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Abstract. In three-tier federated learning at the cloud-edge, uneven data distri-

bution can lead to a decrease in model performance, while the increased commu-

nication demands of multi-tier federated learning may impact system efficiency. 

To mitigate the impact of these challenges on federated learning performance, a 

novel method named HiQuFlexAsync has been introduced. HiQuFlexAsync is 

an innovative asynchronous three-tier federated learning approach with quanti-

zation capabilities. Within the framework of HiQuFlexAsync, a new quantizer is 

employed to naturally compress local and edge gradients, and an algorithm called 

"Cost-Optimized Heterogeneous Client-Edge Association" (COHEA) is devel-

oped. This algorithm aims to optimize the client selection process for federated 

learning by leveraging data heterogeneity and the physical diversity of clients. 

Simulation experiments on the MNIST and CIFAR-10 datasets demonstrate that 

compared to the traditional three-tier architecture HierFAVG, HiQuFlexAsync 

achieves an approximate 5.6% increase in accuracy and a 12.2% enhancement in 

efficiency. 

Keywords: Federated Learning, Hierarchical Mechanism, Quantization, Client 

Selection, Asynchronous Aggregation. 

1 Introduction 

In the era of information, data plays a pivotal role. However, traditional data training 

methods are plagued by issues such as privacy breaches, centralization, and computa-

tional resource constraints [1]. To address these challenges, federated learning has 

emerged as a distributed machine learning paradigm of interest, capable of conducting 

model training across devices, regions, and institutions while safeguarding data pri-

vacy. Yet, the physical and data heterogeneity among participants may diminish the 

efficacy of model training [2]. 

Scholars have emphasized the crucial role of selecting participants with similar de-

vice capabilities and data distributions in federated learning. This aids in mitigating 

instability during model training and enhancing global convergence. Furthermore, in 



2  Z. Zhao et al 

the context of large-scale models and numerous participants, they have proposed the 

concept of introducing a three-tier architecture encompassing cloud, edge, and end-

point. This approach aims to alleviate cloud computing resource constraints, while con-

currently improving communication efficiency and model training effectiveness [3]. In 

addition, synchronous training in federated learning is plagued by significant commu-

nication overhead, prolonged training durations, and diminished system robustness. 

However, the adoption of a hybrid synchronous and asynchronous training paradigm 

within a three-tier federated learning framework holds promise in mitigating these chal-

lenges, thereby facilitating more efficient and secure model training. Furthermore, by 

quantizing models, it is possible to reduce communication overhead and enhance the 

efficiency of federated learning.  

This paper introduces HiQuFlexAsync, an innovative asynchronous three-tier feder-

ated learning solution. The main contributions of this paper are as follows: 

• An innovative approach called HiQuFlexAsync has been proposed, which is a novel 

asynchronous three-tier federated learning method with quantization capability. In 

the process of aggregating and updating the model, a novel quantizer is introduced, 

enabling natural compression and quantization of local and edge gradients. Quantiz-

ing gradients helps reduce communication rounds, thereby enhancing the efficiency 

of the federated learning process. 

• An algorithm named COHEA is introduced, addressing the client selection problem 

in federated learning. This algorithm comprehensively considers communication la-

tency, computational delay, and the similarity of data distribution. Through a cost 

evaluation formula, it optimizes the selection of clients, enabling federated learning 

to achieve better performance in heterogeneous environments. 

• Simulation experiments conducted on the MNIST and CIFAR-10 datasets demon-

strate that HiQuFlexAsync, compared to the traditional three-tier architecture Hi-

erFAVG, achieves approximately a 5.6% increase in accuracy and about a 12.2% 

improvement in efficiency. 

The remaining sections of this paper are organized as follows: Section 2 provides an 

overview of relevant work in federated learning. In Section 3, the process of gradient 

quantization, the HiQuFlexAsync framework, and the client selection algorithm 

COHEA are detailed. Section 4 presents the conducted simulation experiments and the 

analysis of their results. Finally, Section 5 concludes the paper. 

2 Related Work 

2.1 Client Selection 

Nishio et al. [4] have proposed the FedCS protocol, which leverages a greedy algorithm 

to maximize the inclusion of eligible clients. Wang et al. [5] proposed the Acct frame-

work, which ingeniously combines change detection with multi-armed bandit tech-

niques. Zheng et al. [6] have proposed a heuristic algorithm based on an energy-
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accuracy balance, aimed at optimizing client selection to achieve a balance between 

energy consumption and learning accuracy. 

