

 Hierarchical Federated Learning with Quantization and Flexible Communication 15

It is noteworthy that, in comparison to the three-tier architecture of HierFAVG and the

asynchronous aggregation approach of FedAT, HiQuFlexAsync demonstrates a signif-

icant improvement in experimental accuracy. This improvement is attributed to our im-

plementation of a hybrid architecture incorporating three tiers along with synchronous

and asynchronous components, coupled with the utilization of the COHEA algorithm

in the client allocation process.

Furthermore, we delved into the performance of the COHEA algorithm in HiQu-

FlexAsync without considering device heterogeneity. As illustrated in Figures 8 and 9,

when disregarding device heterogeneity, the model accuracy of HiQuFlexAsync falls

below the standard levels of conventional HiQuFlexAsync and HiFlash. This is at-

tributed to the fact that accounting for device heterogeneity enables the full utilization

of computing resources across different devices, thereby enhancing the overall compu-

tational performance and efficiency of the system. Without considering device hetero-

geneity, it results in a decrease in model accuracy. Hence, our algorithm takes device

heterogeneity into account to enhance model performance.

C. Model Loss Comparison

Figures 10 and 11 demonstrate the changes in loss values of various federated learn-

ing methods as the number of training rounds increases, under both IID and Non-IID

settings for the MNIST and CIFAR-10 datasets.

Figures 10 and 11 depict the fitness and performance of various federated learning

schemes during the training process. It is evident that HiQuFlexAsync has achieved

significant fitting results in both IID and Non-IID settings, thanks to our more thought-

ful consideration of client heterogeneity in the client allocation scheme. By optimizing

client allocation to achieve load balancing and enhance system parallel processing ca-

pabilities, we have been able to elevate system performance. In comparison to alterna-

tive methods, our approach has demonstrated more pronounced enhancements in opti-

mizing federated learning, further substantiating the effectiveness and feasibility of our

methodology.

 (a) IID (b) Non-IID

Fig. 10. loss values of MNIST dataset under different distributions w.r.t the total number of

training epochs on the clients.

16 Z. Zhao et al

 (a) IID (b) Non-IID

Fig. 11. loss values of CIFAR-10 dataset under different distributions w.r.t the total number of

training epochs on the clients.

 (a) IID (b) Non-IID

Fig. 12. Comparison of the time required by various federated learning methodologies to

achieve 0.90 accuracy under the IID setting and 0.80 accuracy under the Non-IID setting on the

MNIST dataset.

D. Model Efficiency Comparison

Further simulation experiments were conducted to investigate the time required for

various federated learning schemes to achieve a specific level of accuracy on the

MNIST dataset under IID and Non-IID settings. An accuracy target of 0.90 was chosen

for the IID setting, while a target of 0.80 was selected for the Non-IID scenario. The

selection of these values was based on prior experiments and a comprehensive consid-

eration of the data complexity and comparability. The results of these experiments are

presented in Figure 12.

Figure 12 vividly illustrates the high communication efficiency demonstrated by

HiQuFlexAsync in both IID and Non-IID scenarios. This can be attributed to our model

quantization, which has significantly bolstered communication efficiency. Further-

more, previous experimental findings suggest that while FedAVG excels in accuracy,

it lags in communication efficiency compared to federated learning schemes employing

a three-tier architecture and asynchronous updates. This deficiency arises from the

 Hierarchical Federated Learning with Quantization and Flexible Communication 17

enhanced parallelism and scalability offered by the three-tier architecture, coupled with

the reduction in communication latency afforded by asynchronous updates. Conversely,

the HiQuFlexAsync approach holistically considers both experimental accuracy and

efficiency, thereby showcasing the exceptional performance of our methodology.

5 Conclusions

In the paper, a federated learning scheme named HiQuFlexAsync is proposed to address

the challenges posed by data heterogeneity, physical heterogeneity, network latency,

bandwidth limitations, and unstable network connections, which impact the perfor-

mance of federated learning. Our approach adopts a cloud-edge-end three-tier architec-

ture with quantization capability, improving communication efficiency through model

quantization. Additionally, we introduce a client allocation algorithm called COHEA

to optimize the client selection process, leveraging the data and physical heterogeneity

of clients for federated learning. Furthermore, considering the communication con-

straints between cloud servers and edge servers, we adopt an asynchronous aggregation

strategy to optimize the model aggregation process between them. Through extensive

experimentation, we have demonstrated the superior performance and efficiency of the

HiQuFlexAsync approach in training. However, we recognize that there is room for

improvement in HiQuFlexAsync, such as exploring the impact of different network

models on the algorithm. Therefore, future research will further explore and refine the

HiQuFlexAsync scheme, extending its application to other domains.

Acknowledgments. This work was supposed by the Foundation of Chinese University Industry-

University-Research Innovation (2022IT078), the Foundation of President of Hebei University

(XZJJ202303).

