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Abstract. Emotion recognition can enhance humanized machine responses to 

user commands, while voiceprint-based perception systems can be easily inte-

grated into commonly used devices like smartphones and stereos. Despite having 

the largest number of speakers, there’s a noticeable absence of high-quality cor-

pus datasets for emotion recognition using Chinese voiceprints. Hence, this paper 

introduces the VCEMO dataset to address this deficiency. The proposed dataset 

is constructed from everyday conversations and comprises over 100 users and 

7,747 textual samples. Furthermore, this paper proposes a multimodal-based 

model as a benchmark, which effectively fuses speech, text, and external 

knowledge using a co-attention structure. The system employs contrastive learn-

ing-based regulation for the uneven distribution of the dataset and the diversity 

of emotional expressions. The experiments demonstrate the significant improve-

ment of the proposed model over SOTA on the VCEMO and IEMOCAP datasets. 

Code and dataset will be released for research. 

Keywords: Speech Emotion Recognition, Multi-modal, Chinese Voiceprints. 

1 Introduction 

Audio data plays a fundamental and irreplaceable role in our comprehension of the 

world. It encapsulates not only words and language but also the intricate tapestry of 

human experiences and emotions. Consequently, audio data exhibits an astonishingly 

diverse array of applications that span the entire spectrum of human endeavor. Specif-

ically, voiceprint-based emotion recognition from audio data is paramount for assis-

tance in communicating with people and many human-computer interaction applica-

tions. In call centers, employees can make informed decisions by receiving timely feed-
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back on customers’ moods or assess business interactions based on customers’ emo-

tional states. Simultaneously, the software application can adapt and enhance user ex-

periences by implementing appropriate behaviors through real-time monitoring of the 

user’s emotions [24].  

With over a billion native speakers and a rich cultural heritage, Chinese has undeni-

ably emerged as a highly popular language on the global stage. Hence, the application 

of emotion recognition for Chinese audio holds great promise. However, there exists a 

restricted amount of Chinese corpus data available for model training in the context of 

emotion recognition. Furthermore, current methods are typically trained and evaluated 

on English datasets, lacking specific processing and optimization for Chinese data. 

Consequently, we collected a large Chinese conversation sentiment corpus called 

VCEMO for the single-sentence Chinese emotion recognition task. The dataset consists 

of single-sentence conversations of everyday life and has several advantages: 

1). Rich voiceprint information: Considering that the collection of voice infor-

mation in previous datasets (e.g., CASIA [18], IEMOCAP [1]) has often relied on a 

specific few professional readers or professional actors, only a few people’s pronunci-

ation information as well as voiceprint features are present in the datasets. Our dataset 

contains daily speech data from more than 100 people, including a wide range of Chi-

nese pronunciation accents and spoken language features. 

2). Abundant text information: The textual content of the dataset is exclusively 

sourced from spontaneous conversations in everyday life. Consequently, there exist 

substantial disparities between these texts, and they are abundant in information. 

3). Adaptability to multi-modal fusion: Given that the data originate exclusively 

from everyday conversations and individuals naturally employ various textual expres-

sions to convey their inner sentiments based on their emotions, we can effectively lev-

erage the multi-modal fusion of audio signals and textual information for the emotion 

recognition task. 

Contemporary methods [5, 4, 15, 20, 21,19] commonly employ neural networks for 

tasks such as emotion recognition, as well as for effective feature extraction and clas-

sification of data. Given the notable distinctions between Chinese and English, these 

methods lack specific processing tailored to Chinese information. Hence, leveraging 

the extensive Chinese corpus dataset VCEMO, we introduce a novel multimodal model 

for emotion recognition. Automatic speech recognition (ASR) [11] is adapted to con-

vert audio signals into Chinese text messages. For Chinese text, we use the pre-trained 

Chinese BERT architecture for processing. In addition, we utilize text embedding for 

additional emotion feature extraction from Chinese text. Finally, the co-attention struc-

ture is employed to fuse multi-modal data features. 