2.2 Gradient Quantization 

Gradient quantization technology compresses and approximates parameter gradients in 

deep neural networks to reduce computational and communication costs while main-

taining model performance, which has been widely applied across various domains. For 

instance, Chen et al. [7] successfully applied quantization techniques to edge intelligent 

vehicle networks to reduce training computational complexity and achieve efficient 

training. Lu et al. [8] leveraged quantization technology in the field of computer vision, 

yielding significant results. Furthermore, Dupuy et al. [9] utilized gradient quantization 

in natural language processing, achieving favorable outcomes. 

2.3 Layered Federated System 

The three-tier architecture has found extensive application within federated learning 

paradigms. Luo et al. [10] proposed the HFEL framework, which achieves low latency 

and high energy efficiency in machine learning by performing partial model aggrega-

tion on edge servers. Lim et al. [11] introduced a layered federated learning framework 

tailored for edge intelligence environments. Chen et al. [12] adopted the TP-DDPG 

framework to learn multiple decisions using a DDPG-based approach, introducing a 

new algorithm for client association and bandwidth allocation, taking into account the 

issue of client procrastination. 

3 System Model 

To alleviate the impact of device heterogeneity and network latency on federated learn-

ing performance, a new scheme utilizing a cloud-edge-end three-tier architecture for 

federated learning, named HiQuFlexAsync, is proposed. This section details the pro-

posed system model for the cloud-edge-end federated learning architecture. The entire 

system model is illustrated in Figure 1.  

 

Fig. 1.       Overview of System Mode. 
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Table 1 displays the key symbols and their meanings used in this paper. 

Table 1. Key Notations 

Symbols Definition 

Ci Client i 

Ej Edge Sever j 

S Set of clients connected to an edge server 

N Number of clients 

M Number of Edge Severs 

Di Dataset on client i 

gi Total number of CPU cycles required for executing dataset Di 

Bi Bandwidth capacity of client i 

c Transmission power density 

hi Channel gain 

N0 Background noise 

Si Size of the training model of Ci 

di,j Distance from client Ci  to edge server Ej 

wi(t) Local parameters of client i 

wj(t) Local parameters of edge server j 

wt Global parameters 

3.1 Gradient Quantization 

Gradient quantization, a technique aimed at compressing single-precision floating-

point numbers into finite bits, mitigates transmission bandwidth demands and acceler-

ates the SGD training process of deep neural networks. By encoding and quantizing 

gradient parameters after each descent iteration and transmitting them to subsequent 

nodes, this method significantly boosts training efficiency. In our study, a method was 

devised where local clients transmit quantized model parameters to edge servers. On 

the edge servers, the quantized model parameters are decoded and aggregated. Subse-

quently, the aggregated edge parameters are re-quantized and sent to the cloud. At the 

cloud, decoding is performed, enabling further global model aggregation. Figure 2 il-

lustrates this process. This approach of quantized model updates helps reduce commu-

nication overhead and safeguard data privacy. 

 

Fig. 2.      Transmission framework for quantized stochastic gradient descent. 

A low-precision quantizer tailored for natural compression of parameters was selected 

for gradient quantization. The definition of this quantizer is as follows: 
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Q(wk) = ||w||
2
sgn(wk)Ck(wk)                                                (1) 

Where 

                                                    sgn(wk) = {
1,          wk > 0
-1,         wk ≤ 0

                                                       (2) 

And 

                                                        Ck(wk) = 
1

1+e-|wk-μ |/σ
                                                              (3) 

The sign function, sgn(wk), determines the quantized symbol based on the positivity or 

negativity of the weight wk . Aimed at minimizing quantization error, the adaptive 

quantization coefficient Ck(wk) is defined in relation to the gradient's sensitivity and 

distribution, with μ and σ representing the mean and standard deviation of the gradient 

distribution, respectively. This function is designed to offer higher quantization preci-

sion for gradient values near the mean, while allowing coarser quantization for values 

far from the mean, thereby balancing efficiency and accuracy. 

