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Abstract. Remote sensing image fusion combines single-band panchromatic 

(PAN) image with multi-spectral (MS) image to generate high quality fused im-

age, also known as pan-sharpening. Most of the current methods suitable for re-

mote sensing image fusion are supervised, which require proportional down-sam-

pling of the original multi-spectral image as training image, and the original 

multi-spectral image as label image. This will result in poor performance of the 

model on full resolution images, so the unsupervised methods are more practical. 

Furthermore, most methods do not consider the differences between MS and 

PAN images and use the same modules to extract features, which results in some 

information loss. Therefore, we design an unsupervised attention-based genera-

tive adversarial network fusion framework (UAB-GAN), which can be trained 

directly on the datasets of unlabeled images. Specifically, the model framework 

consists of a generator and two discriminators. The generator employs different 

network modules with specific designs to extract unique modal features from 

PAN and MS images, respectively. Then two discriminators are designed to pre-

serve the spectral and spatial information of different images. Additionally, we 

propose a unified loss function to integrate multi-scale spectral and spatial fea-

tures without external data supervision. The effectiveness of the proposed method 

is demonstrated through experiments conducted on various datasets. 

Keywords: Image Fusion, Generative Adversarial Network (GAN), Unsuper-

vised Method, Remote Sensing Image. 

1 Introduction 

Generally speaking, remote sensing images usually come from multiple different 

sensors or platforms, and the data types include panchromatic (PAN) images, multi-

spectral (MS) images, and hyper-spectral (HS) images. PAN images cover very rich 

spatial information and can record more texture and detailed information on the surface 

of objects, providing more accurate data for the identification and analysis of ground 

objects. MS images have greater advantages in terms of spectrum, because they contain 

data in multiple bands and can provide rich spectral information. They can be fused 
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into a high-quality image through a series of algorithms and technologies to obtain 

richer and more accurate ground object information and feature information. And these 

algorithms that fuse two remotely sensed images are called pan-sharpening techniques. 

This fusion technology is widely used in fields such as earth observation, resource man-

agement, and environmental monitoring. These algorithms and techniques can be 

broadly divided into conventional and deep learning-based methods. Conventional fu-

sion methods include component substitution-based (CS) image fusion meth-

ods[1][2][3], multi-resolution analysis-based (MRA) image fusion methods[4][5], and 

model-based image fusion methods.  

Among CS-based methods, commonly used transformations include intensity-

hue-saturation technique (IHS)[1], principal component analysis (PCA)[2], and Gram-

Schmidt (GS)[3]. Among them, the IHS technology decomposes the image into three 

components: intensity, hue, and saturation, and then fuses the intensity information of 

the panchromatic image with the hue and saturation information of the multi-spectral 

image. PCA performs principal component transformation on the multi-spectral image, 

extracts the main features, and then fuses the panchromatic image with the principal 

components. The GS method replaces the corresponding bands of the multi-spectral 

image one by one with the bands of the panchromatic image to achieve image fusion. 

MRA methods are widely used in the field of panchromatic and multi-spectral image 

fusion due to their ability to effectively preserve spectral information[4]. In MRA meth-

ods, the two types of images are converted to scale levels through specially designed 

conversion functions. This method can organically combine the spatial and spectral in-

formation of PAN images and MS images, thereby achieving comprehensive enhance-

ment and optimization of remote sensing images. Common MRA methods include 

high-pass filter (HPF)[5], indusion[6] and à trous wavelet transform (ATWT)[7]. The 

HPF method enhances the spatial details of the image through filter design, thereby 

improving the resolution of the PAN image. The indusion method achieves adaptive 

fusion of PAN images and MS images by introducing weight parameters. The ATWT 

method uses the multi-scale characteristics of wavelet analysis to achieve multi-scale 

decomposition and fusion of images, and has good time-frequency locality. However, 

unreasonable models or parameters may cause the fused image to lose a lot of spatial 

information, thus affecting the fusion effect and quality. 

Model-based image processing method refers to the use of mathematical models or 

physical models to describe the characteristics and attributes of images, and through 

the analysis and processing of these models to achieve image processing and enhance-

ment[8]. The entire process of the model-based remote sensing image fusion method is 

as follows. First, interpretable mathematical models between input panchromatic im-

ages, multi-spectral images, and label images must be established. These models can 

describe the correlation and feature mapping relationships between different images. 

