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Abstract. Complex reasoning problems, especially multi-step mathe- 

matical reasoning problems, are a difficult class of NLP tasks to solve. 

Existing methods such as Manual-CoT improve the accuracy of reason- 

ing tasks by manually designing prompts to allow large models to output 

reasoning paths. However, the quality of the inference steps generated 

by this method is not high, resulting in many calculation and planning 

errors. To address the problems, we propose a method that combines 

similar enhanced step-by-step prompts with an answer voting mecha- 

nism. Specifically, we first design a comprehensive prompt template that 

integrates task prompts, CoT prompts, and format prompts, and then 

use two similar templates to guide the Large Language Model in gen- 

erating better inference paths. Furthermore, we use ChatGLM for ef- 

ficient information retrieval and determine the most accurate answer 

through a majority voting system. We evaluated our method in five 

mathematical datasets and one symbolic dataset. The experimental re- 

sults over GPT-3 show that our proposed method outperforms Zero-shot- 

CoT and Zero-shot-Program-of-Thought Prompting across all datasets 

by a large margin of 7.3% and 4.4% respectively, and exceeds Plan-and- 

Solve in five of six datasets. In particular, on symbolic data sets, our 

method completely outperforms all comparable methods by a large mar- 

gin of an average of 13%. Our code and data are publicly available at 

https://anonymous.4open.science/r/ESPDE-2740. 

Keywords: Mathematical reasoning · CoT · Similar prompt 

1 Introduction 

With the advancements in generative large-scale language models, their perfor- 

mance has witnessed remarkable progress in numerous natural language process- 

ing (NLP) tasks. Among these tasks, mathematical reasoning holds particular 

significance, as it serves as a benchmark for evaluating the reasoning abilities of 

language models. 

 There are two types of existing methods for solving reasoning problems. One 

https://anonymous.4open.science/r/ESPDE-2740
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Fig. 1. Example of using our prompt template to generate a high-quality reasoning 

path. In the figure, the left part is input that is constructed by a question and prompt 

template, and the right part is the reasoning path generated by LLM. 

utilizes the reasoning path output by large models to construct a fine-tuning instruction 

set, which is implemented by fine-tuning the model. However, this 

type of method requires the additional construction of a fine-tuning instruction 

set and is limited by the number of parameters in the model. The effect of fine- 

tuning may not be as good as directly using prompts. The other is to improve the 

quality of the reasoning path output of large models by optimizing the prompts, 

which is more effective and convenient. Therefore, many works are performed 

using this type of method. For example, considering enhancing the inferential 

capabilities of a model cannot be solely achieved by increasing its parameter 

count [12, 2], researcher [21] introduced a novel approach Manual-CoT, which 

analyzes thought chains to uncover answers, offering a promising avenue to bol- 

ster the reasoning capabilities of large language models. CoT-based approaches 

have been instrumental in tackling complex and multi-step mathematical rea- 

soning tasks. However, Manual-CoT relies on human-designed prompts, and the 

quality of these prompts directly impacts the inference performance. To alleviate 

the reliance on manual effort, [8] discovered that appending a prompt such as 

“Let’s think step by step” after the problem, without utilizing any examples, 

yielded impressive results. Furthermore, [22] proposed the Auto-CoT approach, 

which also eliminates the need for manual prompt construction. Although pre- 

vious methods have improved the model’s ability to solve multi-step reasoning 

problems to some extent, computational errors, missing steps, and misinterpre- 

tation of problem statements still persist. To address this, [19] introduced the 

Plan-and-Solve method [19], they use specific phrases such as “pay attention to 

calculations” in the prompts to help the model reduce specific types of errors. 

While the method has enhanced certain aspects of performance, we observed that it 
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does not completely address calculation inaccuracies and misunderstand- 

ings of questions in our experiments. These calculation errors arise primarily 

from issues in variable extraction, formula inaccuracies or omissions, and basic 

arithmetic errors. 