Furthermore, given that the VCEMO dataset originates from everyday conversations, 

there is an uneven distribution of emotional data within the dataset. Additionally, a 

single audio sentence may encompass diverse emotional expressions, making it chal-

lenging for a singular emotional label to fully convey its comprehensive emotional in-

formation. To tackle the aforementioned issue, we employ a contrastive-learning-based 

regulation for training our model. Eventually, experimental tests have demonstrated 

that our model has significantly better emotion recognition performance on VCEMO 

than previously studied models. 
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Overall, our contributions are as follows: 

– We produce a new Chinese daily conversational corpus dataset for emotion recog-

nition, called VCEMO, containing 7477 samples of audio signals from over 100 indi-

viduals. 

– We propose a multi-modal model for acoustic data and text data (word embeddings 

and pre-trained BERT embeddings) using the co-attention structure for multi-modal 

feature fusion. 

– We employ a contrastive-learning-based regulation to train and optimize models, 

mitigating issues related to sample imbalance and under-representation of individual 

labels. 

– Extensive experiments show that our model has SOTA performance on the 

VCEMO and IEMOCAP datasets. 

2 Related Work 

Speech emotion recognition has been studied for multiple decades within both the ma-

chine learning and speech communities. In alignment with the prevailing research ap-

proach, scholars extract feature insights from audio data and subsequently employ these 

insights across a range of classifiers, including: hidden Markov models [12], convolu-

tional recurrent network [16], SVM [13], hierarchical binary decision tree [8], gaussian 

mixture [3], nerual network [14]. Much of the aforementioned works relied on context 

to furnish additional information for correcting and inferring emotional content ex-

tracted from the data. The mining and analysis of emotional information from single-

sentence audio data can pose more significant challenges. Xu et al. [20] introduced an 

attention-based network designed for aligning textual and audio information, along 

with feature extraction. Yoon [21, 22] presented a groundbreaking deep dual recurrent 

encoder model that seamlessly merges text data and audio signals. This model employs 

a pair of recurrent neural networks (RNNs) to holistically encode the information. 

Delbrouck [2] et al. proposed a transformer-based joint-encoding model called 

UMNOS for single-sentence emotion recognition and sentiment analysis. 

 

Fig.  1. The multi-modal model for emotion recognition. 
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3 Our Approach 

In this section, we describe our emotion recognition model. This model employs three 

distinct modalities of data as input sources: acoustic signals, word embeddings, and 

BERT-encoded embeddings. Initially, each modality is processed separately. Subse-

quently, all the features from the various input modalities are combined using a co-

attention layer. Finally, Linear layers are employed to produce the predictions. The 

overall model structure is shown in Fig.  1. 

3.1 Modality Input 

This model has three modalities as input. Regarding the acoustic input, we utilized the 

mel-spectrogram, which is generated by applying a Short-Time Fourier Transform 

(STFT) to the audio signal. The mel-spectrogram provides a visual representation of 

the energy in different frequency bands of an audio signal changing over time, with the 

frequency axis adjusted to better match the human auditory perception. 

ASR is a technology that converts audio data into text data, facilitating the transcrip-

tion and understanding of spoken words by machines. We use the ASR module to ex-

tract recognized text from audio signals. For text input, we use text embedding to learn 

text features directly. Meanwhile, we incorporate pre-trained BERT to extract transcrip-

tion features from external knowledge. 

3.2 Modality Pre-process 

After retrieving the mel-spectrogram of the audio signals, we apply a classic Conv-

BatchNorm-ReLU structure to extract features in both the time and frequency dimen-

sions. Then, an LSTM layer is applied to extract deeper features in the time dimension. 

Additionally, the word embeddings have a better time structure and are more straight-

forward in each time slot. Hence, an LSTM is applied to the word embeddings before 

using a 1D-convolution layer to incorporate the information from the entire timeline. 

The feature extracted from BERT is a 768-dimensional vector. As it is already well-

structured and contains abundant information, we applied a Linear layer to modify its 

size for subsequent multi-modal fusion and information compression. 

3.3 Multi-modal fusion 

Given the presence of three modalities, we need two rounds of fusion to comprehen-

sively combine all the information extracted from these different modalities, and deter-

mining the order of fusion is a significant consideration. In our model, we first fuse the 

audio features and word embedding features. Their akin temporal structures make them 

suitable for initial fusion, as this process enhances the temporal dimension by leverag-

ing their shared characteristics to amplify common information and compensate for 

missing data unique to one modality. Subsequently, the time-structured feature men-

tioned earlier is fused with the BERT-encoded feature, incorporating external 
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knowledge from the outside world to in-dataset knowledge. In each fusion, there are 

two stages: extracting additional features from one modality with knowledge from an-

other modality and then merging these additionally extracted features into a single rep-

resentation. 

