
Enhancing Multi-Step Mathematical Reasoning

in Large Language Models with Step-by-Step

Similarity Prompts and Answer Voting

Qi Ye1[0000-0003-2512-1266], Xiang Ji2, RuiHui Hou3, JingPing Liu4 and Tong Ruan5,

1East China University of Science and Technology, 130 Meilong Road, Shanghai, China,
yeh_qi1125@ecust.edu.cn

2 East China University of Science and Technology, 130 Meilong Road, Shanghai, China,

jx3315722867@163.com

Abstract. Complex reasoning problems, especially multi-step mathe-

matical reasoning problems, are a difficult class of NLP tasks to solve.

Existing methods such as Manual-CoT improve the accuracy of reason-

ing tasks by manually designing prompts to allow large models to output

reasoning paths. However, the quality of the inference steps generated

by this method is not high, resulting in many calculation and planning

errors. To address the problems, we propose a method that combines

similar enhanced step-by-step prompts with an answer voting mecha-

nism. Specifically, we first design a comprehensive prompt template that

integrates task prompts, CoT prompts, and format prompts, and then

use two similar templates to guide the Large Language Model in gen-

erating better inference paths. Furthermore, we use ChatGLM for ef-

ficient information retrieval and determine the most accurate answer

through a majority voting system. We evaluated our method in five

mathematical datasets and one symbolic dataset. The experimental re-

sults over GPT-3 show that our proposed method outperforms Zero-shot-

CoT and Zero-shot-Program-of-Thought Prompting across all datasets

by a large margin of 7.3% and 4.4% respectively, and exceeds Plan-and-

Solve in five of six datasets. In particular, on symbolic data sets, our

method completely outperforms all comparable methods by a large mar-

gin of an average of 13%. Our code and data are publicly available at

https://anonymous.4open.science/r/ESPDE-2740.

Keywords: Mathematical reasoning · CoT · Similar prompt

1 Introduction

With the advancements in generative large-scale language models, their perfor-

mance has witnessed remarkable progress in numerous natural language process-

ing (NLP) tasks. Among these tasks, mathematical reasoning holds particular

significance, as it serves as a benchmark for evaluating the reasoning abilities of

language models.

 There are two types of existing methods for solving reasoning problems. One

https://anonymous.4open.science/r/ESPDE-2740

2 Qi Ye and Xiang Ji et al.

Fig. 1. Example of using our prompt template to generate a high-quality reasoning

path. In the figure, the left part is input that is constructed by a question and prompt

template, and the right part is the reasoning path generated by LLM.

utilizes the reasoning path output by large models to construct a fine-tuning instruction

set, which is implemented by fine-tuning the model. However, this

type of method requires the additional construction of a fine-tuning instruction

set and is limited by the number of parameters in the model. The effect of fine-

tuning may not be as good as directly using prompts. The other is to improve the

quality of the reasoning path output of large models by optimizing the prompts,

which is more effective and convenient. Therefore, many works are performed

using this type of method. For example, considering enhancing the inferential

capabilities of a model cannot be solely achieved by increasing its parameter

count [12, 2], researcher [21] introduced a novel approach Manual-CoT, which

analyzes thought chains to uncover answers, offering a promising avenue to bol-

ster the reasoning capabilities of large language models. CoT-based approaches

have been instrumental in tackling complex and multi-step mathematical rea-

soning tasks. However, Manual-CoT relies on human-designed prompts, and the

quality of these prompts directly impacts the inference performance. To alleviate

the reliance on manual effort, [8] discovered that appending a prompt such as

“Let’s think step by step” after the problem, without utilizing any examples,

yielded impressive results. Furthermore, [22] proposed the Auto-CoT approach,

which also eliminates the need for manual prompt construction. Although pre-

vious methods have improved the model’s ability to solve multi-step reasoning

problems to some extent, computational errors, missing steps, and misinterpre-

tation of problem statements still persist. To address this, [19] introduced the

Plan-and-Solve method [19], they use specific phrases such as “pay attention to

calculations” in the prompts to help the model reduce specific types of errors.

While the method has enhanced certain aspects of performance, we observed that it

 Contribution Title (shortened if too long) 3

does not completely address calculation inaccuracies and misunderstand-

ings of questions in our experiments. These calculation errors arise primarily

from issues in variable extraction, formula inaccuracies or omissions, and basic

arithmetic errors.