Then, the established model is parameterized by solving the optimization problem to 

maximize the quality and feature information of the fused image. A typical method is 

the correlated spatial detail (BDSD) model[9], which considers the correlation between 

PAN and MS images, thereby achieving efficient fusion of images.  
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However, these methods have some limitations. One of the major issues is their lim-

ited ability to resolve highly nonlinear mappings. Since the mapping relationship be-

tween PAN and MS images is usually non-linear, these methods may suffer from spec-

tral distortion and loss of spatial details when handling complex fusion tasks. 

2 Related Work 

In recent years, some new image fusion methods based on deep learning have 

emerged[10][11][12]. These methods utilize techniques such as convolutional neural 

networks to better capture the complex relationships between images, thereby achiev-

ing higher quality image fusion. Deep learning is gradually recognized by researchers 

in the field of image processing, has become a mainstream method in many image pro-

cessing tasks, and has achieved many breakthrough results in various fields. Feng et al. 

[13] proposed a multi-scale feature injection network for panchromatic sharpening, and 

achieved good results by using dynamic convolution modules and multi-level fusion 

modules. Wang et al.[14] proposed a new hybrid network for use in the field of remote 

sensing image fusion, and performed well in experiments on several datasets. Likewise, 

Transformer is suitable for PAN and MS image fusion. Liu et al.[15] designed a local 

moving window mechanism that can flexibly model images of different scales, which 

contributes to reducing the amount of computation. 

Most of these methods are based on supervised learning. To this end, the original 

PAN and MS images are usually down-sampled into low-resolution image pairs at a 

certain proportion, and then the low-resolution image (LRMS) pairs are used as input 

to the network model, and the original MS images are used Labeled images (GT) are 

used for training. This method is also called the Wald protocol[16]. However, due to 

the use of down-sampled low-resolution image pairs during the training process, when 

the trained network is tested on a high-resolution test set, the test results will usually be 

significantly different. Therefore, the unsupervised remote sensing image fusion meth-

ods have more practical significance in specific applications. Ni et al.[17] proposed an 

unsupervised fusion model based on a learnable degradation process. ZeRGAN[18] is 

a novel unsupervised method that does not require pre-training. Zhou et al.[19] pro-

posed cycle-consistent unsupervised generative adversarial networks for pan-sharpen-

ing. 

In addition, most methods do not consider the differences between MS and PAN 

images and use the same modules to extract features, which results in some information 

loss. Based on the above reasons, this work proposes an unsupervised attention-based 

generative adversarial network, which can be trained directly on a dataset of unlabeled 

images. First, our generator designs two different convolutional attention modules for 

different types of input images, namely the convolutional block attention module 

(CBAM)[20] and the panchromatic convolutional block attention module (CBAM-P). 

These modules include both channel attention and spatial attention. Secondly, the ad-

dition of skip connections can prevent gradient disappearance and ensure the stability 

of the model training process. Then, a dual discriminator design is adopted to focus on 

the spectral and spatial information of different images. Finally, the algorithm uses 
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multiple loss functions to ensure that the network can generate high-quality fused im-

ages (HRMS). The main contributions of this paper are as follows. 

1)  We design an unsupervised framework that can learn directly on a dataset of 

unlabeled images. This model can generate high-quality fused images without down-

sampling the original image to obtain labels. 

2)  Considering that PAN and MS images are rich in different information, we in-

novatively designed a differentiated dual-stream feature extraction module based on 

multiple attention. And use dual discriminators to improve the information retention 

ability of the network. 

3)  We introduce a unified non-reference loss function to ensure that the network 

generates high-quality fused images. Experiments show that our method has better re-

sults compared with common conventional methods and unsupervised methods. 

The remaining chapters of this article are organized as follows. Section 3 describes 

the proposed UAB-GAN method in detail. Section 4 describes the experimental results 

of different methods and performs ablation experiments. The entire article is summa-

rized in Section 5. 