In the first stage, we employed the co-attention layer to convey the presence of an-

other modality to each modality. The structure of co-attention layer is as shown in Fig.  

2. Inspired by [23], we employed the Encoder-Decoder structure to stack multiple lay-

ers of attention modules. In the co-attention layer, the first modality employs self-at-

tention alone to extract deeper information from itself. Following that, the second mo-

dality goes through a self-attention operation, during which a guided-attention step is 

conducted to extract more information while considering both modalities. In contrast 

to simply using the output of the self-attention from another modality at the same depth 

as the input for guidedattention, leveraging the final output of the Self-attention layers 

can offer more enriched information and a more accurate guide. Both self-attention and 

guidedattention are based on the attention mechanism [17]. The attention module aids 

in constructing a holistic perspective of the entire period during the speech. The atten-

tion consists of a query q, a key k and a value v: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑇

√𝑑
)𝑣 

In the self-attention, all of q, k, and v are from the same modality. However, in guided-

attention, the v and k are from the same modality while q is from another modality. 

The first stage of the two fusion is the same, yet they diverge in the second stage. 

Considering the similarity of time structures, for the fusion between features from audio 

data and word embeddings, we employ a straightforward element-wise addition. This 

approach enhances their temporal structure and reduces the feature size compared to 

concatenation. In the second fusion, the features are dissimilar and lack a shared tem-

poral structure, which leads to lossy and disorganized information when using element-

wise addition. Consequently, concatenation is employed to retain more information, 

which is crucial for effectively leveraging both in-dataset knowledge and external-

world knowledge. Following the ultimate fusion, we applied additional self-attention 

to comprehensively process the collective information from all modalities and proceed 

to make predictions using a two-layer MLP. 

 

Fig.  2. The architecture of the co-attention layer 
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3.4 Contrastive Learning 

Through our examination of misclassified cases in current state-of-the-art models, we 

identified that the ambiguity in the emotions expressed by actors is another factor hin-

dering the model from learning accurate features. It is common to observe that a per-

son’s emotions can be complex, even involving contradictory feelings simultaneously. 

However, datasets with labels assigned to a single emotion as the ground truth may be 

misleading in capturing the presence of other coexisting emotions. Furthermore, em-

ploying traditional cross-entropy loss during model training mechanically steers the 

model to predict a probability of 1 only for the labeled emotion, penalizing predictions 

with non-zero probabilities for other emotions. This situation can significantly perplex 

the model, especially in cases where multiple emotions coexist. Moreover, stemming 

from naturalistic conversations in daily life, our dataset exhibits an imbalanced distri-

bution of labels. Specifically, there is a pronounced prevalence of sentences labeled as 

neutral, contrasting with a scarcity of instances labeled as surprise. 

Consequently, we advocate for the implementation of a contrastive learning loss as 

a regulatory measure to alleviate the impact of multiple emotions and mitigate data 

imbalances. Contrastive learning is a training technique that originated from unsuper-

vised learning. Supervised learning studies [7] have also demonstrated their effective-

ness, utilizing samples from the same class as positive samples and others as negative 

samples. The loss used is the following: 

𝐿𝑆𝑢𝑝𝐶𝑜𝑛 = −∑
1

|𝑃(𝑖)|
∑ log

exp⁡(𝑧𝑖 ⋅ 𝑧𝑝/𝜏)

∑ exp⁡(𝑧𝑖 ⋅ 𝑧𝛼/𝜏)𝛼∈𝐴(𝑖)
𝑝∈𝑃(𝑖)𝑖∈𝐼

 

Here, I is the set of classes, A(i) is the batch of samples contrasting with feature zi, P(i) 

is the set of positive samples of feature zi in A(i), i.e. samples with the same label.  

The loss function is characterized by a vague description, suggesting that the feature 

extracted from a given sample should exhibit proximity to features extracted from pos-

itive samples while maintaining distance from features of other negative samples. Un-

like traditional supervised learning, which prescribes a specific point in a lower dimen-

sion for a sample, contrastive learning defines positions in high-dimensional space that 

a sample should either approach or diverge from. This can mitigate the impact of labels, 

thereby diminishing the influence of multiple emotions. 

