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Abstract. In this paper, a deep reinforcement learning optimization algorithm 

combined with the clustering decomposition strategy (DRLA_CD) is proposed 

for solving the multi-depot vehicle routing problem (MDVRP). First, taking into 

account the NP-hard and strong coupling characteristics of MDVRP, an im-

proved K-means algorithm (IKA) is designed to decompose MDVRP into several 

single-depot vehicle routing subproblems, thereby rationally reducing the search 

space and improving the search efficiency of the algorithm. Second, the decon-

structed subproblems are solved using the deep reinforcement learning technique, 

and then the obtained solutions of subproblems are combined to form the whole 

solution of MDVRP. Finally, to confirm the efficacy of the proposed DRLA_CD, 

the comparative and simulation tests are carried out on instances with different 

scales. 

Keywords: Mult-depot vehicle routing problem, Deep reinforcement learning, 

Cluster of decomposition, Attention mechanism. 

1 Introduction 

The vehicle routing problem (VRP), which was proposed by Ramser and Dantzing in 

1959[1], has become a research hotspot in the field of modern operations research and 

is widely applied in the logistics and distribution industry. With the rapid development 

of the logistics industry, the traditional single-depot distribution model is no longer able 

to meet the increasingly diverse needs of customers, and it also affects the economic 

benefits of logistics companies. Therefore, Gillett et al.[2] proposed the Multi-depot 

Vehicle Routing Problem (MDVRP), which involves two decision steps: allocating 

customers to depots and planning the routes from depots to customers. Clearly, 

MDVRP is a more complex variant of VRP and belongs to an NP-hard problem. 

MDVRP is crucial in various transportation processes like cargo distribution, waste 

collection, and industrial manufacturing. Thus, researching its modeling and solution 

algorithms holds both theoretical and practical importance. 

For MDVRP, some scholars have adopted exact algorithms for solving it. For exam-

ple, Baldacci et al.[3] designed a column generation algorithm to solve MDVRP. In 

addition, Bettinelli et al.[4] utilized a branch-and-cut-and-price algorithm to solve the 

multi-depot heterogeneous vehicle routing problem with time windows. However, the 
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computational complexity involved in solving NP-hard problems like MDVRP using 

exact algorithms is extremely high, and the solution quality is not satisfactory. There-

fore, most studies resort to heuristic algorithms for solving such problems. Cordeau et 

al.[5] proposed a tabu search heuristic algorithm to solve the MDVRP and periodic 

VRP. Vidal et al.[6] proposed an efficient hybrid genetic algorithm to solve the 

MDVRP, periodic VRP, and multi-depot periodic VRP with capacitated vehicles and 

constrained route duration. Oliveira et al.[7] utilized clustering algorithms to decom-

pose MDVRP into multiple single-depot VRPs, enabling the use of a cooperative co-

evolutionary algorithm for solving. Hu Rong et al.[8] proposed an enhanced ant colony 

optimization based on clustering decomposition to solve the low-energy-consumption 

multi-depots heterogeneous-fleet vehicle routing problem with time windows. Sadati et 

al.[9] proposed a variable neighborhood tabu search algorithm, which can solve 

MDVRP as well as MDVRP with time windows and multi-depot open VRP. However, 

heuristic algorithms are iterative search-based optimization algorithms, and when deal-

ing with large-scale problems, a significant amount of iterative searching can still result 

in substantial computational time consumption. 

Deep reinforcement learning (DRL), a key branch of deep learning, has shown prom-

ise in solving NP-hard problems. Inspired by the success of AlphaGo Zero[10] in mas-

tering Go and Atari[11] games, researchers have applied end-to-end DRL algorithms 

to tackle classic NP-hard problems like the Traveling Salesman Problem (TSP) and the 

VRP[12]. This approach utilizes a trained deep neural network (DNN) to directly output 

solutions without iterative search, resulting in fast solving speeds and strong generali-

zation capabilities across problem instances with similar distribution characteristics. 