Inspired by the decomposition task thought of Plan-and-Solve, we refined 

the prompt template by segmenting it into multiple distinct points, thereby 

enhancing the clarity of its structure. To further reduce computational errors, 

we introduced formula application steps and incorporated additional information 

for each subsection within the template. Moreover, research [1] indicates that 

minor variations in prompts significantly affect the performance of large language 

models (LLMs). Leveraging this knowledge, we developed two semantically similar 

yet content-diverse prompt templates to induce a broader range of inference 

pathways in LLMs. Based on these, we introduce an innovative methodology 

termed enhanced stepwise prompt and diverse path exploration (ESPDE). This 

approach begins with the reconfiguration of the stepwise prompt template, which 

is segmented into three distinct components: task prompt, CoT prompt, and for- 

mat prompt. As shown in figure 1, we can obtain a standardized high-quality 

path that contain no missing steps and are generated in strict accordance with 

the steps outlined in our defined cot prompt by concatenating the problem and 

prompt together. Subsequently, we feed two similar prompt templates, along 

with the question, into Large Language Models (LLMs) to generate a reason- 

ing pathway. Utilizing both LLMs and the Python re-module, we meticulously 

extract potential answers from these paths. The process culminates in the iden- 

tification of the most accurate response through a majority voting mechanism, 

thereby enhancing the precision and reliability of the outcomes. Our method- 

ology was rigorously assessed across five mathematical datasets and a symbolic 

dataset. Additionally, to test our method’s adaptability and efficiency in varied 

contexts, we also conducted experiments on another instruct LLM model, gpt- 

3.5-turo-instruct1. The extensive experiments prove the efficiency of our method. 

Our key contributions are the following: 

1. We propose a novel framework for solving mathematical reasoning prob- 

lems based on a similar enhanced prompt template, an accurate answer extrac- 

tion method, and a voting mechanism. 

2. Experimental results on public datasets prove the effectiveness of our so- 

lution. Furthermore, the result demonstrates that our method achieves state-of- 

the-art (SOTA) performance on five of six datasets. On average, it exceeds the 

previous method by 1.2%. 

3. To verify the robustness of the method, we also experiment on a sym- 

bolic dataset and the result shows that our method completely outperforms all 

comparable methods. 

 
1 https://platform.openai.com/docs/models/gpt-3-5-turbo 
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2 RelatedWork 

Related work in this paper can be divided into two parts, the CoT prompting 

method and the mathematical reasoning task. The former is a typical method 

to solve multi-step reasoning problems, while the latter is the description of a 

specific multi-step task which is mathematical reasoning 

2.1 Mathematical Reasoning Task 

Mathematical reasoning tasks have been a focal point in the advancement of arti- 

ficial intelligence and natural language processing (NLP), challenging models to 

understand and solve complex mathematical problems using natural language. 

This area intersects with both cognitive science, in understanding how humans 

solve mathematical problems, and computer science, in developing algorithms 

that can replicate or assist in these processes. There have been studies in under- 

standing NLP models’ capabilities [7, 9, 13, 10, 14] to solve arithmetic/algebraic 

questions. A notable approach in this field has been the use of large language 

models (LLMs) like GPT-3, developed by OpenAI2, which have shown promising 

results in solving arithmetic and algebraic problems through natural language 

understanding and generation. These models leverage vast amounts of textual 

data to learn patterns and problem-solving strategies that can be applied to 

mathematical reasoning. Our work aims to use a similar enhanced prompt tem- 

plate to make LLM generate high-quality reasoning paths, enhance the inference 

ability of LLM, and improve accuracy on mathematical inference datasets 

2.2 CoT Prompting 

With the emergence of large language models, more and more researchers are 

exploring the use of CoT [21] prompting to stimulate the logical reasoning ability 

of large models and help solve complex reasoning problems. CoT prompting is 

a technique that allows large language models (LLMs) to solve a problem as a 

series of intermediate steps before giving a final answer. Standard CoT requires 

input examples to execute, which is in few-shot setting. Many works [15–18] try 

to improve CoT prompting to make LLM generate high-quality reasoning paths. 