3 Proposed Method 

Based on existing unsupervised fusion methods and research field development 

trends, this paper designs an overall architecture based on generative adversarial net-

works. The overall model includes a generator module based on differential feature 

extraction and two discriminator modules to maintain the spectral and spatial charac-

teristics of the generated image. The specific structure of the model is shown in Figure 

1. First of all, since PAN and MS images have different focuses of information, it is 

feasible to design specific feature extraction modules for different images. This method 

is conducive to obtaining feature information for subsequent operations. Then, the fea-

ture integration and restoration stage uses a CBAM with channel attention and spatial 

attention. This channel-spatial dimension integration method is more conducive to im-

age reconstruction. In addition, the up-sampled original MS image is connected to the 

final output in a skip layer connection. This can maintain the stability of the training 

process and improve fused image quality. Finally, the design idea of the dual discrimi-

nator comes from the Pan-GAN network[21]. Based on the designed loss function, the 

two discriminators focus on the spectral and spatial information of the image. 
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Fig. 1. Structural diagram of UAB-GAN network. 

 

3.1 Generator 

The structure of the generator is shown in Figure 1. Specifically, the generator G can 

be divided into a dual-stream feature extraction stage and a feature integration and im-

age restoration stage. According to the research of PanNet[22], training the generator 

in the high-frequency domain after high-pass filter (HPF) processing is beneficial to 

preserving the spatial characteristics of the image. In the dual-stream feature extraction 

stage, there is a convolution layer containing a ReLU activation function, and the size 

of the convolution kernel is uniformly set to 3×3. The study found that spectral infor-

mation and spatial information exist in both MS and PAN images. In addition, consid-

ering the richness of spectral information of MS images, the CBAM is applied in the 

algorithm for feature extraction of MS images. However, the spatial information of 

PAN images is more comprehensive. Based on this thinking, the CBAM-P was de-

signed for information extraction of PAN images. The specific designs of the two mod-

ules are shown in Figure 2.  

Specifically, there are two kinds of attention in both CBAM and CBAM-P, namely 

channel attention and spatial attention, but there are differences in the specific order. 

CBAM uses the original channel-spatial attention arrangement, while CBAM-P adopts 

a new spatial-channel attention arrangement to enhance the extraction ability of spatial 

features. In addition, both modules add residual connections, which can effectively pre-

vent gradient disappearance. 
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Fig. 2. Convolutional Block Attention Module (CBAM) and Panchromatic Convolutional Block 

Attention Module (CBAM-P) 

In the channel attention module, the input features are pooled simultaneously by two 

types of pooling, namely average pooling (AvgPool) and maximum pooling (Max-

Pool), which will obtain two feature maps of specific sizes. Then the two feature maps 

pass through the multi-layer perceptron (MLP) respectively, and then the result vectors 

are added. Then the weights are mapped to a specific range through the activation func-

tion, and finally multiplied with the original features in the channel dimension to obtain 

the output feature map. The specific process is shown in Formula 1. 

 ( ) ( ( ( )) ( ( )))CH I S MLP AvgPool I MLP MaxPool I= +  (1) 

where I represents the input feature and S represents the activation function. 

The design idea of spatial attention is generally similar. The input features are first 

subjected to two pooling operations, and the obtained feature maps are spliced in the 

channel dimension. Then spatial weights are generated through convolution and acti-

vation functions, and finally the processed feature maps are obtained. The specific pro-

cess is shown in Formula 2. And figure 3 shows two attention modules. 

 ( ) ( 7 7([ ( ); ( )]))SH I S Conv AvgPool I MaxPool I=   (2) 

where I represents the input feature. S represents the activation function. Conv7×7 rep-

resents a convolution operation with a convolution kernel size of 7×7. 
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Fig. 3. Channel attention module and spatial attention module 

3.2 Discriminator 

The model uses two discriminators for training, which can effectively improve the 

retention ability of spatial and spectral information. The specific structure is shown in 

Figure 4. The discriminator that takes input MS image pairs is called DMS, and the other 

discriminator that takes input PAN image pairs is called DPAN. The design principle of 

the discriminator is similar to that of pix2pix[23], consisting of different numbers of 

convolutional layers, and the size of the convolutional kernel is 4×4. The input image 

pairs in DMS are the original MS image and the down-sampled HRMS image, respec-

tively, and the spectral information is balanced through dynamic training. The input 

image pairs in DPAN are the original PAN image and the converted PAN image, which 

retain spatial information through dynamic training. The converted PAN image is ob-

tained from the HRMS image after passing through a 3×3 convolution layer. At the 

same time, a deeper network structure is designed for larger PAN images. The discrim-

inator adopts a fully convolutional layer design, which can make the training process 

more stable and show better tolerance to test images of different sizes. 



