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Abstract. In the domain of time series analysis, financial forecasting presents 

itself as a pinnacle of intricacy. Despite the multitude of models, even those pow-

ered by cutting-edge transformer architectures, their practical efficacy on finan-

cial datasets has remained unexplored. This challenge stems from the unique na-

ture of financial derivatives: various time scales, multifaceted attributes, and vol-

atile patterns. Therefore, this study introduces an innovative multi-modal fine-

tuning framework, which harnesses the semantic comprehension capabilities of 

Large Language Models (LLMs) and encodes both time-series data and its do-

main-specific knowledge. To mitigate the shortcomings of LLMs in capturing 

temporal dynamics, we propose two pivotal innovations: a Time-series Encoding 

Module (TEM) and a Multi-Patch Method. The TEM seamlessly embeds sophis-

ticated temporal representation algorithms within the LLM architecture. Concur-

rently, the Multi-Patch Method transforms 1D time series into multiple sets of 

2D tensors, each representing distinct temporal segments, thereby enriching the 

model's temporal analysis capabilities. Our empirical evaluations reveal that the 

Multi-Patch Method adeptly handles the complex temporal fluctuations across 

varied intervals. The proposed model outperforms other competing methods, 

marking a 20.2％ enhancement in forecasting accuracy for Turnover Ratio and 

an 9.1％ improvement in zero-shot forecasting performance. Crucially, The TEM 

and Multi-Patch offer modular improvements for LLM-based time-series fore-

casting, with potential applications across various domains. 

Keywords: Time Series Forecasting, Large Language Models, Financial Deriv-

atives. 

1 Introduction 

The derivatives market plays a crucial role in the financial area, essential for risk man-

agement and market efficiency. It offers hedgers tools [2] to mitigate losses from price 

volatility, enables speculators to transfer risks, and provides arbitrageurs with opportu-

nities to exploit market price discrepancies. Therefore, the accurate prediction of key 

financial derivatives indicators, such as the Turnover Ratio [25], is paramount for com-

prehending and evaluating market dynamics. Numerous researchers have explored 
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market trend predictions by employing machine learning and deep learning techniques 

[27]. However, the emergence of Large Language Models (LLMs) has been a game-

changer [1], demonstrating extraordinary capabilities across various fields, including 

time-series forecasting [26]. These models show the great potential in financial fore-

casting [28], which aids in effective risk management on the financial markets. 

Furthermore, when compared with the current mainstream deep learning-based time 

series models, the zero-shot learning capability of LLMs on time-series data is also 

noteworthy [3,4]. As studied in [19], LLMs can leverage their pre-trained knowledge, 

enabling them to make predictions or analyze trends with minimal task-specific train-

ing. In light of this, we conduct comparative experiments on Chinese financial deriva-

tives datasets, specifically focusing on the models' zero-shot learning abilities, and the 

results reveal that our model exhibits outstanding performance in this regard. 

Despite the strong generality exhibited by LLMs, it's noted that time-series data dif-

fers fundamentally from textual data, showing greater complexity and randomness in 

its variations, and more notably, the techniques for time-series segmenting and inter-

preting [30] lag behind those for text segmentation [29] in Natural Language Processing 

(NLP). Therefore, in our study, we propose an innovative Time Encoding Module Aug-

mented LLM (Temal), we adapt the structure of the LLM to handle the complexities 

inherent in predicting financial derivatives indicators. We conduct comprehensive as-

sessments in both long-term forecasting tasks and zero-shot learning scenarios, evalu-

ating our approach across daily-level and minute-level financial data, as well as across 

a spectrum of financial derivative products. The findings confirm that our method con-

sistently outperforms other leading algorithms, showcasing its sustained improvements 

in performance under these challenging conditions.  

To summarize, this paper makes three key contributions: 

⚫ Plug-and-Play Time Encoding Upgrade in LLM Forecasting: To deal with the 

challenge of stochastic volatility in financial derivatives, we introduce a replace-

able Time-series Encoding Module (TEM) for Large Language Models (LLMs), 

which integrates a suite of cutting-edge time-series algorithms [6-8] to boost the 

temporal perception of LLMs. 

⚫ Adaptive Multi-Patch Temporal Feature Extraction: Similar to word tokeni-

zation in the NLP domain, patching [7] is an effective temporal partitioning way. 

To enhance the LLM's sensitivity to diverse time scales in financial time-series 

data, we refine our Time Encoding Module further by introducing the Multi-Patch 

approach. This strategy uses time patching in different time intervals to improve 

the model's effectiveness in representing time-series data across different time 

granularities. 