[8] proposed a method that does not require input examples, using a ”universal” 

trigger sentence “Let’s think step by step” to make LLM generate reasoning 

chains. Additionally, there are some works that attempt to automatically gen- 

erate reasoning steps to eliminate human efforts in a prompt design, such as 

Auto-CoT [23]. It first automatically obtains k examples by clustering the given 

dataset and then generates rationales for the selected examples. Finally, demon- 

stration examples are constructed by adding the generated rationales to selected 

examples as CoT prompts. PoT [4] is a unique LLM reasoning method. It is 

not just about generating natural language answers, but also requires the cre- 

 
2 https://platform.openai.com 
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ation of an executable program that can be run on program interpreters such as Python 

to produce actual results. Plan-and-Solve [19] is a method by focuses on 

 

 

Fig. 2. The main framework and prompt template of our method. The prompt 1 and 2 

are a pair of similar prompts and their difference have been labeled in blue color. The 

GPT3 represents text-davinci-003 or gpt-3.5-turbo-instruct. 

eliciting multi-step reasoning by LLMs in a zero-shot setting. They ask LLMs 

to write a plan to decompose a complex reasoning task into multiple reasoning 

steps. Our method draws on their ideas of decomposing problems and expands 

on this basis. Specifically, we first design a comprehensive prompt template that 

integrates task prompts, CoT prompts, and format prompts, and then use two 

similar templates to guide the Large Language Model(LLM) in generating better 

inference paths. Additionally, we use ChatGLM for efficient information retrieval 

and determine the most accurate answer through a majority voting system. We 

refer readers to the survey [5]for more related works. 

3 Methodology 

Overview In this study, we introduce ESPDE, a method that significantly improves 

LLMs’ capacity for generating coherent reasoning paths and accurately predicting an-

swers. The framework is shown in figure 2. For a given problem, we initially craft two 

semantically similar prompts by hand. Using these, the LLM is instructed to generate k 

inference paths for each prompt. Using ChatGLM, we extract specific answers from 

both sets of paths. Ultimately, we employ a voting mechanism to determine the optimal 

answer from the aggregated responses. 
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3.1 Prompt Design 

This section explains the process of prompt template construction. Given a ques- 

tion input, we design two similar semantic prompts for the LLM to output k can- 

didate paths based on them, which will contain the final answers. Studies have 

shown the significant impact of slight variations in prompts on the performance 

of large language models (LLMs) [1]. These models exhibit distinct representa- 

tions in response to minor differences in input, thereby influencing output results. 

Building on this insight, we design two prompt templates with similar semantics 

but distinct content. Specifically, as depicted in figure 2, prompt 1 comprises 

three integral components: task prompt, CoT prompt, and format prompt. The 

task prompt, delineated by a task description and the trigger sentence “Let’s 

use the following four steps to solve the problem. ’, directs the attention of the 

large language model (LLM) toward specific domain knowledge, facilitating ad- 

herence to the sequence outlined in the CoT prompt. Central to this template 

is the CoT prompt, which serves as a guide for the LLM in problem-solving en- 

deavors. For mathematical reasoning tasks, the CoT prompt encompasses four 

key steps: “Identify Variables”, “Plan a Solution”, “Apply Formulas”, and “Cal- 

culate”. Figure 2 illustrates the inclusion of explanatory details within each step, 

helping the LLM to focus on crucial elements and mitigating the impact of cal- 

culation errors from multiple angles. This approach fosters a deeper comprehen- 

sion of the problem context, thereby enhancing the LLM’s reasoning capabilities. 

Meanwhile, the format prompt “Please show the reasoning process and the an- 

swer.” ensures that the LLM generates clear, step-by-step reasoning paths in 

our experiments. In addition, as shown in Figure 2, Prompt 2 has reduced some 

content compared to Prompt 1, but the two are still semantically similar, and 

their differences are highlighted in blue. 

In the case of symbolic reasoning tasks, we adopt the Plan-and-Solve method- 

ology [19]. The CoT prompt involves steps such as “Plan a Solution” and “Solve 

the problem”, complemented by explanatory content. The task prompt and for- 

mat prompt are almost identical. In a word, by appending our prompt template 

with specific questions and inputting them into the LLM, we aim to produce 

two pairs of high-quality reasoning paths. 