3.2 The processs of HiQuFlexAsync 

The proposed architecture comprises a set of client devices C={C1, C2, C3.... , CN}, a 

set of edge servers E = {E1, E2, E3, ..., EM} (where M<N), and a central node located in 

the cloud. The entire federated learning process encompasses two pivotal aggregation 

update mechanisms: synchronous aggregation updates between edge servers and cli-

ents, and asynchronous aggregation updates between edge servers and the cloud. The 

choice of implementing synchronous aggregation updates between edge servers and 

clients is driven by the objective to achieve real-time and low-latency model updates. 

On the other hand, asynchronous aggregation updates between edge servers and the 

cloud are designed to fully leverage the cloud's computational resources and storage 

capacity for handling large-scale data and complex model updates. This division of 

labor effectively balances the demands for real-time processing in edge computing en-

vironments with the cloud's capability to manage large-scale data processing. The spe-

cific steps are as follows: 

Step 1 The central node in the cloud initializes the model and sends the initial model 

to various edge servers. These edge servers then select client devices to participate in 

the federated learning training. 

Step 2 After the edge servers select the clients for federated learning, they distribute 

the initial model to these clients. Upon receiving the initial model, clients conduct local 

training. The clients update the model using the Stochastic Gradient Descent (SGD) 

algorithm, where t represents the update step index, and α represents the gradient de-

scent step index. Moreover, In order to mitigate overfitting during the local model train-

ing process, we have implemented gradient regularization as a preventive measure. The 

local model parameters are updated during the training process as follows: 

wi(t)= wi(t - 1) - α∇G
i
(wi(t - 1))                                              (4) 

Where   Gi(wi(t)) = Fi (wi(t) + 
λ

2
||wi(t) - wi(0)||

2

2 and  Gw = ∑
DiGi

(w)

D

n
i=1  

,  
n∈ {1, . . . ,N} 

Step 3 Upon completion of local training, the clients quantize their updated local 

parameters and transmit the quantized data to the connected edge server Ej. Upon 
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receiving the data, the edge server performs decoding followed by edge aggregation to 

update the edge parameters according to formula (5). In equation (5), qj represents the 

number of clients managed by edge server Ej, Di is the total number of data samples of 

client i, and Dj is the total number of data samples of all clients connected to  Ej. 

wj(t)=
∑ DiQ(wi(t))

qj

i=1

Dj
                                                                (5) 

Step 4 After completing the aggregation update between the edge servers and the 

local clients, the edge servers quantize the updated parameters and send the quantized 

edge parameters to the cloud. During the aggregation process between the edge servers 

and the cloud, an asynchronous aggregation method is used to update the model. A 

staleness function and a hybrid hyperparameter αt are defined, where αt controls the 

impact of the edge model on the global model. The criteria for selecting the staleness 

function consider the following three aspects: 

• Exponential decay functions have desirable characteristics in handling time differ-

ences, effectively reflecting the impact of time intervals on model update speed. 

• The positive coefficient k in the function can control the decay speed, thus flexibly 

adjusting the time step of model updates to accommodate different edge node latency 

scenarios. 

• The chosen function should reasonably reflect the latency of edge nodes, and for 

nodes with significant delays, it should effectively reduce the speed of model updates 

to avoid excessive impact on the overall model aggregation process. 

Therefore, the exponential decay function s(x) is chosen as the standard for the staleness 

function due to its reasonableness and flexibility on the time scale. This function is 

well-suited to meet the needs of asynchronous aggregation in federated learning. 

              s(x)= e(-k*x)                                                                            (6) 

In this staleness function s(x), x represents the time difference, and k is a positive co-

efficient controlling the decay speed. The function s(x) outputs an adjustment factor 

based on the delay situation, which is used to update the time step, adapting to the 

performance differences of edge nodes. During the model aggregation process, two for-

mulas are used to implement the update of global parameters. 

                                             αt← α × s(T - τ)                                              (7) 

wt←(1 – αt)wt-1 + αtQ(w
j
(t))                                              (8) 

Equation (7) is utilized to adjust αt, where T−τ represents the latency in the model up-

date of the edge nodes. By employing Equation (8), the global model parameter wt is 

aggregated. 