Vinyals et al.[13] proposed a pointer network (PN) model for solving TSP, which 

for the first time applied deep learning to combinatorial optimization problems in an 

end-to-end manner. PN uses supervised learning for training, but this approach requires 

a large number of optimal solutions as the training label, which is difficult and time-

consuming for NP-hard combinatorial optimization problems. Therefore, Bello et 

al.[14] proposed using an actor-critic reinforcement learning algorithm[15] instead of 

supervised learning to train PN. Nazari et al.[16] considered that the solution to the 

problem is independent of the order of input nodes, so they replaced the long short-term 

memory[17] of the input layer of the PN encoder with a simple linear embedding layer. 

This model can also be used to solve VRP with dynamic features. Kool et al.[12] im-

proved the traditional PN model by borrowing from the transformer model[18]. The 

encoder of the model adopts the same structure as the transformer model, while the 

decoder considers the global graph embedding information, the decision made in the 

previous step, and the remaining capacity of the vehicle. In addition, some studies have 

utilized DRL to improve traditional heuristic algorithms. Li et al.[19] proposed a learn-

ing-based algorithm that divides large-scale problems into smaller, more easily solvable 

subproblems. Xin et al.[20] proposed the NeuroLKH algorithm for solving various 

routing problems including VRP, which combines deep learning with the traditional 

heuristic algorithm LKH. Kim et al.[21] proposed a learning-based heuristic algorithm 

that uses graph neural networks to predict the search results of the heuristic algorithm 

and uses the predicted results to guide the selection of sub-paths to exchange. 



3 

In summary, current research on MDVRP primarily focuses on heuristic algorithms, 

with most studies tending to encode and solve the problem as a whole. Inspired by the 

studies above, this paper proposes a DRLA_CD to solve the MDVRP, considering the 

complex solution space and the interdependence between the two stages. Firstly, an 

IKA algorithm is designed, which consists of K-means clustering and customer group 

assignment. This algorithm can effectively decompose the MDVRP into multiple 

VRPs. Secondly, the trained deep neural network (DNN) is used to directly output so-

lutions for each decomposed sub-problem. These solutions are then combined to obtain 

the solution for the original problem. This approach significantly reduces the search 

area in the solution space, enabling the rapid solution of MDVRP. Finally, through 

simulation experiments and algorithm comparisons on different scale test sets, the ef-

fectiveness of the proposed DRLA_CD algorithm for solving MDVRP has been vali-

dated. 

2 Problem Description & Modeling 

2.1 Problem Description 

The description of MDVRP is as follows: Given m depots and n customers, each depot 

is assigned a certain number of vehicles. The vehicles depart from the depots to deliver 

goods to customers, complete the service, and then return to the depots. The objective 

is to plan the optimal delivery routes to minimize the total transportation cost. As shown 

in Fig. 1, this problem can be represented by a directed graph ( ),G V E= , where 

{ , }V D C= is the set of nodes, including m depot nodes and n  customer nodes.

{( , ) | , , }E i j i j V i j=    is the set of all edges. For the convenience of analysis and re-

search, the following assumptions are made for this problem: 

(1) The coordinates of all depots and customers, as well as the demands of custom-

ers, are known. 

(2) Each customer node is exclusively served by one depot, and the demand of each 

customer can be fulfilled in a single service without the need for multiple services. 

(3) Vehicles depart from a depot, and after completing the service, they need to re-

turn to the original depot. 

(4) All customer demands are less than the maximum load capacity of the vehicle. 
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Fig. 1. Schematic diagram of MDVRP 

2.2 Symbol Definition and Mathematical Model 

The definitions of the relevant symbols involved in this article are shown in Table 1. 