Inspired by the decomposition task thought of Plan-and-Solve, we refined

the prompt template by segmenting it into multiple distinct points, thereby

enhancing the clarity of its structure. To further reduce computational errors,

we introduced formula application steps and incorporated additional information

for each subsection within the template. Moreover, research [1] indicates that

minor variations in prompts significantly affect the performance of large language

models (LLMs). Leveraging this knowledge, we developed two semantically similar

yet content-diverse prompt templates to induce a broader range of inference

pathways in LLMs. Based on these, we introduce an innovative methodology

termed enhanced stepwise prompt and diverse path exploration (ESPDE). This

approach begins with the reconfiguration of the stepwise prompt template, which

is segmented into three distinct components: task prompt, CoT prompt, and for-

mat prompt. As shown in figure 1, we can obtain a standardized high-quality

path that contain no missing steps and are generated in strict accordance with

the steps outlined in our defined cot prompt by concatenating the problem and

prompt together. Subsequently, we feed two similar prompt templates, along

with the question, into Large Language Models (LLMs) to generate a reason-

ing pathway. Utilizing both LLMs and the Python re-module, we meticulously

extract potential answers from these paths. The process culminates in the iden-

tification of the most accurate response through a majority voting mechanism,

thereby enhancing the precision and reliability of the outcomes. Our method-

ology was rigorously assessed across five mathematical datasets and a symbolic

dataset. Additionally, to test our method’s adaptability and efficiency in varied

contexts, we also conducted experiments on another instruct LLM model, gpt-

3.5-turo-instruct1. The extensive experiments prove the efficiency of our method.

Our key contributions are the following:

1. We propose a novel framework for solving mathematical reasoning prob-

lems based on a similar enhanced prompt template, an accurate answer extrac-

tion method, and a voting mechanism.

2. Experimental results on public datasets prove the effectiveness of our so-

lution. Furthermore, the result demonstrates that our method achieves state-of-

the-art (SOTA) performance on five of six datasets. On average, it exceeds the

previous method by 1.2%.

3. To verify the robustness of the method, we also experiment on a sym-

bolic dataset and the result shows that our method completely outperforms all

comparable methods.

1 https://platform.openai.com/docs/models/gpt-3-5-turbo

4 Qi Ye and Xiang Ji et al.

2 RelatedWork

Related work in this paper can be divided into two parts, the CoT prompting

method and the mathematical reasoning task. The former is a typical method

to solve multi-step reasoning problems, while the latter is the description of a

specific multi-step task which is mathematical reasoning

2.1 Mathematical Reasoning Task

Mathematical reasoning tasks have been a focal point in the advancement of arti-

ficial intelligence and natural language processing (NLP), challenging models to

understand and solve complex mathematical problems using natural language.

This area intersects with both cognitive science, in understanding how humans

solve mathematical problems, and computer science, in developing algorithms

that can replicate or assist in these processes. There have been studies in under-

standing NLP models’ capabilities [7, 9, 13, 10, 14] to solve arithmetic/algebraic

questions. A notable approach in this field has been the use of large language

models (LLMs) like GPT-3, developed by OpenAI2, which have shown promising

results in solving arithmetic and algebraic problems through natural language

understanding and generation. These models leverage vast amounts of textual

data to learn patterns and problem-solving strategies that can be applied to

mathematical reasoning. Our work aims to use a similar enhanced prompt tem-

plate to make LLM generate high-quality reasoning paths, enhance the inference

ability of LLM, and improve accuracy on mathematical inference datasets

2.2 CoT Prompting

With the emergence of large language models, more and more researchers are

exploring the use of CoT [21] prompting to stimulate the logical reasoning ability

of large models and help solve complex reasoning problems. CoT prompting is

a technique that allows large language models (LLMs) to solve a problem as a

series of intermediate steps before giving a final answer. Standard CoT requires

input examples to execute, which is in few-shot setting. Many works [15–18] try

to improve CoT prompting to make LLM generate high-quality reasoning paths.

[8] proposed a method that does not require input examples, using a ”universal”

trigger sentence “Let’s think step by step” to make LLM generate reasoning

chains. Additionally, there are some works that attempt to automatically gen-

erate reasoning steps to eliminate human efforts in a prompt design, such as

Auto-CoT [23]. It first automatically obtains k examples by clustering the given

dataset and then generates rationales for the selected examples. Finally, demon-

stration examples are constructed by adding the generated rationales to selected

examples as CoT prompts. PoT [4] is a unique LLM reasoning method. It is

not just about generating natural language answers, but also requires the cre-

2 https://platform.openai.com

 Contribution Title (shortened if too long) 5

ation of an executable program that can be run on program interpreters such as Python

to produce actual results. Plan-and-Solve [19] is a method by focuses on

Fig. 2. The main framework and prompt template of our method. The prompt 1 and 2

are a pair of similar prompts and their difference have been labeled in blue color. The