Step 5 Once the cloud receives the quantized edge parameters sent by the edge 

server, it begins by decoding these edge parameters before updating the global param-

eter wt. After the update is completed, the global parameters are sent back to the edge 

server that provided the edge parameters. Subsequently, the edge server disseminates 

the global parameters to its connected clients, who, upon receiving the updated global 

parameters, initiate a new round of local training. 
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Table 2. Algorithm 1 illustrates the procedural framework of the HiQuFlexAsync algorithm. 

Algorithm 1: Hierarchical Asynchronous Federated Learning with Quantization 

Input: learning rate γ ，number of local updates k 

Output: global model parameters wt 

1: procedure Hierarchical Federated Flexible Asynchronous 

2: Initialize：global model parameters w0，max local update rounds t=0， 

                       local update rounds for client I, ti =0 

3: use the Algorithm 2 to assign clients to edge servers 

4: while t <k  do 

5: Client update: 

6:     for each client i ∈ {1，2，3...,N }  do 

7:             Receive wi(t-1)  

8:             update wi(t)= wi(t - 1) - α∇G
i
(wi(t - 1))        

9:             Q(w
i
(t)) ←||w||

2
sgn(wi)C i(wi) 

10:            send Q(w
i
(t)) to the connected edge servers. 

11:            if i received updated parameters from edge server 

12:                  Start a new round of local training 

13:                   ti +=1，and  t=max(ti) 

14:            end if 

15:     end for 

16: Edge sever update: 

17:     for each edge node m ∈ {1，2，3...,M }  do 

18:            Receive Q(w
i
(t))  

19:            update wj(t)=
∑ DiQ(w

i
(t))

qj

i=1

Dj

        

20:            Q(wj(t)) ←||w||
2
sgn(wj)Cj(wj) 

21:            send (Q(wj(t)), τ) to the cloud 

22:            if received updated parameters from cloud 

23:                     Send the wt to the connected client 

24:            end if  

25:     end for 

26: Cloud update: 

27:     receive (Q(wj(t)), τ) 

28:     update αt← α × s(T - τ) 

29:     update wt←(1 – αt)wt-1 + αtQ(w
j
(t))    

30:     Send wt to the corresponding edge node  

31: end while 

32: return the global model parameters wt 

3.3 The Cost-Optimized Heterogeneous Client-Edge Association Algorithm 

Edge servers establish a designated set of connected clients, referred to as S. Initially, 

within their respective communication ranges, these edge servers transmit information 

to the clients. Upon receipt of this information, the clients are tasked with deciding 

whether to participate in federated learning. If a client consents, it is obliged to send its 

status information back to the edge server. Consequently, the edge server is enabled to 

select clients based on the information received from them. To initiate this process, 

Formula (9) is employed for the computation of the data transmission rate. 
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                                                    ri=Blog
2
(1+

pihi
2

N0
 )                                                       (9) 

ri symbolizes the data transmission rate. The bandwidth capacity of the clients, denoted 

as B, is assumed to be uniform across all clients. The transmission power density is 

indicated by pi, channel gain by , and noise power by N0. After calculating the data 

transmission rate, Formulas (10) and (11) are used to compute the client's transmission 

delay and propagation delay. 

                             δi
T
=

si

ri
                                                                                (10) 

                                                            δi,j
P

= 
di,j

c
                                                                  (11) 

In Formula (10), si denotes the size of the model information being transmitted. In For-

mula (11), di,j represents the distance from client Ci to the edge server Ei, with c signi-

fying the speed of light. Following the computation of the client's transmission and 

propagation delays, Formula (12) is employed to calculate the communication delay, 

and Formula (13) is used to determine the client's computational delay.  

                                                             TCOM=δi
T
+δi,j

p
                                                                  (12) 

                                                        TCMP =
gi

ki
                                                                (13) 

In Formula (13), gi indicates the total number of CPU cycles required to execute Di, 

and ki denotes the CPU frequency of Ci. Having calculated the client's communication 

and computational delays, the total delay Ttotal is simply the sum of these two delays, 

as shown in Formula (14). 

         Ttotal=TCOM+ TCMP                                                (14) 

Upon calculating the total delay for a client, we utilize the Bhattacharyya distance to 

measure the similarity of label distributions between the client seeking to join and those 

already connected to the edge server. The Bhattacharyya distance ranges from 0 to 1, 

where a distance of 0 indicates that the two probability distributions are identical (we 

use the label distribution of the client's data to represent its probability distribution). 