⚫ Real-World Industry Application in Financial Derivatives: This paper lever-

ages the authentic Chinese Financial Derivative Data and showcases the practical 

application of our refined model in the financial derivatives market. 
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2 Related Work 

Traditional Models: Traditional time series models applied to financial forecasting 

date back to the ARIMA models [9]. Subsequently, with the advent of deep neural net-

works, Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory 

(LSTM) and Gated Recurrent Units (GRU) tailored for time-series forecasting tasks 

[10-12], gained popularity. Due to the suboptimal training efficiency of RNNs caused 

by their iterative structure, there has been a trend towards adopting modern time series 

frameworks that leverage the Transformer [13] architecture. These architectures [7] 

have achieved advancements in tackling the issue of long-range dependencies by using 

its self-attention mechanisms, significantly enhancing the performance of time series 

prediction tasks. Recent developments in time series forecasting within the Transformer 

family primarily concentrate on two aspects: the specific refinement of Transformer-

based models tailored for time series data, and the application of Pretrained LLMs to 

these forecasting tasks. 

Transformer-based: Autoformer [14] contributes to time series forecasting by in-

novating upon the Transformer architecture with an adaptive attention mechanism, re-

ducing computational complexity and enhancing scalability. Informer [15] builds on 

this progress, employing causal sparse attention and self-attention enhancements to ef-

ficiently handle long-term dependencies in large-scale time series data. The subsequent 

FEDFormer [16] advances further by integrating multiple feature extraction strategies, 

optimizing its performance for multivariate time series prediction. PatchTST [7] intro-

duces a novel concept from computer vision, using patches to better understand and 

represent complex, dynamic time series, thus refining the evolution of time series mod-

eling techniques. When applied to time series forecasting, Pretrained LLMs can lever-

age their extensive learned knowledge to understand and predict patterns in time series 

data, even though their primary design was for language-related tasks.  

Large Language Models and Prompt-based: PromptCast [17] pioneers the explo-

ration of leveraging the inherent linguistic comprehension abilities of LLMs for tem-

poral sequence forecasting, which capitalizes on Prompt Engineering techniques to 

transform numerical data into textual form, thereby engaging LLMs in predictive en-

deavors. It provides a fresh approach for addressing challenges in the field of time series 

forecasting. LLMTime [3] has a similar idea for zero-shot time series forecasting with 

LLMs by encoding numbers as text and sampling possible extrapolations as text com-

pletions. Another highly notable study is Google's TEMPO [18], which concentrates 

on time series forecasting and incorporates some processing enhancements, such as 

time series decomposition and soft prompts. 

Large Language Models and Fintune-based: GPT4TS [19] proposes a unified 

framework based on partially frozen LLMs, only fine-tuning the embedding and nor-

malization layers while keeping self-attention and feed-forward layers frozen, to 

achieve a state-of-the-art or comparable performance in all major types of time series 

analysis tasks, including time series classification, short/long-term forecasting, impu-

tation, anomaly detection, and few-shot. Different from the above methods, a recent 

work Time-LLM [20] is proposed to reprogram time series with the source data modal-

ity along with natural language-based prompting to unleash the potential of LLMs as 
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effective time series machines, which achieves state-of-the-art performance in various 

forecasting scenarios, as well as excels in both few-shot and zero-shot settings. Time-

LLM is also lightweight and efficient, since it neither edits the input time series directly 

nor finetunes the backbone LLM. 

3 Problem Formulation 

Given the potential interactions and causal connections among various financial indi-

cators, we choose a multivariate-to-univariate forecasting approach. So we utilize a 

range of indicators, from basic price and volume metrics such as closing price, opening 

price, highest price, lowest price, trading volume, and turnover, to more advanced tech-

nical indicators like Moving Average (MA), Relative Strength Index (RSI), and Mov-

ing Average Convergence Divergence (MACD). To enhance prediction accuracy, we 

utilize multivariate time series data as the input for our model, thereby taking potential 

interactions and influences into account in our analysis. 

 

 

Fig. 1. Problem formulation for prediction of Turnover Ratio: Given a multivariate derivative 

time series, a sliding window is used to capture sequential segments. Each segment is divided 

into two parts: Historical Data 𝑋𝐿 = (𝑥1, … , 𝑥𝐿) and Predict Indicator 𝑋𝑇 = (𝑥𝐿+1, … , 𝑥𝐿+𝑇). 

As shown in Fig. 1, history data contains past observations from multiple indicators 

with a look-back window length of L, which is visualized in green part. The Predict 

Indicator, shown in red, is the target indicator to forecast.  

Also, it's noted that 𝑆𝑠ℎ𝑎𝑝𝑒(𝑋𝐿) = (𝐵, 𝐿, 𝑀) and 𝑆𝑠ℎ𝑎𝑝𝑒(𝑋𝑇) = (𝐵, 𝑇), where multi-

variate predicts univariate. Moreover, the stride of the sliding window should be set to 

a value greater than or equal to 1. 

⚫ L denotes the sequence length of Historical Data. 

⚫ T represents the prediction length. 

⚫ M stands for the number of indicators. 

⚫ B indicates the batch size. 
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4 Methodology 

In this paper, we apply a method that synergizes advanced time series representation 

algorithms with LLMs for financial derivatives forecasting. The overall structure of the 

model is depicted as follows. 

  
Fig. 2. A multi-modal framework based on the LLM. Marked with the red flame, TEM and 

GPT-2 positional embeddings and output linear layer are open for training and other parts 

are frozen, where B as batch size, M as feature size, H as hidden size of LLMs, L as sequence 

length, and T as prediction length. 