3.2 Candidate Result Extraction 

During the answer extraction phase, given 2k reasoning paths, we leverage Chat- 

GLM (6B) and GPT-3 (175B) to extract responses from mathematical and sym- 

bolic reasoning paths, respectively. Specifically, we designed different prompts for 

different answer types. For multiple choice questions, our method employs the 

prompt “Please extract the answer option from the text. The response format 

should be “ The answer is xxx.”. Just reply option. Example: The answer is 

(A) xx.” for extracting responses from reasoning paths. For the answer to the 

number and the symbolic answer, we use the prompt “Please extract the an- 

swer from the text. The answer is xxx.”. Submitting these prompts alongside 
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the relative reasoning path to ChatGLM yields the desired outcomes. Following this, 

we utilize Python’s regular expression module to further refine extracted 

values. The rationale behind employing the distinct model lies in the ease and 

cost-effectiveness of using ChatGLM. In contrast, accurately extracting string- 

based answers for symbolic reasoning poses a substantial challenge. Based on 

empirical findings, we opt for the text-davinci-003 3  model to enhance the effec- 

tiveness of extracting such answers, showcasing commendable performance. The 

pertinent experimental outcomes are presented in section 5.2. In a word, after 

the candidate result extraction stage, we will obtain 2k answers for one question. 

3.3 Answer Voting Mechanism 

In this section, we will get the final answer from all 2k answers. Given 2k answers, 

we use a voting strategy based on the self-consistency [20] characteristics of the 

answer to get the final answer. Specifically, we employ the majority vote rule, 

a prevalent voting system wherein the candidate answer must garner the most 

votes to be deemed the correct one. This method is employed in the election and 

decision-making processes of numerous countries. Let 𝑣𝑖 represent the number 

of votes for the i-th candidate answer, out of a total of 2k candidate answers. 

The condition for candidate answer a to win can be expressed as: 

 {

𝑣𝑎 > 𝑣𝑖

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑎,

𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑎 ∈ {1,2, … ,2𝑘}
 (1) 

This formula states that candidate a is declared the winner if their vote count 

𝑣𝑎 is higher than that of any other candidate across the entire set of candidates 

participating in the election. And 𝑣𝑎 is the definitive answer. 

4 Experimental Setup 

In this section, we detail our experimentation process, which covers dataset se- 

lection, comparison with baseline methods, and our customized implementation 

approach. 

4.1 Datasets 

To make a comprehensive evaluation of the proposed method, in this paper, we 

use multiple datasets on both mathematical reasoning and symbolic reasoning 

tasks. The metric we used for mathematical and symbolic reasoning tasks is 

accuracy(%). 

For arithmetical task, we conduct a series of experiments on five different 

datasets, including (1) AddSub [7] dataset of addition and subtraction arith- 

 
3 https://platform.openai.com/docs/deprecations 



8  Qi Ye and Xiang Ji et al. 

metic word problems, (2) GSM8K [6] dataset of high quality linguistically diverse 

grade school math word problems created by human problem writers, (3) Mul- 

tiArith [13] dataset consists high-quality question description and formulas, (4) 

SVAMP [11] a challenge set for elementary-level Math Word Problems and (5) 

AQuA-RAT [10] dataset that contains algebraic word problems with rationales. 

For symbolic reasoning task, we use the Last Letter Concatenation [21] 

dataset while the question is to splice the last letter of each word in the sentence. 

These datasets are classical reasoning datasets that many other methods also use. 

We did not consider another CoinFlip [21] dataset, as its problem is relatively 

simple and many methods have achieved performance exceeding 99%. Therefore, 

we chose the more difficult Last Letter dataset. 

4.2 Baselines 

We compare ESPDE with the following five baselines: Zero-shot-CoT [8], Zero- 

shot-PoT [4], Manual-CoT [21], Auto-CoT [22] and Plan-and-Solve [19]. Zero- 

shot-CoT simply adds ”Let’s think step by step” after each question as a prompt. 

Zero-shot-PoT uses Codex to express the reasoning process as a program and 

execute it by the computer to obtain the answer. Manual-CoT uses eight ar- 

tificially constructed prompts to elicit reasoning in LLM. Auto-CoT samples 

questions with diversity and generates reasoning chains to construct demonstra- 

tions. Plan-and-Solve divides the prompt into two parts: first, devise a plan to 

break the task into subtasks and then carry out the subtasks according to the 

plan. 