The definition of the Bhattacharyya coefficient is as follows:For discrete values, the 

Bhattacharyya coefficient is defined as 

                                                     BC(p,q)= ∑ √p(x)q(x)                                                  (15) 

,and for continuous values,it is defined as  

 BC(p,q)= ∑ √p(x)q(x)dx                                                  (16) 

After obtaining the Bhattacharyya coefficient, the Bhattacharyya distance can be de-

fined as 

DB(p,q)=−ln(BC(p,q))                                                     (17) 

Suppose the data distribution of the client to be selected is p1, and the average data 

distribution of the clients already connected to the server is q1. In that case, the similar-

ity between the two distributions can be calculated using the Bhattacharyya distance:  

DB(p1,q1)=−ln(BC(p1,q1))                                            (18) 

The smaller the value of DB(p1,q1), the more similar the two data distributions are. We 

use Formula (19) to evaluate the cost of participating in federated learning for potential 

clients, obtaining their EXP (EXP refers to EXPENSE, indicating the training cost of 

participating in federated learning): 

EXPk =Ttotal+λDB(
|Dm|· FDm + |Dk|· FDk

|Dm| + |Dk|
 , FDm)                           (19) 
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In Formula (19), λ serves as a weight parameter that balances the trade-off between 

resource heterogeneity and data heterogeneity. FDk is the label distribution of the cur-

rent client to be selected. FDm is defined as  

FDm=(p1,p2,p3,...,pn)                                                           (20) 

which is a distribution containing various labels and their corresponding probabilities. 

Here, pi represents the occurrence probability of label i in clients connected to edge 

node m. Note that the length of FDm is equal to the number of labels, and the sum of all 

probability values is 1. By calculating the EXP of the client to be selected, EXPk, the 

smaller the value of EXPk , the less the total delay of the newly joined client and the 

more similar its data distribution is to the clients already connected to the edge server. 

This approach not only considers the physical heterogeneity of devices but also the 

heterogeneity of data, reducing the impact of heterogeneity on federated learning from 

both aspects, thereby enhancing the efficiency of federated learning.  
Having determined the EXP of the client to be selected, we can commence the client 

selection process. The specific strategy for edge servers to select clients is as follows: 

• If the client cluster of edge node E is empty, the edge node selects the client with the 

least response delay from the unassociated clients within its communication range. 

Otherwise, the edge node selects the client k with the lowest cost EXP. 

• If a client is currently selected by multiple edge nodes, the client will randomly 

choose one edge node. 

• The bilateral selection process continues until all clients are associated with an edge 

node. 

 

Fig. 3. Edge Server Diagram Connected to Different Clients. 

For example, as depicted in Figure3, edge servers 1 and 2 are connected to different 

clients. For edge server 1, having already selected client1 and client4, if the selection 

were based solely on communication delay, the optimal choice would be client 5. How-

ever, our client selection algorithm takes into account both communication delay and 

the data heterogeneity of clients. Therefore, edge server 1 compares the EXP values of 

the two devices and, finding that EXP6 is lower than EXP5, selects client 6 to join the 

federated learning network. Similarly, for edge server 2, the COHEA algorithm was 

employed to account for client heterogeneity, leading to the selection of client 5. 
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Table 3. Algorithm 2 delineates the process of the COHEA algorithm. 

Algorithm 2：Cost-Optimized Heterogeneous Client-Edge Association Algorithm  

Input ： the response latency {Ti}i=1
N ， Label distribution of all the clients 

                             {FDk}k=1
N  

Output:  client cluster for each edge node cj for j ∈{1, 2,...,M}. 