Table 1. Notations applied in the model of MDVRP 

Based on the above description, assumptions, and definitions, the mathematical model 

of MDVRP is as follows: 

 min  ij iju

i D j C u U

d x
  

  (1) 

Subject to: 

 1,iu

i D

z u U


=    (2) 

 1,ij

i D

y j C


=    (3) 

 iu u

u U i D

z G
 

  (4) 

Symbol Constants 

D  Depot node set  1 2, ,..., mD d d d=  

C  Customer node set 1 2 }{ , ,..., nC c c c=  

U  Vehicle set 1 2{ , ,..., }mU u u u= ,Where 1u represents the set of vehicles in depot 1 

Q  Maximum vehicle capacity 

ir  Demand of customer i C  

uG  Maximum number of vehicles 

ijd  The Euclidean distance between i  and j  

ijux  Decision variable: 1 if vehicle u U travels from customer i  to j , otherwise 0 

ijy  Decision variable: 1 if customer i C  is served by depot j D , otherwise 0 

iuz  Decision variable: 1 if vehicle u U  belongs to depot i D , otherwise 0 
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 1, ,iju jiu

j C j C

x x i D u U
 

= =       (5) 

 ,i iju

i C j V

r x Q u U
 

     (6) 

 0, ,iju

i D

x j D u U


=      (7) 

 {0,1}, , ,ijux i j V u U      (8) 

 {0,1}, ,ijy i C j D      (9) 

 {0,1}, ,iuz i D u U      (10) 

The objective function (1) aims to minimize the total transportation cost. Constraint 

(2) ensures that each vehicle is associated with a unique depot. Constraint (3) ensures 

that each customer is served by exactly one depot. Constraint (4) ensures that the total 

number of vehicles used does not exceed the maximum number of vehicles. Constraint 

(5) ensures that the starting and ending points of each route are at the same depot, and 

that each customer is served by only one vehicle. Constraint (6) ensures that the load 

of each vehicle during delivery does not exceed its maximum carrying capacity. Con-

straint (7) ensures that there are no connections between depots. Equations (8)-(10) 

represent the decision variables. 

3 Proposed DRLA_CD Algorithm 

The proposed DRLA_CD in this paper consists of a problem decomposition stage and 

a subproblem solving stage (see Fig. 2). After decomposition by IKA, the original 

MDVRP problem is transformed into multiple subproblems of VRP. Then, the attention 

model-vrp (AM-VRP) is used to decouple MDVRP, solving each VRP sequentially to 

obtain solutions and optimize the objective value of the original problem. 

 

Fig. 2. Framework of DRLA_CD 
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3.1 DRLA_CD Problem Decomposition Stage 

To effectively guide the algorithm to search in high-quality feasible solution space and 

improve the search efficiency of the algorithm, this paper designs the IKA algorithm to 

decompose MDVRP and obtain a series of VRPs.  
Firstly, based on the distribution of customer locations, the K-means algorithm is 

utilized to cluster all customers into several groups equal to the number of depots. Sec-

ondly, by considering the distance between depot locations and cluster centers, dis-

tance-based rules are designed to effectively determine the customer groups served by 

each depot. Finally, the customers in these groups that do not meet the depot capacity 

constraints are adjusted, and these customers are reassigned to other depots. Through 

the decomposition using IKA, multiple single-depot VRP subproblems are obtained. 

3.2 DRLA_CD Subproblem Solving Stage 

For the decomposed VRP instance s , it is defined as a graph with T nodes. A Markov 

Decision Process is established for the VRP, and its agent, state, action, and reward are 

defined as follows: 

Agent: The vehicles are regarded as intelligent agents. At each time step t , the agent 

selects actions based on the environment and learns to maximize cumulative rewards. 

State: States include static and dynamic states. The static state is the overall image 

feature information output by the encoder, including customer location, requirements, 

and other information. The dynamic state is based on the characteristics of the visited 

nodes and the remaining capacity of the vehicle at the current time. 

Action: At each time step t , the agent selects the next node to visit based on the 

probability distribution of unvisited nodes. The node selected for visitation at time step 
t  is represented as action t . 

Reward: For MDVRP, the objective function aims to minimize the total transpor-

tation cost. As indicated by equation (1), minimizing the route length is sufficient, 

hence the negative route length is defined as the reward. 

The policy is defined as a mapping from states to actions, approximated by a neural 

network-based stochastic policy ( | )p s  , which is parameterized by the neural net-

work with parameters  . This stochastic policy is modeled as: 

 
1: 1

1

( | ) = ( | , )
T

t t

t

p s p s    −

=

  (11) 

After the stochastic policy ( | )p s   samples a round of data and obtains corresponding 

rewards, the policy gradient estimation is performed based on the Reinforcement Learn-

ing algorithm to adjust the parameters  . 