GPT3 represents text-davinci-003 or gpt-3.5-turbo-instruct.

eliciting multi-step reasoning by LLMs in a zero-shot setting. They ask LLMs

to write a plan to decompose a complex reasoning task into multiple reasoning

steps. Our method draws on their ideas of decomposing problems and expands

on this basis. Specifically, we first design a comprehensive prompt template that

integrates task prompts, CoT prompts, and format prompts, and then use two

similar templates to guide the Large Language Model(LLM) in generating better

inference paths. Additionally, we use ChatGLM for efficient information retrieval

and determine the most accurate answer through a majority voting system. We

refer readers to the survey [5]for more related works.

3 Methodology

Overview In this study, we introduce ESPDE, a method that significantly improves

LLMs’ capacity for generating coherent reasoning paths and accurately predicting an-

swers. The framework is shown in figure 2. For a given problem, we initially craft two

semantically similar prompts by hand. Using these, the LLM is instructed to generate k

inference paths for each prompt. Using ChatGLM, we extract specific answers from

both sets of paths. Ultimately, we employ a voting mechanism to determine the optimal

answer from the aggregated responses.

6 Qi Ye and Xiang Ji et al.

3.1 Prompt Design

This section explains the process of prompt template construction. Given a ques-

tion input, we design two similar semantic prompts for the LLM to output k can-

didate paths based on them, which will contain the final answers. Studies have

shown the significant impact of slight variations in prompts on the performance

of large language models (LLMs) [1]. These models exhibit distinct representa-

tions in response to minor differences in input, thereby influencing output results.

Building on this insight, we design two prompt templates with similar semantics

but distinct content. Specifically, as depicted in figure 2, prompt 1 comprises

three integral components: task prompt, CoT prompt, and format prompt. The

task prompt, delineated by a task description and the trigger sentence “Let’s

use the following four steps to solve the problem. ’, directs the attention of the

large language model (LLM) toward specific domain knowledge, facilitating ad-

herence to the sequence outlined in the CoT prompt. Central to this template

is the CoT prompt, which serves as a guide for the LLM in problem-solving en-

deavors. For mathematical reasoning tasks, the CoT prompt encompasses four

key steps: “Identify Variables”, “Plan a Solution”, “Apply Formulas”, and “Cal-

culate”. Figure 2 illustrates the inclusion of explanatory details within each step,

helping the LLM to focus on crucial elements and mitigating the impact of cal-

culation errors from multiple angles. This approach fosters a deeper comprehen-

sion of the problem context, thereby enhancing the LLM’s reasoning capabilities.

Meanwhile, the format prompt “Please show the reasoning process and the an-

swer.” ensures that the LLM generates clear, step-by-step reasoning paths in

our experiments. In addition, as shown in Figure 2, Prompt 2 has reduced some

content compared to Prompt 1, but the two are still semantically similar, and

their differences are highlighted in blue.

In the case of symbolic reasoning tasks, we adopt the Plan-and-Solve method-

ology [19]. The CoT prompt involves steps such as “Plan a Solution” and “Solve

the problem”, complemented by explanatory content. The task prompt and for-

mat prompt are almost identical. In a word, by appending our prompt template

with specific questions and inputting them into the LLM, we aim to produce

two pairs of high-quality reasoning paths.

3.2 Candidate Result Extraction

During the answer extraction phase, given 2k reasoning paths, we leverage Chat-

GLM (6B) and GPT-3 (175B) to extract responses from mathematical and sym-

bolic reasoning paths, respectively. Specifically, we designed different prompts for

different answer types. For multiple choice questions, our method employs the

prompt “Please extract the answer option from the text. The response format

should be “ The answer is xxx.”. Just reply option. Example: The answer is

(A) xx.” for extracting responses from reasoning paths. For the answer to the

number and the symbolic answer, we use the prompt “Please extract the an-

swer from the text. The answer is xxx.”. Submitting these prompts alongside

 Contribution Title (shortened if too long) 7

the relative reasoning path to ChatGLM yields the desired outcomes. Following this,

we utilize Python’s regular expression module to further refine extracted

values. The rationale behind employing the distinct model lies in the ease and

cost-effectiveness of using ChatGLM. In contrast, accurately extracting string-

based answers for symbolic reasoning poses a substantial challenge. Based on

empirical findings, we opt for the text-davinci-003 3 model to enhance the effec-

tiveness of extracting such answers, showcasing commendable performance. The

pertinent experimental outcomes are presented in section 5.2. In a word, after

the candidate result extraction stage, we will obtain 2k answers for one question.