As depicted in Fig.  3 and Fig.  1, the contrastive learning loss is computed from the 

feature projector’s output, whereas the conventional cross-entropy loss relies on the 

output of the predictor. The feature projector and the predictor are both one-layer MLP. 

Therefore, the final loss can be represented as 

𝐿 =
𝐿𝐶𝐸 + 𝛼 ⋅ 𝐿𝑆𝑢𝑝𝐶𝑜𝑛

1 + 𝛼
 

where α is a hyperparameter to control the importance of contrastive learning loss in 

the final loss.  
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Fig.  3. The pipeline of the contrastive learning. 

3.5 Data Augmentation 

We formulate data augmentation strategies to mitigate the impact of noise, thereby im-

proving the overall generalization of the model. In detail, we augment the audio signals 

in three ways: adding noise based on SNR, applying pitch shifts, and employing time 

stretching. When adding noise to the audio feature, we use an SNR of 30dB and ran-

domly initialize the noise in Gaussian distribution. The pitch shift and time stretch are 

implemented by the librosa. In IEMOCAP, to increase the contrastive samples, we take 

advantage of the Dropout layers in our model. We run the prediction twice in one epoch 

to generate different features from the same sample. Also, as described in the previous 

section, we adopted MoCo [6] with size 16384. 

4 Evaluation 

4.1 Dataset 

In addition to utilizing Chinese as the primary language, a key distinction between our 

dataset and existing ones is that we gather real-world data rather than employing actors 

to simulate various emotions. We collected 7,477 daily conversations from over 100 

different people to create the dataset. For each sample, we hired several professional 

emotion analysis experts to analyze the data emotion and get artificial emotion classi-

fication labels (i.e., angry, fear, happy, neutral, sad, surprise) as ground truth. Fig.  4 

presented the distribution of our dataset.  
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Fig.  4. Dataset distribution. 

4.2 Experimental Setup 

In this study, we implement a prototype of a multi-modal emotion recognition algo-

rithm and evaluate the performance on the VCEMO dataset. A server equipped with 

188GB RAM and a 48.0GB VRAM’s NVIDIA TESLA A40 is used for the whole com-

putation for the system. 

Training We trained the models in both our proposed dataset VCEMO and another 

public dataset IEMOCAP. In both datasets, the model was trained for 50 steps with a 

batch size of 256. The optimizer used is Adam. Also, as a mostly used setting, the fea-

ture projector projects the feature into a 128-d vector. The temperature of contrastive 

learning loss t is 1. In VCEMO, we set learning rate to 1e−5, weight decay to 1e−3 and 

α to 0.1 while using 1e−4, 0 and 100 in IEMOCAP. 

Word Embeddings We utilize a 300-dimensional GloVe [10] pre-trained embed-

ding obtained from spaCy to encode the transcription into fixed-length vectors. 

Evaluation Metrics Our dataset supports two kinds of setups. The first setup uses 

all samples for a 6-way classification, while the other setup only uses 4 classes. The 4 

classes include angry, happy, neutral, and sad, which is a common setting for emotion 

recognition. We use two metrics to measure the performance of models comprehen-

sively. The first metric is the accuracy of classification. Besides that, we adopt the F1-

score as another metric to provide a more balanced evaluation of the model’s perfor-

mance. The F1-score is of the form: 

𝐹1 =
2 ⋅ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

By considering both precision and recall, the F1-score can reflect the bias of model 

prediction to show whether a model achieves high accuracy by predicting those major-

ity classes. 
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In IEMOCAP, we measured metrics following existing works. Weighted accuracy 

and unweighted accuracy are both considered to evaluate our model and existing works. 

4.3 Micro Benchmark 

Model Comparison In VCEMO, we split the dataset into 8/1/1 for train/val/test setting. 

We trained our model in the training part consisting 80% data of the dataset. The final 

model is chosen according to their performance on the 10% validation part. The test 

model is only used when the final model is determined. To show the effectiveness of 

our dataset and evaluate the performance of our model, we implement three other mod-

els as a comparison (i.e., Xu’s model [20], UMONS [2] and Yoon’s model [21]). The 

result of different models is shown in Table 1. Our model surpasses all other models in 

performance. In contrast to these models, our model can leverage external knowledge 

provided by BERT embeddings. Furthermore, our model enables improved multi-

modal fusion through enhanced attention mechanisms. 