3.2.1 Encoder 

The encoder used in this article is similar to the encoder of the transformer model, and 

due to the input order independence of the VRP, positional encoding has been removed. 

Fig. 3 illustrates the specific structure of the encoder. 
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Fig. 3. Encoder structure diagram 

To distinguish between depot and customers, separate parameters 
0

xW  and 
0

xb  are 

used to compute the initial embedding (0)

0h  of depot node, as shown in Eq. (12): 

 0 1 0(0)
[ ,0]

[ , ]      1,...,

x x

i x x

i i

W d b
h

W c r b i T

 +
= 

+ =

 (12) 

Where W  and b  are the parameters to be learned, (0)

ih represents the initial embedding 

of node i , and ( )

ih  represents the operation result in the th  encoding layer, where 

{1,2,..., }L . Each attention layer consists of two sub-layers: multi-head attention 

(MHA) and feed-forward (FF). Additionally, skip-connection and batch normalization 

(BN) are introduced to ensure the stability of training deep neural networks, as shown 

in Eq. (13): 

 
( 1) 1 ( 1)

1( ( ,..., ))

( ( ))

i i i

i i

T

i

h BN h MHA h h

h BN h FF h

− − −= +

= +
 (13) 

After L  encoding layers, embeddings ( )L

ih  for T  nodes are obtained and the graph em-

bedding ( )L

gh  representing the global graph information is obtained according to Eq. 

(14). 

 ( ) ( )

0

1 T
L L

g i

i

h h
T =

=   (14) 

3.2.2 Decoder 

Decoding is performed in sequence. At time t , the decoder predicts the current output 

node based on the node embeddings ( )L

ih  and graph embedding ( )L

gh  from the encoder, 

as well as the previous output ( )t t t 
   and the remaining capacity tQ  of the vehicle at 



8 

time t . The output node is then added to the solution sequence  , until the feasible 

solution is obtained. During decoding, a special context vector is used to represent the 

decoding context information. Taking the solution (0,1,2,0) =  as an example, Fig. 4 

shows the process of constructing the solution by the decoder. 

 

Fig. 4. Decoder structure diagram 

Node prediction: the node prediction layer outputs node selection probabilities us-

ing a single-head attention layer: 

 
( )

( ),

tanh( )      
dim

-                             

T

c i

c i k

q k
clip If i feasible

u

otherwise




= 



 (15) 

( ),c iu  represents the unnormalized probability value, and the output probability ip  is 

obtained by applying softmax normalization to ( ),c iu : 

 ( ),softmax )(i c ip u=  (16) 

3.2.3 Train with REINFORCE Algorithm 

The negative path length is used as a reward and trained through reinforcement learning 

algorithms. The loss is defined as the expected path length ( )L   of the VRP instance 

to be solved, as shown in Eq. (17) : 

 
( )  |

( ) ( ) log ( | )

( )

p s
L p s


 



  

  

 = 

 +

EL

L
 (17) 

The parameter   is updated using gradient descent with the REINFORCE algorithm 

incorporating a baseline, as shown in Eq. (18): 

 
( )  |

( ) ( ( ) ( )) log ( | )

Adam( , ( ))

p s
L b s p s


 



  

  

 = − 

 

EL

L
 (18) 
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3.2.4 Search Strategy 

AM-VRP can rapidly generate delivery paths for MDVRP, but there is still room for 

improvement in the solution results. To enhance the delivery paths, this paper adopts 

two search strategies: 

1) 2-opt search: applying the 2-opt operation to the model output solution to enhance 

the overall solution quality. 

2) Sampling Search: To address the issue of models easily getting trapped in local 

optima caused by greedy strategies, the model employs a random sampling action strat-

egy to repeatedly solve the same problem instance, obtaining multiple complete solu-

tions. Selecting the optimal solution among them can to some extent avoid this problem. 