8  Wang et al. 

C
o

n
v

 4
×

4

L
R

eL
U

C
o
n
v
 4

×
4

L
R

eL
U

C
o
n
v
 4

×
4

L
R

eL
U

C
o
n
v
 4

×
4

L
R

eL
U

C
o

n
v

 4
×

4

P
A

N
 I

m
ag

e
s

Discriminator DPAN

C
o

n
v

 4
×

4

L
R

eL
U

C
o
n
v

 4
×

4

L
R

eL
U

C
o
n
v

 4
×

4

L
R

eL
U

M
S

 I
m

ag
e
s

C
o
n
v

 4
×

4

DIscriminator DMS

 

Fig. 4. Structure diagram of two discriminators 

3.3 Loss Function 

The overall loss function of UAB-GAN consists of two parts, namely the loss of the 

generator G, and the loss of the discriminators DMS and DPAN. The specific composition 

of the loss function will be described below. 

1) QNR loss: QNR loss comes from a non-reference quality index, which includes 

spectral information component Dλ, spatial information component Ds and non-refer-

ence index QNR. The QNR index is used by PGMAN in the construction of the non-

reference loss function to minimize the information loss of the generated image[24]. 

This article follows the same design principle, and the specific design is shown in Equa-

tion 3. 

 1QL QNR= −  (3) 

The calculation process of QNR is shown in Equation 4. 

 (1 )(1 )SQNR D D= − −  (4) 

The processes of spectral information component Dλ and spatial information compo-

nent Ds are shown in Equations 5 and 6. 

 
1 1

2
( , ) ( , )

( 2)

N N

x y x y

x y

D Q K K Q L L
N N


= =

= −
−

  (5) 

 
1

1
( , ) ( , )

N

S x x

x

D Q K P Q L P
N =

= −  (6) 
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where K represents the fused HRMS image. L represents the original MS image. P 

represents the original PAN image. P′ represents the image after HRMS spectral deg-

radation. N is the number of bands. x and y represent the current frequency band. Q 

represents the image quality index. 

2) Adversarial loss: The focuses of the discriminators DMS and DPAN are different. 

DMS focuses on the retention of spectral information, while DPAN focuses on the reten-

tion of spatial information. During the dynamic training process, the information 

preservation ability of the generator is enhanced. To ensure that the fusion image as 

close to the real thing as possible can be generated. The loss function of generator G is 

shown in Equation 7. 

 ( ) ( ) ( ) ( ) ( )1
( ) ( ) ( , , )

M
m m m m m

G MS PAN Q

m

L D K D P L K L P
M

  = − − +  (7) 

where M is the sample size. K represents the fused HRMS image. K′ represents the 

image after HRMS down-sampling. α and β are hyper-parameters. 

The loss functions of DMS and DPAN are shown in Equations 8 and 9. 

 

2

( ) ( )

1

1
MS

M
m m

D F
m

L K L
M =

= −  (8) 

 

2

( ) ( )

1

1
PAN

M
m m

D F
m

L P P
M =

= −  (9) 

where ‖F represents the Frobenius norm matrix operation. 

4 Experiments and Results 

4.1 Experiment Details 

Experiments are coed on two datasets to evaluate the superiority of the proposed 

method, including WorldView II (WV2) and QuickBird (QB). The divisions of training 

data, validation data and test data of the two data sets are 1135/59/59 and 451/22/22 

respectively. Validation data is used for full-resolution experimental evaluation, and 

test data is used for low-resolution experimental evaluation. When constructing the 

training set, the Wald protocol [16]is used to generate training image pairs, and the 

original MS image is cropped into image patches of 256 × 256 pixels and used as a 

reference image (GT). The corresponding PAN image size is 256 × 256, and the 

LRMS image size is 64×64. 

We selected eight comparative methods to verify the excellence of the proposed 

method, including four classic fusion methods and four representative unsupervised 

methods based on deep learning. The four classic fusion methods are Brovey[25], 

MTF_GLP_HPM[26], PCA[2] and SFIM[27]. Four representative deep learning-based 

unsupervised methods include PANGAN[21], LDPNet[17], ZeRGAN[18] and 
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UCGAN[19].In addition, we selected three commonly used non-reference quality indi-

cators Dλ, Ds and QNR for full resolution quality evaluation[28]. The following refer-

ence indicators are selected: peak signal-to-noise ratio (PSNR)[29], relative global error 

(ERGAS)[30], correlation coefficient (CC)[31], spectral angle mapping (SAM)[32] 

and universal image quality index (UIQI)[33]. 