In IEMOCAP, we followed the previous works using a 5-fold cross-validation. Each 

session in IEMOCAP will be used as a validation set once when training on the other 4 

sessions. The final result is the average of all 5-fold results. Furthermore, when using 

contrastive learning regulation, our model is even better than CME[9] which requires 

addition alignment between transcription and acoustic signal. 

 

Table 1. Comparison of different models on VCEMO. 

Table 2. Results on IEMOCAP dataset. 

 

Models 4-classes 6-classes 

Accuracy F1-score Accuracy F1-score 

Ours (SupCon) 67.40% 67.22% 65.51% 64.67% 

Ours 66.99% 66.90% 65.37% 64.54% 

UMONS 63.27% 63.44% 61.36% 61.35% 

Yoon’s Model 60.96% 59.14% 57.89% 55.42% 

Xu’s Model 59.42% 57.68% 58.16% 55.39% 

Metric Xu’s CME Ours Ours (Sup-

Con) 

WA 70.41% 72.72% 71.23% 73.07% 

UA 69.52% 73.57% 72.46% 74.10% 
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4.4 Ablation Experiment 

To further understand the effect of each modality, we performed an ablation study 

based on the 4-classes setup. The result is presented in Table 3. 

Impact of Transcription Modality Theoretically, all the information presented in 

the text should also be contained within audio signals, suggesting that using only audio 

signals ought to outperform using only text modality. However, it’s noteworthy that 

using only word embeddings outperformed using only one of the other two modalities. 

The disappointment with the result of using only acoustic signals may be due to that 

the information in audio signals is more challenging to extract, making it harder for the 

model to discern what is essential from the abundance of information. And using only 

BERT embeddings is slightly worse than using only acoustic signals. The reason is that 

encoding transcription with a pre-trained BERT model could cause a loss of infor-

mation that is helpful in downstream tasks while trivial in upstream tasks. Therefore, 

word embeddings contain origin features and are easiest to extract, leading to a signif-

icant improvement in performance by around 4%. This gives us a hint that utilizing a 

text modality could help the model effectively extract features from the audio signals. 

Impact of BERT When comparing experiments that only differ in the use of word 

embeddings or BERT embeddings, it’s evident that using word embeddings outper-

forms using BERT embeddings in both single-modal and multimodal settings with the 

audio signal. This indicates that the knowledge within the database is still more im-

portant than external knowledge. However, adding BERT embeddings to word embed-

dings consistently improves performance by 1.5%, demonstrating that external 

knowledge can compensate for missing features from internal knowledge. 

Impact of contrastive learning regulation In all benchmarks, additional contras-

tive learning regulation does improve the performance of our model. Especially in 

IEMOCAP, we can see it can significantly improve the performance of our model by 

over 1.5%. This is consistent with our expectation that contrastive learning regulation 

can reduce the effect of multi-label emotion recognition. Considering that IEMOCAP 

is using a much larger α, the result indirectly suggests that the ground truth of samples 

of IEMOCAP is more vague than our dataset VCEMO.  

Table 3. Ablation study of using different modalities: Embeddings means the simple transcrip-

tion embeddings while the BERT means the BERT embeddings. 

 

 

 

Used modality Accuracy F1-score 

Embeddings 57.40% 55.05% 

BERT 53.29% 50.16% 

Acoustic 53.18% 51.15% 

Embeddings + BERT 57.26% 55.11% 

Embedding + Acoustic 65.21% 64.40% 

BERT + Acoustic 61.23% 60.91% 

Embeddings + BERT + Acoustic 69.52% 74.10% 
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5 Conclusion 

In this paper, we propose the emotion recognition dataset VCEMO for Chinese 

voiceprints. Compared with existing Chinese datasets, the proposed dataset is richer 

and more diversified in terms of voice tones and textual contents, containing more than 

100 users and 7747 textual contents; the samples are all from daily conversations, which 

is closer to real-life scenarios. In addition, this paper proposes a multimodal emotion 

recognition model, which utilizes the co-attention structure for multimodal fusion. The 

contrastive-learning-based regulation training system achieves significantly better per-

formance than SOTA on the VCEMO and IEMOCAP datasets. 
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