6 Reference

1. Pan, Z., Sun, J., Li, X., Zhang, X., Bai, H.: Collaborative Face Privacy Protection Method

Based on Adversarial Examples in Social Networks. In: Huang, DS., Premaratne, P., Jin, B.,

Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Appli-

cations. ICIC 2023. Lecture Notes in Computer Science, vol. 14086, pp. 499–510. Springer,

Singapore (2023)

2. Chen, Y., Liang, L., Gao, W.: DFedSN: Decentralized federated learning based on hetero-

geneous data in social networks. World Wide Web , vol. 26, no. 5, pp. 2545–2568 (2023).

3. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K. B.: A survey on mobile edge compu-

ting:The communication perspective. IEEE Communications Surveys & Tutorials, vol. 19,

no. 4, pp.2322-2358 (2017)

4. Nishio, T., Yonetani, R.: Client Selection for Federated Learning with Heterogeneous Re-

sources in Mobile Edge. In: ICC 2019 - 2019 IEEE International Conference on Communi-

cations (ICC), pp. 1-7. Shanghai, China (2019)

18 Z. Zhao et al

5. Wang, N., Zhou, R., Su, L., Fang, G., Li, Z.: Adaptive Clustered Federated Learning for

Clients with Time-Varying Interests. In: 2022 IEEE/ACM 30th International Symposium on

Quality of Service (IWQoS), pp. 1-10. Oslo, Norway (2022)

6. Zheng, J., Li, K., Tovar, E., Guizani, M.: Federated Learning for Energy-balanced Client

Selection in Mobile Edge Computing. In: 2021 International Wireless Communications and

Mobile Computing (IWCMC), pp. 1942-1947. Harbin City, China (2021)

7. Chen, M., Yi, M., Huang, M., Huang, G., Ren, Y., Liu, A.: A novel deep policy gradient

action quantization for trusted collaborative computation in intelligent vehicle networks. In:

Processing (ICASSP), pp. 4118–4122 (2022)

8. Lu, Q., Murmann, B.: Enhancing the Energy Efficiency and Ro-bustness of TinyML Com-

puter Vision Using Coarsely-Quantized Log-Gradient Input Images. ACM Transactions on

Embedded Computing Systems, (2023)

9. Dupuy, C., Arava, R., Gupta, R., Rumshisky, A.: An Efficient DP-SGD Mechanism for

Large Scale NLU Models. In: ICASSP 2022 -2022 IEEE International Conference on Acous-

tics, Speech and Signal (2022)

10. Luo, S., Chen, X., Wu, Q., Zhou, Z., Yu, S.: HFEL: Joint Edge Association and Resource

Allocation for Cost-Efficient Hierarchical Federated Edge Learning. In IEEE Transactions

on Wireless Communications, vol. 19, no. 10, pp. 6535-6548 (2020)

11. Lim, W. Y. B., et al.: Decentralized Edge Intelligence: A Dynamic Resource Allocation

Framework for Hierarchical Federated Learning. In IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 33, no. 3, pp. 536-550 (2022)

12. Chen, X., et al.: Two-Phase Deep Reinforcement Learning of Dynamic Resource Allocation

and Client Selection for Hierarchical Federated Learning. In: 2022 IEEE/CIC International

Conference on Communications in China (ICCC), pp. 518-523. Sanshui, Foshan, China

(2022)

13. McMahan, H. B., Moore, E., Ramage, D., Hampson, S., Areas, B. A..: Communication-ef-

ficient learning of deep networks from decentralized data. In Proc. Int. Conf. Artif. Intell.

Statist, pp. 1273–1282 (2017)

14. Xie, C., Koyejo, S., Gupta, I.: Asynchronous federated optimization. In Proc. NeurIPS Work-

shop Optim. Mach. Learn, pp. 1–11 (2020)

15. Chai, Z., Chen, Y., Anwar, A., Zhao, L., Cheng, Y., Rangwala, H.: FedAT: A High-Perfor-

mance and Communication-Efficient Federated Learning System with Asynchronous Tiers.

In: SC21: International Conference for High Performance Computing, Networking, Storage

and Analysis, pp. 1-17. St. Louis, MO, USA (2021)

16. Liu, L., Zhang, J., Song, S. H., Letaief, K. B.: Client-Edge-Cloud Hierarchical Federated

Learning. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC).

pp. 1-6. Dublin, Ireland (2022)

17. Wu, Q., et al.: HiFlash: Communication-Efficient Hierarchical Federated Learning With

Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association. IEEE Trans-

actions on Parallel and Distributed Systems. pp. 1560–1579 (2023)

https://dl.acm.org/toc/tpds/2023/34/5
https://dl.acm.org/toc/tpds/2023/34/5