1: Initialize: client cluster for each edge node: cj= ∅, j ∈{1，2，3...,M} ,and 

                      empty edge set for each client sk=∅, client k ∈{1，2，3...,N } 

2: Initialize: a client cluster U= {1，2，3...,N} 

3:   while U ≠ ∅  do 

4:      for j ∈{1，2，3...,M}  do 

5:         if cj= ∅ then 

6:                Select the client k with the minimum response latency  

7:                And set cj={k} 

8:                Remove client k from U 

9:         else 

10:              Select client k by minimizing(19) 

11:                 sk =  skU {j} 

12:         end if 

13:      end for 

14:      for k ∈{1，2，3...,N} do 

15:         if sk ≠ ∅ then 

16:             Randomly select an edge node j from sk 

17:                 cj =  cjU{k} 

18:             Remove client k from U and clear sk 

19:         end if 

20:      end for 

21:   end while 

22: return cj for j ∈{1, 2,...,M} 

4 Experiment 

4.1 Simulation Settings 

We designed a simulation environment using Matlab R2019a, considering a large num-

ber of work nodes, varying client proportions, edge nodes, and the quantity of local 

aggregation. The area covered by the edge computing network in the simulation envi-

ronment measures 5 km × 5 km. The background noise level in the simulated environ-

ment is set at -100 dB, the communication range of edge nodes is 350 meters, the CPU 

frequency of edge nodes is 1.5 GHz, and the transmission power of edge nodes is 2.2 

W. 

The hierarchical federated learning system comprises 100 clients, 10 edge servers, 

and 1 cloud server. Each edge server is assigned an equal number of clients, and each 

client possesses an equal amount of training data. In this system, we undertook a classic 

image classification task using the MNIST dataset and the CIFAR-10 dataset for train-

ing. For the MNIST dataset and the CIFAR-10 dataset, we employed a Convolutional 

Neural Network (CNN) with 21,840 trainable parameters. This CNN model is used for 
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the task of handwritten digit classification, encompassing 10 different categories. To 

train this model, we utilized the Mini-batch Stochastic Gradient Descent (SGD) algo-

rithm, with each batch containing 20 samples. The initial learning rate was set at 0.01, 

updated at an exponentially decaying rate of 0.995 per epoch. 

All experiments were conducted on a Windows 11 operating system, powered by a 

12th Gen Intel(R) Core(TM) i7-12700 CPU at 2100 MHz, featuring 12 cores and 20 

logical processors. The system was equipped with 16GB of RAM, and we used Python 

3.7 and PyTorch on PyCharm 2020 version for our experiments. In our proposed hier-

archical federated learning system, to simulate the characteristics and distribution of 

data from different clients in the real world, we have taken into account the scenarios 

of non-identically distributed (Non-IID) data and physical device heterogeneity. Our 

Non-IID setting involves the allocation of samples from two categories to each client, 

with 10 clients on each edge server covering a total of 5 label categories. The datasets 

between edge servers exhibit non-identical distributions. To simulate the physical het-

erogeneity of devices, we have categorized clients based on three bandwidth levels—

100Mbps, 150Mbps, and 200Mbps—and also three CPU utilization rates—50%, 60%, 

and 70%. This approach aims to more closely resemble the heterogeneous characteris-

tics of different devices in the real world, providing a more comprehensive and practical 

data simulation for our research. 

4.2 Experimental process 

Under both IID (Independent and Identically Distributed) and Non-IID settings, we 

compared our HiQuFlexAsync scheme with other federated learning approaches. The 

following is an introduction to these comparative schemes: 

• FedAvg[13]: This is a cloud-based synchronous aggregation federated learning ap-

proach.  

• FedAsync[14]: This is a cloud-based asynchronous federated learning algorithm. It 

updates the global model without waiting for slower clients to process. 

• FedAT[15]: A hierarchical federated learning approach that combines synchronous 

intra-layer training with asynchronous inter-layer training. FedAT clusters clients 

based on their response delays, without considering the heterogeneity of client data. 

• HierFAVG[16]: A hierarchical federated learning scheme based on cloud-edge-cli-

ent architecture. It conducts synchronous updates in both client-edge aggregation 

and edge-cloud aggregation. 

• HiFlash[17]: A layered federated learning paradigm that integrates mobile edge 

computing, employing synchronous client-edge model aggregation and asynchro-

nous edge-cloud model aggregation.  

During experimental phase, HiQuFlexAsync and its counterpart models consistently 

involve the same quantity of clients in every training round. First, we will explore the 

optimal value of α in HiQuFlexAsync, and then evaluate the performance of HiQuFlex-

Async by comparing its test accuracy, loss data, and communication efficiency with 

those of other federated learning schemes. 
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4.3 Experimental Results and Analysis 

A. Parameters Adjustment 

Prior to comparing the performance with other federated learning methods, we con-

ducted an assessment of the parameters in the proposed HiQuFlexAsync framework. 