Our UAB-GAN is implemented in PyTorch version 1.4.0, and the corresponding 

GPU is NVIDIA GeForce GTX 1080Ti -11GB. The batch size was set to 8 in order to 

produce optimal experimental results. The algorithm uses the Adam optimizer to opti-

mize the loss during model training, and the learning rate is set to 0.0001. 

Table 1. Reference numerical results on the QB dataset. 

Method PSNR↑ ERGAS↓ CC↑ SAM↓ UIQI↑ 

Brovey[25] 

MTF_GLP_HPM[26] 

PCA[2] 

SFIM[27] 

LDPNet[17] 

UCGAN[19] 

PANGAN[21] 

ZeRGAN[18] 

UAB-GAN 

26.6485 5.5547 0.7795 0.0509 0.6949 

24.9313 6.0709 0.8577 0.0536 0.7330 

24.7955 6.8604 0.6974 0.1064 0.6337 

26.5900 5.2108 0.8462 0.0498 0.7235 

23.6202 6.7961 0.7639 0.1233 0.6486 

28.0187 

27.2667 

24.4477 

28.3682 

4.2700 

4.7514 

6.8690 

4.2261 

0.8938 

0.8670 

0.7561 

0.9075 

0.0634 

0.0519 

0.0922 

0.0978 

0.7895 

0.7502 

0.6462 

0.8114 

Ideal +∞ 0 1 0 1 

Table 2. Non-reference numerical results on the QB dataset. 

Method Dλ↓ DS↓ QNR↑ 

Brovey[25] 

MTF_GLP_HPM[26] 

PCA[2] 

SFIM[27] 

LDPNet[17] 

UCGAN[19] 

PANGAN[21] 

ZeRGAN[18] 

UAB-GAN 

0.0230 0.2659 0.7174 

0.0238 0.3562 0.6288 

0.0232 0.2652 0.7180 

0.0230 0.2689 0.7146 

0.0217 0.2743 0.7100 

0.0233 

0.0236 

0.0234 

0.0214 

0.2553 

0.2854 

0.2516 

0.2501 

0.7276 

0.6980 

0.7310 

0.7340 

Ideal 0 0 1 

 

4.2 Experimental Results 

The numerical results of all methods with and without reference on the QB data set 

are shown in Table 1 and Table 2 respectively. The data reflects that the UAB-GAN 

method achieved good results in both test experiments. The best value is marked in bold 

and the next best value is underlined. Specifically, the UAB-GAN method has ad-

vantages in all non-reference indicators and most reference indicators, indicating that 
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the generated fusion image is rich in information features and has little difference from 

the features of the label image. Since some conventional methods place more emphasis 

on the calculation weight of image pixels, making the spectral characteristics of the 

generated image more obvious, the UAB-GAN method is slightly lower than the SFIM 

method and the Brovey method in terms of SAM index. 

 

(a)LRMS (b)PAN (c)GT (d)Brovey (e)MTF_GLP_HPM (f)PCA

(g)SFIM (h)LDPNet (i)UCGAN (j)PANGAN (k)ZeRGAN (l)UAB-GAN  

Fig. 5. Fusion results of different methods on the QB dataset. 

The fusion results on the QB dataset are shown in Figure 5, where 5(a) is the up-

sampled LRMS image, 5(b) and 5(c) are the PAN and original MS images respectively. 

There are obvious spatial feature differences in the result maps of the Brovey method 

and the PCA method. The fused images of the UCGAN and PANGAN methods have 

spatial distortion problems. Although this problem is less severe with other methods, 

there is still a bias in spectral information. For example, light spots appear in the result 

image of the SFIM method. The color information of the image generated by the 

LDPNet method and the ZeRGAN method is quite different from the original image, 

which is specifically reflected in the color difference of fields and roads. The UAB-

GAN method has the best spatial and color information recovery effect. 

 

(a)Brovey (b)MTF_GLP_HPM (c)PCA (d)SFIM (e)LDPNet

(f)UCGAN (g)PANGAN (h)ZeRGAN (i)UAB-GAN (j)GT  

Fig. 6. Spatial error maps of different methods on the QB dataset. 
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(a)Brovey (b)MTF_GLP_HPM (c)PCA (d)SFIM (e)LDPNet

(f)UCGAN (g)PANGAN (h)ZeRGAN (i)UAB-GAN (j)GT  

Fig. 7. Spectral error maps of different methods on the QB dataset. 