3.3 Answer Voting Mechanism

In this section, we will get the final answer from all 2k answers. Given 2k answers,

we use a voting strategy based on the self-consistency [20] characteristics of the

answer to get the final answer. Specifically, we employ the majority vote rule,

a prevalent voting system wherein the candidate answer must garner the most

votes to be deemed the correct one. This method is employed in the election and

decision-making processes of numerous countries. Let 𝑣𝑖 represent the number

of votes for the i-th candidate answer, out of a total of 2k candidate answers.

The condition for candidate answer a to win can be expressed as:

 {

𝑣𝑎 > 𝑣𝑖

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑎,

𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑎 ∈ {1,2, … ,2𝑘}
 (1)

This formula states that candidate a is declared the winner if their vote count

𝑣𝑎 is higher than that of any other candidate across the entire set of candidates

participating in the election. And 𝑣𝑎 is the definitive answer.

4 Experimental Setup

In this section, we detail our experimentation process, which covers dataset se-

lection, comparison with baseline methods, and our customized implementation

approach.

4.1 Datasets

To make a comprehensive evaluation of the proposed method, in this paper, we

use multiple datasets on both mathematical reasoning and symbolic reasoning

tasks. The metric we used for mathematical and symbolic reasoning tasks is

accuracy(%).

For arithmetical task, we conduct a series of experiments on five different

datasets, including (1) AddSub [7] dataset of addition and subtraction arith-

3 https://platform.openai.com/docs/deprecations

8 Qi Ye and Xiang Ji et al.

metic word problems, (2) GSM8K [6] dataset of high quality linguistically diverse

grade school math word problems created by human problem writers, (3) Mul-

tiArith [13] dataset consists high-quality question description and formulas, (4)

SVAMP [11] a challenge set for elementary-level Math Word Problems and (5)

AQuA-RAT [10] dataset that contains algebraic word problems with rationales.

For symbolic reasoning task, we use the Last Letter Concatenation [21]

dataset while the question is to splice the last letter of each word in the sentence.

These datasets are classical reasoning datasets that many other methods also use.

We did not consider another CoinFlip [21] dataset, as its problem is relatively

simple and many methods have achieved performance exceeding 99%. Therefore,

we chose the more difficult Last Letter dataset.

4.2 Baselines

We compare ESPDE with the following five baselines: Zero-shot-CoT [8], Zero-

shot-PoT [4], Manual-CoT [21], Auto-CoT [22] and Plan-and-Solve [19]. Zero-

shot-CoT simply adds ”Let’s think step by step” after each question as a prompt.

Zero-shot-PoT uses Codex to express the reasoning process as a program and

execute it by the computer to obtain the answer. Manual-CoT uses eight ar-

tificially constructed prompts to elicit reasoning in LLM. Auto-CoT samples

questions with diversity and generates reasoning chains to construct demonstra-

tions. Plan-and-Solve divides the prompt into two parts: first, devise a plan to

break the task into subtasks and then carry out the subtasks according to the

plan.

4.3 Implementation

We divide the implementation plan into two steps: the first step is to generate

the reasoning paths, and the second step is to extract answers from the reasoning

paths. In the first step, we use the text-davinci-003 [3] model as the backbone,

which is the version of the public ChatGPT model from the OpenAI API with

175 billion parameters. We select this model because it is more capable than the

text-davinci-002 [3] version of GPT-3 and is designed specifically for instruction-

following tasks. Additionally, it is widely used by most other reasoning methods

including all the baselines compared in this paper. For parameter settings, we

set the temperature to 0.25, top p to 1 to reduce the randomness of generated

reasoning paths, and set the n to 5 to get 5 paths from the decoder of the model

for each sample. In the second step, we use ChatGLM with 6 billion parameters

and follow default settings.

However, according to the latest announcement from OpenAI, the text-

davinci-003 will be abandoned on January 4, 2024. To establish the generality

and applicability of our method, we performed experiments on mathematical

datasets using gpt-3.5-turbo-instruct, which is the latest recommended alterna-

tive to the text-davinci-003 model, as suggested by OpenAI.

 Contribution Title (shortened if too long) 9

Table 1. Accuracy (%) comparison of ESPDE with five baselines on five mathematical

reasoning datasets. The five baselines belong to zero-shot or few-shot settings. The

ESPDE* means that the result comes from gpt-3.5-turo-instruct. The best result is

bold in the zero-shot setting. The last column is average scores. Notably, each result is

the average of multiple experiments. The ’-’ means that the experiment result cannot

be reproduced anymore due to the extraction model having been deprecated.