4.3 Implementation 

We divide the implementation plan into two steps: the first step is to generate 

the reasoning paths, and the second step is to extract answers from the reasoning 

paths. In the first step, we use the text-davinci-003 [3] model as the backbone, 

which is the version of the public ChatGPT model from the OpenAI API with 

175 billion parameters. We select this model because it is more capable than the 

text-davinci-002 [3] version of GPT-3 and is designed specifically for instruction- 

following tasks. Additionally, it is widely used by most other reasoning methods 

including all the baselines compared in this paper. For parameter settings, we 

set the temperature to 0.25, top p to 1 to reduce the randomness of generated 

reasoning paths, and set the n to 5 to get 5 paths from the decoder of the model 

for each sample. In the second step, we use ChatGLM with 6 billion parameters 

and follow default settings. 

However, according to the latest announcement from OpenAI, the text- 

davinci-003 will be abandoned on January 4, 2024. To establish the generality 

and applicability of our method, we performed experiments on mathematical 

datasets using gpt-3.5-turbo-instruct, which is the latest recommended alterna- 

tive to the text-davinci-003 model, as suggested by OpenAI. 
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Table 1. Accuracy (%) comparison of ESPDE with five baselines on five mathematical 

reasoning datasets. The five baselines belong to zero-shot or few-shot settings. The 

ESPDE* means that the result comes from gpt-3.5-turo-instruct. The best result is 

bold in the zero-shot setting. The last column is average scores. Notably, each result is 

the average of multiple experiments. The ’-’ means that the experiment result cannot 

be reproduced anymore due to the extraction model having been deprecated. 

 

Methods 

 

Arithmatical Symbolic 

AddSu

b 

AQu

A 

GSM8K Multi-

Arith 

SVAMP AVG LastLetter 

*few-shot 

Manual-CoT [21] 

Auto-CoT [22] 

 

91.6 

90.8 

 

48.4 

41.7 

 

58.4 

57.1 

 

93.6 

95.5 

 

80.3 

78.1 

 

74.5 

72.6 

 

70.6 

- 

*zero-shot 

CoT [8] 

 

85.3 

 

38.9 

 

56.4 

 

83.8 

 

69.9 

 

66.9 

 

64.8 

PoT [4] 85.1 43.9 57.0 92.2 70.8 69.8 - 

Plan-and-Solve [19] 

ESPDE (ours) 

92.2 

92.9 

46.0 

44.5 

59.3 

60.7 

91.8 

94.1 

75.7 

78.5 

73.0 

74.2 

75.2 

83.5 

ESPDE* (ours) 87.4 53.0 72.8 96.2 82.5 78.4 - 

 

5 Experimental Results 

In this section, we showcase our experimental findings for two tasks. Further- 

more, we compare prompts across various methods, assess the efficacy of various 

extraction techniques, and perform an error analysis on 100 samples from the 

GSM8K dataset. 

5.1 Main Results 

In the experiments, we evaluated ESPDE on six datasets of two categories of 

reasoning tasks. Table 1 and 3 show the experimental results, which are overall 

better than the existing sota method and far exceed other baseline methods. 

Arithmetic Reasoning. Table 1 summarizes comparisons between our method 

and five baselines on arithmetic reasoning datasets. The result shows that in zero- 

shot setting, our approach completely surpasses previous methods and reaches 

state-of-the-art on four datasets except AQuA-RAT. Specifically, our ESPDE 

achieves score gains of 0.7%, 1.4%, 2.3%, and 2.8% over the previous state-of-art 

method on AddSub, GSM8K, MultiArith, and SVAMP, respectively. Addition- 

ally, our method completely outperforms CoT and PoT on all five datasets, with 

an average improvement of 7.3% and 4.4% respectively, indicating its superior 

performance. Compared with another competitive method, Plan-and-Solve, the 

performance of our approach is also competitive. The results show that our 

method outperforms Plan-and-Solve on four of the five math datasets, with an 
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average improvement of 1.2%. The exception of the result on AQuA-RAT could 

be due to the dataset itself which we find there are mistakes in the dataset and 

also the dataset is more challenging. 