4 Experimental Results and Discussion 

In this section, numerical simulations and experiments are conducted using randomly 

generated instances of various sizes to validate the superiority and effectiveness of 

DRLA_CD. All algorithms are implemented using Python and PyTorch and run on a 

12th Gen Intel(R) Core(TM) i5-12400f 2.5GHz CPU and GeForce RTX 3060 GPU. 

4.1 Experiment Design 

We evaluate the algorithm's performance on three datasets of different sizes: 50_2, 

100_2, and 300_3. For each dataset, we test the algorithm's performance on 1000 ran-

domly generated instances according to their corresponding distribution. The average 

value of all test cases is used as the performance metric for the model. 

The proposed method is compared with PSO[22], CSOM&CW [23], HTS[24], and 

ML[25]. In addition, to demonstrate the contribution of key components to 

DRLA_CD, we implemented some variants of DRLA_CD. DRLA_CD1 removed the 

2-opt search. DRLA_CD2 removed the sampling search strategy. DRLA_CD3 replaced 

AM-VRP with the traditional Clarke and Wright (CW) algorithm[26] in the Subprob-

lem Solving Stage. Relative error (RE) is used to evaluate the effectiveness of schedul-

ing algorithms and is directly used to evaluate the performance of algorithms, as shown 

in Eq. (19): 

 i best

best

f f
RE

f

−
=  (19) 

Where bestf  represents the minimum total cost obtained by running all comparison al-

gorithms, and if  represents the total cost obtained by running the i-th algorithm.To 

obtain more reliable experimental results, all algorithms are executed 20 times for each 

instance, with each execution time of 6 timeT ( timeT  is the execution time of DRLA_CD). 

The best RE (BRE), average RE (ARE), and worst RE (WRE) are used to measure the 

performance. 
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4.2 Experiment Results and Discussion 

The comprehensive comparison results of all comparison algorithms are shown in Ta-

ble 2 and Fig. 5. The minimum BRE, ARE, and WRE for each instance in Table 2 are 

highlighted in bold. According to Table 2, it can be seen that DRLA_CD has the lowest 

BRE, ARE, and WRE, which proves the superiority of the proposed DRLA_CD algo-

rithm. In addition, in instances of different scales, DRLA_CD achieved the lowest total 

average values of BRE, ARE, and WRE, indicating that the average performance of 

DRLA_CD is better than the other seven comparison algorithms. 

Table 2.  Comparison results of DRLA_CD with the other methods. 

Method 
50_2 100_2 300_3 

BRE ARE WRE BRE ARE WRE BRE ARE WRE 

PSO 0.07 0.09 0.14 0.08 0.12 0.15 0.15 0.21 0.29 

CSOM&CW 0.16 0.29 0.46 0.48 0.57 0.65 0.42 0.47 0.49 

HTS 0.46 0.54 0.71 0.39 0.64 0.71 0.45 0.51 0.66 

ML 0.12 0.14 0.17 0.08 0.11 0.14 0.14 0.17 0.21 

DRLA_CD1 0.05 0.06 0.08 0.12 0.15 0.17 0.20 0.24 0.26 

DRLA_CD2 0.00 0.06 0.13 0.01 0.08 0.15 0.03 0.07 0.12 

DRLA_CD3 0.22 0.22 0.22 0.42 0.42 0.42 0.51 0.51 0.51 

DRLA_CD 0.00 0.01 0.02 0.00 0.02 0.04 0.00 0.02 0.04 

 

 

Fig. 5. Box plot of comparison results between SA-DRL and seven other algorithms 

5 Conclusions  

For the MDVRP, this paper proposes DRLA_CD for solving. DRLA_CD consists of 

two stages. The first stage is problem decomposition, where an IKA clustering decom-

position strategy is designed to decompose the MDVRP, effectively reducing the 
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solution space of the problem. The second stage is subproblem solving, where the 

trained AM-VRP is combined with multiple search strategies to solve each decomposed 

subproblem. Finally, the solutions of each subproblem are merged to obtain the solution 

of the original problem. Simulation experiments and algorithm comparisons prove that 

DRLA_CD is an effective algorithm for solving the MDVRP. The next step will be to 

extend DRLA_CD to the location routing problem and heterogeneous fleet vehicle 

routing problem. 
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