Methods

Arithmatical Symbolic

AddSu

b

AQu

A

GSM8K Multi-

Arith

SVAMP AVG LastLetter

*few-shot

Manual-CoT [21]

Auto-CoT [22]

91.6

90.8

48.4

41.7

58.4

57.1

93.6

95.5

80.3

78.1

74.5

72.6

70.6

-

*zero-shot

CoT [8]

85.3

38.9

56.4

83.8

69.9

66.9

64.8

PoT [4] 85.1 43.9 57.0 92.2 70.8 69.8 -

Plan-and-Solve [19]

ESPDE (ours)

92.2

92.9

46.0

44.5

59.3

60.7

91.8

94.1

75.7

78.5

73.0

74.2

75.2

83.5

ESPDE* (ours) 87.4 53.0 72.8 96.2 82.5 78.4 -

5 Experimental Results

In this section, we showcase our experimental findings for two tasks. Further-

more, we compare prompts across various methods, assess the efficacy of various

extraction techniques, and perform an error analysis on 100 samples from the

GSM8K dataset.

5.1 Main Results

In the experiments, we evaluated ESPDE on six datasets of two categories of

reasoning tasks. Table 1 and 3 show the experimental results, which are overall

better than the existing sota method and far exceed other baseline methods.

Arithmetic Reasoning. Table 1 summarizes comparisons between our method

and five baselines on arithmetic reasoning datasets. The result shows that in zero-

shot setting, our approach completely surpasses previous methods and reaches

state-of-the-art on four datasets except AQuA-RAT. Specifically, our ESPDE

achieves score gains of 0.7%, 1.4%, 2.3%, and 2.8% over the previous state-of-art

method on AddSub, GSM8K, MultiArith, and SVAMP, respectively. Addition-

ally, our method completely outperforms CoT and PoT on all five datasets, with

an average improvement of 7.3% and 4.4% respectively, indicating its superior

performance. Compared with another competitive method, Plan-and-Solve, the

performance of our approach is also competitive. The results show that our

method outperforms Plan-and-Solve on four of the five math datasets, with an

10 Qi Ye and Xiang Ji et al.

average improvement of 1.2%. The exception of the result on AQuA-RAT could

be due to the dataset itself which we find there are mistakes in the dataset and

also the dataset is more challenging.

In few-shot setting, our zero-shot ESPDE substantially outperforms the Auto-

CoT on four arithmetic reasoning tasks except for MultiArith in table 1 and

and improves by an average of 1.6%. Compared with Manual-CoT, our method

(74.2%) outperforms in three out of five datasets, averaging only 0.3% lower

than Manual-CoT (74.5%). While this is an unfair comparison, the result shows

that even compared with some few-shot methods our method still performs well.

Importantly, we also conducted experiments on another model, referred to as

Model gpt-3.5-turbo-instruct. As shown in table 1, experimental results far ex-

ceed previous methods on all math datasets except AddSub. On average, it is

improved by 4.2% compared to using text-davinci-003 version in our method.

The experimental results further confirmed the versatility and adaptability of

our method. The positive results obtained with gpt-3.5-turbo-instruct validate

the efficacy and robustness of our approach across different models. This rein-

forces the notion that our method exhibits excellent flexibility and can be applied

successfully in various contexts.

Symbolic Reasoning. Table 1 also shows the results of ESPDE against

Zero-shot-CoT, Plan-and-Solve and Manual-CoT on symbolic reasoning dataset.

It is clear that our method significantly outperforms previous methods over the

Last Letter dataset. Our ESPDE achieves respective improvements of 18.7% over

Zero-Shot-CoT, 8.3% over Plan-and-Solve, and 12.9% over Manual-CoT

5.2 Detailed Analysis

Comparison results of Different Prompts. To verify the effectiveness of

our prompt template, we conduct experiments using the GPT-3.5-turbo-instruct

model to compare our prompt with two other methods, Zero-Shot-CoT and Plan-

and-Solve, on the MultiArith dataset. The results, shown in table 2, demonstrate

that our prompt (96.2%) outperformed the other two methods, achieving scores

of 91.8% and 89.8%, respectively. This significant performance difference con-

firms the effectiveness of our method

For citations of references, we prefer the use of square brackets and consecutive num-

bers. Citations using labels or the author/year convention are also acceptable. The fol-

lowing bibliography provides a sample reference list with entries for journal articles

[1], an LNCS chapter [2], a book [3], proceedings without editors [4], as well as a

URL [5].