In order to intuitively demonstrate the spectral and spatial restoration effects of dif-

ferent fused images, the differences of the different images were visualized. The spatial 

error map is mapped into blue space, and the spectral error map is in black. Correspond-

ingly, the smaller the difference from the original image, the closer the error image is 

to a pure color image. The contours in Figure 6(a), (c), (e), and (h) are more obvious, 

indicating that the spatial recovery effect is poor. The difference between Figure 6(f) 

and (i) is small, indicating that the spatial features are well preserved. In terms of spec-

tral error, the conclusions obtained are basically consistent with the previous ones. The 

error figure 7(i) of UAB-GAN is closer to black, indicating that this method best retains 

spectral information. 

Table 3. Reference numerical results on the WV2 dataset. 

Method PSNR↑ ERGAS↓ CC↑ SAM↓ UIQI↑ 

Brovey[25] 

MTF_GLP_HPM[26] 

PCA[2] 

SFIM[27] 

LDPNet[17] 

UCGAN[19] 

PANGAN[21] 

ZeRGAN[18] 

UAB-GAN 

28.0123 7.8024 0.8377 0.1066 0.7111 

25.5589 9.8919 0.8662 0.1218 0.7202 

27.0186 8.4640 0.8375 0.2172 0.7043 

27.6404 8.2301 0.8444 0.1107 0.7051 

25.6351 

28.4956 

25.8711 

26.2008 

29.6372 

10.7552 

6.9677 

8.2515 

9.3745 

6.9228 

0.8355 

0.8902 

0.8569 

0.8076 

0.9265 

0.2341 

0.1503 

0.1240 

0.1718 

0.1831 

0.6755 

0.7510 

0.6763 

0.6598 

0.8026 

Ideal +∞ 0 1 0 1 
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Table 4. Non-reference numerical results on the WV2 dataset. 

Method Dλ↓ DS↓ QNR↑ 

Brovey[25] 

MTF_GLP_HPM[26] 

PCA[2] 

SFIM[27] 

LDPNet[17] 

UCGAN[19] 

PANGAN[21] 

ZeRGAN[18] 

UAB-GAN 

0.0131 0.2164 0.7737 

0.0143 0.3216 0.6693 

0.0134 0.2122 0.7776 

0.0132 0.2042 0.7858 

0.0143 0.2527 0.7369 

0.0137 

0.0142 

0.0134 

0.0119 

0.2437 

0.2296 

0.2209 

0.1858 

0.7461 

0.7598 

0.7689 

0.8048 

Ideal 0 0 1 

 

Similarly, experiments conducted on the WV2 data set also verified the superiority 

of the proposed UAB-GAN method, and various numerical results are shown in Table 

3 and Table 4. From the result analysis, the UAB-GAN method has the best effect, 

followed by the UCGAN method, which also shows that the unsupervised method 

based on the generative adversarial network has a broad application space. Specifically, 

the PSNR of the UAB-GAN method is numerically higher than the UCGAN method 

by 1.1416dB. It is better than the UCGAN method on UIQI by 0.0516. Compared with 

other conventional methods, the advantages are more prominent. 

 

(a)LRMS (b)PAN (c)GT (d)Brovey (e)MTF_GLP_HPM (f)PCA

(g)SFIM (h)LDPNet (i)UCGAN (j)PANGAN (k)ZeRGAN (l)UAB-GAN  

Fig. 8. Fusion results of different methods on the WV2 dataset. 

Figure 8 shows some test results of WV2 images obtained by different algorithms. 

The images of the LDPNet and ZeRGAN methods cannot retain the color information 

in the original image well, and obvious color distortion appears in the test image. The 

grass color is brighter in the restored image by Brovey method, but it is different from 

the original image. Fusion images from other methods have problems with spatial de-

tails, manifesting as architectural distortion and blurring. As shown in Figure 8(l), the 

architectural color of fused image is closer to the original image, and the spatial details 
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are well performed. Comprehensive analysis shows that UCGAN performs satisfacto-

rily on the WV2 data set, and the image is well restored in terms of space and color. 

 

(a)Brovey (b)MTF_GLP_HPM (c)PCA (d)SFIM (e)LDPNet

(f)UCGAN (g)PANGAN (h)ZeRGAN (i)UAB-GAN (j)GT  

Fig. 9. Spatial error maps of different methods on the WV2 dataset. 