The evaluation started with the asynchronous weight parameter α, with values system-

atically tested in the range of 0.1 to 0.9, aiming to determine the optimal α value. This 

process contributes to optimizing the performance of the HiQuFlexAsync model and 

provides robust support for subsequent performance comparisons. 

      
(a) Mean accuracy                                                  (b) Mean loss 

Fig. 4. The mean values obtained by testing α from 0.1 to 0.9 on the MNIST dataset at quanti-

zation levels s of 1, 2, 4, 8, and 16, respectively. 

      
  (a) Mean accuracy                                               (b) Mean loss 

Fig. 5. The mean values obtained by testing α from 0.1 to 0.9 on the CIFAR-10 dataset at quan-

tization levels s of 1, 2, 4, 8, and 16, respectively. 

As shown in Figures 4 and 5 of the experimental results, during the gradual testing of 

α values from 0.1 to 0.9, it was observed that prior to setting α to 0.5, the model perfor-

mance was suboptimal. Even after the same number of communication rounds, the loss 
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function remained convergent at a higher level, and the model accuracy consistently 

lagged behind. However, upon setting α to 0.5, an improvement in model performance 

was noted. At this point, the average value of the loss function exhibited a decreasing 

trend, while the accuracy gradually increased. Further observations revealed that when 

α exceeded 0.6, the training performance of the model started to rebound, indicating a 

potential overfitting phenomenon. Therefore, the decision was made to confirm α = 0.5 

as the optimal training value. Considering all factors, α was set to 0.5 for subsequent 

comparative experiments. 

Subsequently, we evaluated the weight parameter λ by testing the model's accuracy 

and convergence time in HiQuFlexAsync under different λ values, aiming to select the 

optimal λ value. 

    
(a) MNIST                                                           (b) CIFAR-10 

Fig. 6.   Fig.6 Test accuracy corresponding to different values of λ on the MNIST and CIFAR-

10 datasets. 

    
(a) MNIST                                                            (b) CIFAR-10 

Fig. 7. Convergence time corresponding to different values of λ on the MNIST and CIFAR-10 

datasets. 

From Figure 6, it can be observed that the test accuracy of HiQuFlexAsync reaches its 

peak when λ is between 350-400, regardless of whether in IID or Non-IID settings. 

Furthermore, Figure 7 indicates that the model's convergence time is minimal when λ 
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falls within the range of 300-400. Taking into account both model accuracy and effi-

ciency, λ value of 360 was chosen as the optimal parameter setting. In subsequent com-

parisons with other federated learning approaches, λ was fixed at 360. 

B. Model Accuracy Comparison 

We conducted a performance comparison between HiQuFlexAsync and other feder-

ated learning schemes. After 100 training rounds on the MNIST dataset, the accuracy 

changes of various federated learning schemes are depicted in Figure 8. Similarly, after 

100 training rounds on the CIFAR-10 dataset, the accuracy changes of various feder-

ated learning schemes are shown in Figure 9. 

     
(a) IID                                                               (b) Non-IID 

Fig. 8. Test accuracy of MNIST dataset under different data distributions w.r.t the total number 

of training epochs on the clients. 

      
                                (a) IID                                                               (b) Non-IID 

Fig. 9. Test accuracy of  CIFAR-10 dataset under different data distributions w.r.t the total 

number of training epochs on the clients. 

From Figures 8 and 9, it is evident that HiQuFlexAsync has achieved a level of training 

performance comparable to that of HiFlash. This can be attributed to our adoption of a 

three-tier federated learning architecture with quantization capability, integrating the 

COHEA algorithm. The key advantage of this algorithm lies in its consideration of 

client heterogeneity during the client allocation process, which promotes personalized 

optimization and efficient resource utilization, thereby enhancing model performance. 
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It is noteworthy that, in comparison to the three-tier architecture of HierFAVG and the 

asynchronous aggregation approach of FedAT, HiQuFlexAsync demonstrates a signif-

icant improvement in experimental accuracy. This improvement is attributed to our im-

plementation of a hybrid architecture incorporating three tiers along with synchronous 

and asynchronous components, coupled with the utilization of the COHEA algorithm 

in the client allocation process.  