Furthermore, we sought to explore the impact of prompts by analyzing vari-

ations at different stages in our prompt construction process. Initially, we broke

down the specific problem-solving steps, providing the model with more granu-

lar information. Subsequently, we augmented the prompt with additional specific

descriptions. Finally, we incorporated formulas to create the final prompt. As

illustrated in the table, each successive modification step led to an improvement

in performance. Initially, the model achieved a score of 95.6%, which increased to

 Contribution Title (shortened if too long) 11

96% after incorporating more specific description information into the prompt.

Finally, by including relevant formulas, the performance further improved to a

score of 96.2%. By systematically refining the prompts, we effectively harnessed

the potential of the language model, leveraging its capabilities to deliver supe-

rior results. This observation highlights the importance of crafting appropriate

prompts to enable large language models to produce higher-quality results and

arrive at accurate answers.

Table 2. Comparison of the accuracy (%) of prompts from different methods and the

construction of prompt of our method. In the table, No.1 and No.2 mean the prompt

of Zero-shot-CoT and Plan-and-Solve respectively. And No.3 to No.5 is the comparison

of our trigger sentences. The maximum value is bold.

No. Prompt MultiArith

1 Let’s think step by step. 91.8

2

Let’s first understand the problem, extract relevant variables

and their corresponding numerals, and make a complete plan.

Then, let’s carry out the plan, calculate intermediate variables

(pay attention to correct numerical calculation and common-

sense), solve the problem step by step, and show the answer.

89.8

3

Identify Variables: Extract the correct relevant variables

and their corresponding values from the problem. **Plan a Solu-

tion**: Develop a step-by-step plan to solve the problem. **Cal-

culate**: Calculate correctly.

95.6

4

Identify Variables: Extract the correct relevant variables

and their corresponding values from the problem. Develop a

step-by-step plan to solve the problem. **Calculate**: Strictly

follow the order of operations in your calculations and calculate

correctly

96

5

Identify Variables: Extract the correct relevant variables

and their corresponding values from the problem. **Plan a Solu-

tion**: Develop a step-by-step plan to solve the problem.**Ap-

ply Formulas: For each step in your plan, apply the appro-

priate mathematical formulas or principles. This might include

algebraic equations, geometric formulas, arithmetic operations,

etc. **Calculate**: Strictly follow the order of operations in your

calculations and calculate correctly

96.2

Comparison results of Different Extraction Models. For cost and ef-

ficiency considerations, we compared the extraction performance of two mod-

els, text-davinci-003 (175B) and ChatGLM (6B), on AddSub and Last Letters

datasets, respectively. The former model is a paid option with a greater num-

ber of parameters, whereas the latter is free but has fewer model parameters,

suggesting lower capabilities. Based on Table 3, the performance of ChatGLM

(98.7%) and text-davinci-003 (99.5%) is similar to the mathematical reasoning

12 Qi Ye and Xiang Ji et al.

dataset. However, when it comes to the symbolic reasoning dataset, ChatGLM

(45.6%) significantly underperforms compared to text-davinci-003 (99.6%). As a

result, we have implemented distinct models for each dataset type, allowing us

to reduce costs without compromising the overall outcomes.

Table 3. Extraction accuracy (%) comparison of ChatGLM with text-davinci-003 on

Last Letters and AddSub dataset. The best result is bold.

Models Last Letter AddSub

ChatGLM(6B) 45.6 98.7

Text-Davinci-003(175B) 99.6 99.5

Table 4. Error distribution rate comparison between Plan-and-Solve and ESPDE on

GSM8K’s 100 data points. The PS+ means the Plan-and-Solve method and the lower

error rate is bold.

Error Type PS+ ESPDE

Variable extraction error

Plan error

11%

12%

8%

13%

Calculation error 15% 9%

Error Analysis. We evaluated our method’s effectiveness by comparing its error

distributions with Plan-and-Solve on the GSM8K dataset. Specifically, we ran-

domly sampled 100 data points, generated thought chains with both methods’

prompts respectively, and identified error examples. Then we manually analyzed

the error samples and classified the errors into three types: variable extraction,

plan, and calculation. Table 4 shows the error distributions. As shown in table 4,

our method significantly outperforms Plan-and-Solve and reduced variable ex-

traction and calculation errors by 3% and 6%, respectively. Furthermore, it shows

a similar performance to Plan-and-Solve in planning errors with only 1% lower.