(a)Brovey (b)MTF_GLP_HPM (c)PCA (d)SFIM (e)LDPNet

(f)UCGAN (g)PANGAN (h)ZeRGAN (i)UAB-GAN (j)GT  

Fig. 10. Spectral error maps of different methods on the WV2 dataset. 

Same as the experiments on the QB data set, Figures 9 and 10 show the spatial error 

maps and spectral error maps of different methods on the WV2 data set. The error of 

the traditional method is more obvious, which is also verified in the error image. Among 

unsupervised-based methods, UCGAN has smaller spatial errors, but it has a certain 

gap compared with UAB-GAN in terms of spectral feature retention. Since the ZeR-

GAN method does not require pre-training, it is not as good as other unsupervised meth-

ods in terms of fused image quality, and there are obvious differences in the error maps. 

Overall, the fusion results of the UAB-GAN method perform excellently in both spatial 

and spectral aspects. 
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4.3 Ablation Experiments 

To verify the rationality and effectiveness of each module of the UAB-GAN method, 

this section conducts corresponding ablation experiments. Correspondingly, the single 

discriminator generative adversarial network is used as the basic network. In order to 

obtain more credible experimental data, the experiments set the same number of pa-

rameters, and all ablation experiments were performed on the same data set (WV2). 

1) Discriminator design: An ablation experiment was conducted on the dual discrim-

inator design, and the experimental data results are shown in Table 4-5. Based on the 

experimental results, it can be concluded that compared with the generative adversarial 

network composed of a single discriminator, the generative adversarial network com-

posed of dual discriminators is more competitive in the method proposed in this article. 

Experimental data shows that the design of dual discriminators in UAB-GAN is effec-

tive, and the spectral quality and spatial details of the generated images are significantly 

improved. 

Table 5. Discriminator ablation study. 

Single-D Dual-D PSNR↑ ERGAS↓ CC↑ SAM↓ UIQI↑ 

√ 

× 

× 

√ 

28.5727 

29.6372 

8.2718 

6.9228 

0.8994 

0.9265 

0.2020 

0.1831 

0.7635 

0.8026 

 

2) Feature extraction strategy: To confirm the effectiveness of the dual-stream fea-

ture extraction module design, relevant ablation experiments were conducted. The ex-

perimental data results are shown in Table 6. We describe the network that uses residual 

blocks to build a dual-stream feature extraction module as UAB-GAN1, and the net-

work that uses CBAM to build a dual-stream feature extraction module as UAB-GAN2. 

The proposed UAB-GAN uses a mixture of CBAM and CBAM-P to build a dual-

stream feature extraction module. Experimental results show that UAB-GAN1 has poor 

performance because it cannot integrate local and global information. UAB-GAN2 has 

achieved better results due to the use of attention module, but is slightly worse in terms 

of comprehensive error. UAB-GAN achieved the best results overall, indicating that 

this way of designing specific convolutional attention modules for different images is 

desirable. 

Table 6. Ablation research on different feature extraction strategies. 

Model PSNR↑ ERGAS↓ CC↑ SAM↓ UIQI↑ 

UAB-GAN 

UAB-GAN1 

UAB-GAN2 

29.6372 

28.4955 

29.2419 

6.9228 

8.0687 

8.3147 

0.9265 

0.9145 

0.9364 

0.1831 

0.2110 

0.2017 

0.8026 

0.7795 

0.8147 
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5 Conclusion 

In this article, an unsupervised framework is designed that can learn directly on a 

data set of unlabeled images without the need to down-sample the original image to 

obtain the label. This model is designed based on a generative adversarial network. We 

use a dual-stream feature extraction module based on different attention to extract dif-

ferential feature information from PAN and MS images respectively. And a dual dis-

criminator is developed to preserve the input spectral and spatial information when per-

forming fusion. Experiments on data sets of different resolutions show that the com-

bined design model achieves better results without increasing computational complex-

ity. In addition, the study found that using a network structure of two discriminators 

can achieve satisfactory results, and the differential feature extraction ability of the 

model is further enhanced after designing specific convolutional attention for different 

images. Although UAB-GAN has achieved improvements in many indicators, com-

pared with supervised methods, there is still room for improvement in down-scale im-

ages. In the future, we will optimize the model and improve overall performance. 
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