In few-shot setting, our zero-shot ESPDE substantially outperforms the Auto- 

CoT on four arithmetic reasoning tasks except for MultiArith in table 1 and 

and improves by an average of 1.6%. Compared with Manual-CoT, our method 

(74.2%) outperforms in three out of five datasets, averaging only 0.3% lower 

than Manual-CoT (74.5%). While this is an unfair comparison, the result shows 

that even compared with some few-shot methods our method still performs well. 

Importantly, we also conducted experiments on another model, referred to as 

Model gpt-3.5-turbo-instruct. As shown in table 1, experimental results far ex- 

ceed previous methods on all math datasets except AddSub. On average, it is 

improved by 4.2% compared to using text-davinci-003 version in our method. 

The experimental results further confirmed the versatility and adaptability of 

our method. The positive results obtained with gpt-3.5-turbo-instruct validate 

the efficacy and robustness of our approach across different models. This rein- 

forces the notion that our method exhibits excellent flexibility and can be applied 

successfully in various contexts. 

Symbolic Reasoning. Table 1 also shows the results of ESPDE against 

Zero-shot-CoT, Plan-and-Solve and Manual-CoT on symbolic reasoning dataset. 

It is clear that our method significantly outperforms previous methods over the 

Last Letter dataset. Our ESPDE achieves respective improvements of 18.7% over 

Zero-Shot-CoT, 8.3% over Plan-and-Solve, and 12.9% over Manual-CoT 

5.2 Detailed Analysis 

Comparison results of Different Prompts. To verify the effectiveness of 

our prompt template, we conduct experiments using the GPT-3.5-turbo-instruct 

model to compare our prompt with two other methods, Zero-Shot-CoT and Plan- 

and-Solve, on the MultiArith dataset. The results, shown in table 2, demonstrate 

that our prompt (96.2%) outperformed the other two methods, achieving scores 

of 91.8% and 89.8%, respectively. This significant performance difference con- 

firms the effectiveness of our method 

For citations of references, we prefer the use of square brackets and consecutive num-

bers. Citations using labels or the author/year convention are also acceptable. The fol-

lowing bibliography provides a sample reference list with entries for journal articles 

[1], an LNCS chapter [2], a book [3], proceedings without editors [4], as well as a 

URL [5]. 

Furthermore, we sought to explore the impact of prompts by analyzing vari- 

ations at different stages in our prompt construction process. Initially, we broke 

down the specific problem-solving steps, providing the model with more granu- 

lar information. Subsequently, we augmented the prompt with additional specific 

descriptions. Finally, we incorporated formulas to create the final prompt. As 

illustrated in the table, each successive modification step led to an improvement 

in performance. Initially, the model achieved a score of 95.6%, which increased to 
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96% after incorporating more specific description information into the prompt. 

Finally, by including relevant formulas, the performance further improved to a 

score of 96.2%. By systematically refining the prompts, we effectively harnessed 

the potential of the language model, leveraging its capabilities to deliver supe- 

rior results. This observation highlights the importance of crafting appropriate 

prompts to enable large language models to produce higher-quality results and 

arrive at accurate answers. 

Table 2. Comparison of the accuracy (%) of prompts from different methods and the 

construction of prompt of our method. In the table, No.1 and No.2 mean the prompt 

of Zero-shot-CoT and Plan-and-Solve respectively. And No.3 to No.5 is the comparison 

of our trigger sentences. The maximum value is bold. 

No.  Prompt MultiArith 

1 Let’s think step by step. 91.8 

2 

Let’s first understand the problem, extract relevant variables 

and their corresponding numerals, and make a complete plan. 

Then, let’s carry out the plan, calculate intermediate variables 

(pay attention to correct numerical calculation and common- 

sense), solve the problem step by step, and show the answer. 

89.8 

3 

**Identify Variables**: Extract the correct relevant variables 

and their corresponding values from the problem. **Plan a Solu- 

tion**: Develop a step-by-step plan to solve the problem. **Cal- 

culate**: Calculate correctly. 