The result may be attributed to the complexity of some questions, which pose

challenges for both human and machine comprehension, and the incompleteness

of the plan, which reflects the limitations of the model

6 Conclusion

In this paper, we focus on mathematical reasoning tasks and extend to symbolic

reasoning tasks. We studied how to make LLM generate high-quality inference

paths and extract accurate answers from paths, and propose ESPDE to solve

the two reasoning tasks. ESPDE leverages two similar comprehensive prompt

templates that integrate task prompts, CoT prompts, and format prompts to

guide LLM to generate high-quality reasoning paths. Then use ChatGLM for

efficient and economical answer extraction, and determine the most accurate

answer through a majority voting system. Evaluation on six datasets across two

 Contribution Title (shortened if too long) 13

types of reasoning problems shows ESPDF outperforms the previous zero-shot

baselines and performs comparable with few-shot CoT prompting on multiple

arithmetic reasoning datasets.

 We compare the prompts of different methods and the result shows the pro-

posed prompt template can generate a high-quality reasoning process. We also make error anal-

ysis on 100 random samples of GSM8K and the result shows that our method indeed reduces

calculation errors and variable extraction errors. Fur-

thermore, the result of the experiment on expanded model gpt-3.5-turbo-instruct

shows the robustness of our method. However, we cannot solve the plan errors

efficiently, which may be limited to the performance of the model. We leave the

problem as our future work.

References

1. Arora, S., Narayan, A., Chen, M.F., Orr, L., Guha, N., Bhatia, K., Chami, I.,

Re, C.: Ask me anything: A simple strategy for prompting language models.

In: The Eleventh International Conference on Learning Representations (2023),

https://openreview.net/forum?id=bhUPJnS2g0X

2. bench authors, B.: Beyond the imitation game: Quantifying and extrapolating

the capabilities of language models. Transactions on Machine Learning Research

(2023), https://openreview.net/forum?id=uyTL5Bvosj

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-

lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,

Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,

C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are

few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.

(eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–1901.

Curran Associates, Inc. (2020)

4. Chen, W., Ma, X., Wang, X., Cohen, W.W.: Program of thoughts

prompting: Disentangling computation from reasoning for numerical

reasoning tasks. Transactions on Machine Learning Research (2023),

https://openreview.net/forum?id=YfZ4ZPt8zd

5. Chu, Z., Chen, J., Chen, Q., Yu, W., He, T., Wang, H., Peng, W., Liu, M., Qin,

B., Liu, T.: A survey of chain of thought reasoning: Advances, frontiers and future

(2023)

6. Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plap-

pert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., Schulman, J.: Train-

ing verifiers to solve math word problems. ArXiv abs/2110.14168 (2021),

https://api.semanticscholar.org/CorpusID:239998651

7. Hosseini, M.J., Hajishirzi, H., Etzioni, O., Kushman, N.: Learning to solve arith-

metic word problems with verb categorization. In: Moschitti, A., Pang, B., Daele-

mans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). pp. 523–533. Association for Computa-

tional Linguistics, Doha, Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1058,

https://aclanthology.org/D14-1058

https://openreview.net/forum?id=bhUPJnS2g0X
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=YfZ4ZPt8zd
https://api.semanticscholar.org/CorpusID:239998651
https://aclanthology.org/D14-1058

14 Qi Ye and Xiang Ji et al.

8. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large lan-

guage models are zero-shot reasoners. ArXiv abs/2205.11916 (2022),

https://api.semanticscholar.org/CorpusID:249017743

9. Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Etzioni, O., Ang, S.D.: Pars-

ing algebraic word problems into equations. Transactions of the Association for

Computational Linguistics 3, 585–597 (2015)

10. Ling, W., Yogatama, D., Dyer, C., Blunsom, P.: Program induction by ratio-

nale generation: Learning to solve and explain algebraic word problems. In: Barzilay, R.,

Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers). pp. 158–

167. Association for Computational Linguistics, Vancouver, Canada (Jul 2017).

https://doi.org/10.18653/v1/P17-1015, https://aclanthology.org/P17-1015

11. Patel, A., Bhattamishra, S., Goyal, N.: Are NLP models really able to solve

simple math word problems? In: Toutanova, K., Rumshisky, A., Zettlemoyer,

L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty,

T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies. pp. 2080–2094. Association for Computational Lin-

guistics, Online (Jun 2021). https://doi.org/10.18653/v1/2021.naacl-main.168,

https://aclanthology.org/2021.naacl-main.168

12. Rae, J.W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J.,

Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cas-

sirer, A., Powell, R., van den Driessche, G., Hendricks, L.A., Rauh, M., Huang, P.S.,