Furthermore, we delved into the performance of the COHEA algorithm in HiQu-

FlexAsync without considering device heterogeneity. As illustrated in Figures 8 and 9, 

when disregarding device heterogeneity, the model accuracy of HiQuFlexAsync falls 

below the standard levels of conventional HiQuFlexAsync and HiFlash. This is at-

tributed to the fact that accounting for device heterogeneity enables the full utilization 

of computing resources across different devices, thereby enhancing the overall compu-

tational performance and efficiency of the system. Without considering device hetero-

geneity, it results in a decrease in model accuracy. Hence, our algorithm takes device 

heterogeneity into account to enhance model performance. 

C. Model Loss Comparison 

Figures 10 and 11 demonstrate the changes in loss values of various federated learn-

ing methods as the number of training rounds increases, under both IID and Non-IID 

settings for the MNIST and CIFAR-10 datasets. 

Figures 10 and 11 depict the fitness and performance of various federated learning 

schemes during the training process. It is evident that HiQuFlexAsync has achieved 

significant fitting results in both IID and Non-IID settings, thanks to our more thought-

ful consideration of client heterogeneity in the client allocation scheme. By optimizing 

client allocation to achieve load balancing and enhance system parallel processing ca-

pabilities, we have been able to elevate system performance. In comparison to alterna-

tive methods, our approach has demonstrated more pronounced enhancements in opti-

mizing federated learning, further substantiating the effectiveness and feasibility of our 

methodology. 

     
        (a) IID                                                                 (b)  Non-IID 

Fig. 10. loss values of MNIST  dataset under different distributions w.r.t the total number of 

training epochs on the clients. 
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                             (a) IID                                                              (b) Non-IID 

Fig. 11. loss values of CIFAR-10  dataset under different distributions w.r.t the total number of 

training epochs on the clients. 

   
                          (a) IID                                                                   (b) Non-IID 

Fig. 12. Comparison of the time required by various federated learning methodologies to 

achieve 0.90 accuracy under the IID setting and 0.80 accuracy under the Non-IID setting on the 

MNIST dataset. 

D. Model Efficiency Comparison 

Further simulation experiments were conducted to investigate the time required for 

various federated learning schemes to achieve a specific level of accuracy on the 

MNIST dataset under IID and Non-IID settings. An accuracy target of 0.90 was chosen 

for the IID setting, while a target of 0.80 was selected for the Non-IID scenario. The 

selection of these values was based on prior experiments and a comprehensive consid-

eration of the data complexity and comparability. The results of these experiments are 

presented in Figure 12. 

Figure 12 vividly illustrates the high communication efficiency demonstrated by 

HiQuFlexAsync in both IID and Non-IID scenarios. This can be attributed to our model 

quantization, which has significantly bolstered communication efficiency. Further-

more, previous experimental findings suggest that while FedAVG excels in accuracy, 

it lags in communication efficiency compared to federated learning schemes employing 

a three-tier architecture and asynchronous updates. This deficiency arises from the 
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enhanced parallelism and scalability offered by the three-tier architecture, coupled with 

the reduction in communication latency afforded by asynchronous updates. Conversely, 

the HiQuFlexAsync approach holistically considers both experimental accuracy and 

efficiency, thereby showcasing the exceptional performance of our methodology. 

5 Conclusions 

In the paper, a federated learning scheme named HiQuFlexAsync is proposed to address 

the challenges posed by data heterogeneity, physical heterogeneity, network latency, 

bandwidth limitations, and unstable network connections, which impact the perfor-

mance of federated learning. Our approach adopts a cloud-edge-end three-tier architec-

ture with quantization capability, improving communication efficiency through model 

quantization. Additionally, we introduce a client allocation algorithm called COHEA 

to optimize the client selection process, leveraging the data and physical heterogeneity 

of clients for federated learning. Furthermore, considering the communication con-

straints between cloud servers and edge servers, we adopt an asynchronous aggregation 

strategy to optimize the model aggregation process between them. Through extensive 

experimentation, we have demonstrated the superior performance and efficiency of the 

HiQuFlexAsync approach in training. However, we recognize that there is room for 

improvement in HiQuFlexAsync, such as exploring the impact of different network 

models on the algorithm. Therefore, future research will further explore and refine the 

HiQuFlexAsync scheme, extending its application to other domains. 
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