95.6 

4 

**Identify Variables**: Extract the correct relevant variables 

and their corresponding values from the problem. Develop a 

step-by-step plan to solve the problem. **Calculate**: Strictly 

follow the order of operations in your calculations and calculate 

correctly 

96 

5 

**Identify Variables**: Extract the correct relevant variables 

and their corresponding values from the problem. **Plan a Solu- 

tion**: Develop a step-by-step plan to solve the problem.**Ap- 

**ply Formulas**: For each step in your plan, apply the appro- 

priate mathematical formulas or principles. This might include 

algebraic equations, geometric formulas, arithmetic operations, 

etc. **Calculate**: Strictly follow the order of operations in your 

calculations and calculate correctly 

96.2 

 

Comparison results of Different Extraction Models. For cost and ef- 

ficiency considerations, we compared the extraction performance of two mod- 

els, text-davinci-003 (175B) and ChatGLM (6B), on AddSub and Last Letters 

datasets, respectively. The former model is a paid option with a greater num- 

ber of parameters, whereas the latter is free but has fewer model parameters, 

suggesting lower capabilities. Based on Table 3, the performance of ChatGLM 

(98.7%) and text-davinci-003 (99.5%) is similar to the mathematical reasoning 
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dataset. However, when it comes to the symbolic reasoning dataset, ChatGLM 

(45.6%) significantly underperforms compared to text-davinci-003 (99.6%). As a 

result, we have implemented distinct models for each dataset type, allowing us 

to reduce costs without compromising the overall outcomes. 

 

Table 3. Extraction accuracy (%) comparison of ChatGLM with text-davinci-003 on 

Last Letters and AddSub dataset. The best result is bold. 

Models Last Letter AddSub 

ChatGLM(6B) 45.6 98.7 

Text-Davinci-003(175B) 99.6 99.5 

Table 4. Error distribution rate comparison between Plan-and-Solve and ESPDE on 

GSM8K’s 100 data points. The PS+ means the Plan-and-Solve method and the lower 

error rate is bold. 

Error Type PS+ ESPDE 

Variable extraction error 

Plan error 

11% 

12% 

8% 

13% 

Calculation error 15% 9% 

 

Error Analysis. We evaluated our method’s effectiveness by comparing its error 

distributions with Plan-and-Solve on the GSM8K dataset. Specifically, we ran- 

domly sampled 100 data points, generated thought chains with both methods’ 

prompts respectively, and identified error examples. Then we manually analyzed 

the error samples and classified the errors into three types: variable extraction, 

plan, and calculation. Table 4 shows the error distributions. As shown in table 4, 

our method significantly outperforms Plan-and-Solve and reduced variable ex- 

traction and calculation errors by 3% and 6%, respectively. Furthermore, it shows 

a similar performance to Plan-and-Solve in planning errors with only 1% lower. 

The result may be attributed to the complexity of some questions, which pose 

challenges for both human and machine comprehension, and the incompleteness 

of the plan, which reflects the limitations of the model 

6 Conclusion 

In this paper, we focus on mathematical reasoning tasks and extend to symbolic 

reasoning tasks. We studied how to make LLM generate high-quality inference 

paths and extract accurate answers from paths, and propose ESPDE to solve 

the two reasoning tasks. ESPDE leverages two similar comprehensive prompt 

templates that integrate task prompts, CoT prompts, and format prompts to 

guide LLM to generate high-quality reasoning paths. Then use ChatGLM for 

efficient and economical answer extraction, and determine the most accurate 

answer through a majority voting system. Evaluation on six datasets across two 
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types of reasoning problems shows ESPDF outperforms the previous zero-shot 

baselines and performs comparable with few-shot CoT prompting on multiple 

arithmetic reasoning datasets. 

 We compare the prompts of different methods and the result shows the pro- 

posed prompt template can generate a high-quality reasoning process. We also make error anal-

ysis on 100 random samples of GSM8K and the result shows that our method indeed reduces 

calculation errors and variable extraction errors. Fur- 

thermore, the result of the experiment on expanded model gpt-3.5-turbo-instruct 

shows the robustness of our method. However, we cannot solve the plan errors 

efficiently, which may be limited to the performance of the model. We leave the 

problem as our future work. 
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