Glaese, A., Welbl, J., Dathathri, S., Huang, S., Uesato, J., Mellor, J.F.J., Higgins,

I., Creswell, A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S.M., Buchatskaya,

E., Budden, D., Sutherland, E., Simonyan, K., Paganini, M., Sifre, L., Martens, L.,

Li, X.L., Kuncoro, A., Nematzadeh, A., Gribovskaya, E., Donato, D., Lazaridou,

A., Mensch, A., Lespiau, J.B., Tsimpoukelli, M., Grigorev, N.K., Fritz, D., Sotti-

aux, T., Pajarskas, M., Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume, C.,

Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A., de Las Casas, D., Guy, A.,

Jones, C., Bradbury, J., Johnson, M.G., Hechtman, B.A., Weidinger, L., Gabriel,

I., Isaac, W.S., Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals, O., Ay-

oub, K.W., Stanway, J., Bennett, L.L., Hassabis, D., Kavukcuoglu, K., Irving, G.:

Scaling language models: Methods, analysis & insights from training gopher. ArXiv

abs/2112.11446 (2021), https://api.semanticscholar.org/CorpusID:245353475

13. Roy, S., Roth, D.: Solving general arithmetic word problems. In: M`arquez,

L., Callison-Burch, C., Su, J. (eds.) Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Processing. pp. 1743–

1752. Association for Computational Linguistics, Lisbon, Portugal (Sep 2015).

https://doi.org/10.18653/v1/D15-1202, https://aclanthology.org/D15-1202

14. Roy, S., Roth, D.: Mapping to Declarative Knowledge for Word Problem Solving.

Transactions of the Association for Computational Linguistics 6, 159–172 (03 2018)

15. Saparov, A., He, H.: Language models are greedy reasoners: A systematic formal

analysis of chain-of-thought. In: The Eleventh International Conference on Learn-

ing Representations (2023), https://openreview.net/forum?id=qFVVBzXxR2V

16. Shaikh, O., Zhang, H., Held, W.B., Bernstein, M., Yang, D.: On second thought,

let’s not think step by step! bias and toxicity in zero-shot reasoning. ArXiv

abs/2212.08061 (2022), https://api.semanticscholar.org/CorpusID:254686088

https://api.semanticscholar.org/CorpusID:249017743
https://aclanthology.org/P17-1015
https://aclanthology.org/2021.naacl-main.168
https://api.semanticscholar.org/CorpusID:245353475
https://aclanthology.org/D15-1202
https://openreview.net/forum?id=qFVVBzXxR2V
https://api.semanticscholar.org/CorpusID:254686088

 Contribution Title (shortened if too long) 15

17. Suzgun, M., Scales, N., Scharli, N., Gehrmann, S., Tay, Y., Chung, H.W.,

Chowdhery, A., Le, Q.V., hsin Chi, E.H., Zhou, D., Wei, J.: Challeng-

ing big-bench tasks and whether chain-of-thought can solve them. In:

Annual Meeting of the Association for Computational Linguistics (2022),

https://api.semanticscholar.org/CorpusID:252917648

18. Wang, B., Min, S., Deng, X., Shen, J., Wu, Y., Zettlemoyer, L., Sun, H.: To-

wards understanding chain-of-thought prompting: An empirical study of what

matters. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the

61st Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers). pp. 2717–2739. Association for Computational Linguis-

19. Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R.K.W., Lim, E.P.: Plan-and-solve

prompting: Improving zero-shot chain-of-thought reasoning by large language mod-

els. In: Annual Meeting of the Association for Computational Linguistics (2023),

https://api.semanticscholar.org/CorpusID:258558102

20. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A.,

Zhou, D.: Self-consistency improves chain of thought reasoning in language models.

arXiv preprint arXiv:2203.11171 (2022)

21. Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi, E.H.,

Xia, F., Le, Q., Zhou, D.: Chain of thought prompting elicits rea-

soning in large language models. ArXiv abs/2201.11903 (2022),

https://api.semanticscholar.org/CorpusID:246411621

22. Zhang, Z., Zhang, A., Li, M., Smola, A.: Automatic chain of thought prompting

in large language models. arXiv preprint arXiv:2210.03493 (2022)

23. Zhang, Z., Zhang, A., Li, M., Smola, A.: Automatic chain of thought prompting

in large language models. In: The Eleventh International Conference on Learning

Representations (2023), https://openreview.net/forum?id=5NTt8GFjUHkr

https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:258558102
https://api.semanticscholar.org/CorpusID:246411621