 

Instead of direct fine-tuning of the LLM's original parameters, we use an approach 

that combines a fixed template prompt and a custom time-series encoding module to 

adapt to the prediction task. This approach both utilizes the original capabilities of the 

LLM and extends its understanding of times-series data through a specific design. 

As shown in the left corner of Fig. 2, we design Domain-Specific Prompts based on 

a template for prompt tuning, aimed at enhancing the model's comprehension of product 

fundamental information. Each prompt is constructed by extracting relevant features 

from every batch of time-series data. Prompts are tokenized using Byte Pair Encoding 

(BPE) [22], and each token is transformed into a fixed-size vector (1, 𝐿4, H) through 

the token embedding layer. The token embedding layer utilizes the pre-trained embed-

dings from GPT-2, which is retained for language understanding. 

Simultaneously, multivariate financial time series undergoes transformation via a 

Time-Series Encoding Module (TEM), which can be a time series algorithm, like 

TimesNet [6] and PatchTST [7], to enhance temporal representation. This pivotal step 

entails a transformation of the input data, reshaping it from an initial format of 

(B, 𝐿1, M) to an intermediary configuration that aligns seamlessly with the LLMs' re-

quirements, shown as (B, 𝐿2, H). Notably, during the temporal encoding stage, the sec-

ond dimension expands from 𝐿1 to 𝐿2, reflecting the altered sequence length. Concur-

rently, the dimension M undergoes a transformation into H to match the hidden layer 
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size of the LLM, thereby ensuring compatibility and optimal interaction between the 

encoded data and the model's architecture. 

This rich information combined from time series and textual prompts is sent to the 

attention layers of LLMs. To maintain the original capabilities of the LLM, we freeze 

all 12 layers of the GPT-2. We use the last linear layer to connect the GPT-2 Blocks 

and output the prediction results, this layer can be a linear or dense layer. Our approach 

is highly scalable and each module in the framework is replaceable. 

4.1 Time-Series Encoding Module (TEM) 

In the construction of Time-Series Encoding Module, we utilize those well-validated 

methods such as TimesNet [6] and the NonStationary Transformer [23] to enhance the 

expressiveness of time series data. Specifically: 

TimesNet excels in identifying and extracting dynamic characteristics in financial 

futures data, good at capturing short-term volatility and irregular price movement. This 

methodology employs the TimesBlock to capture information across different time 

granularities. It transforms a 2D tensor into multiple variations with inherent periodicity 

and inter-periodicity changes. This is achieved through a parameter-efficient inception 

block designed to discover multiple periods. Such an approach effectively overcomes 

the representational limitations typically associated with 1D time series. NonStationary 

transformer focuses on analyzing and interpreting the non-stationarity in time series 

data, including changes in long-term trends, seasonal fluctuations, and structural 

breaks. 

These algorithms ensures that the time series, before being passed to the large model, 

contains richer and more regularized features. For different time series representation 

algorithms, some layer fitting work is necessary to ensure that their outputs can be ef-

fectively integrated into the large model. This can be achieved by concatenating the 

data or adding feed-forward layers, ensuring seamless integration of diverse time series 

representations, thus providing the LLM with comprehensive input data. 

Furthermore, to address the issue of inadequate time series representation capabili-

ties in existing approaches, we propose a new TEM algorithm: Multi-Patch, as shown 

in Fig. 3. Inspired by [7], this method improves PatchTST with more patches to capture 

multi-granularity temporal features. Multi-Patch has two advantages: First, By dividing 

a continuous financial time series into a series of temporal windows or patches, the 

model gains the ability to delve deeper into the temporal characteristics within each 

segment, including short-term fluctuations, seasonality, cyclical changes, and long-

term trends. Second, LLMs typically excel at processing and interpreting contextual 

relationships and dependency structures in natural language texts. When applied to 

properly partitioned time series data, LLMs can draw upon their abilities in semantics 

and reasoning to parse the underlying logic and structural information within time se-

ries data. 
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Fig. 3. When TEM is Multi-Patch, the time series is split into multiple groups with different patch 

sizes, maintaining the independence of multiple channels. Each patching module has independent 

time embedding and positional embedding layers, both of which are open for training. Finally, 

the multi-channel data is gathered with token information, then output to the LLM. 

4.2 Domain-Specific Prompts 

The LLMs inherently excel in language understanding. Related studies [20] have found 

that integrating temporal and textual information can enhance the performance of time-

series tasks. Therefore, this paper concatenates the word embeddings of prompts with 

temporal representations, maximizing the utilization of pretrained LLMs. 

For efficiency in practical usage, we employ a simple domain-specific prompt tem-

plate for ease of construction. This prompt integrates information from 5 aspects, as 

illustrated in Fig. 1: Domain Name, Description, Statistical Information, Background 

Information of the task, and the Prediction Target. The statistical information of the 

dataset is aggregated based on each batch serving as a statistical window. It should be 

noted that the length of the prompts cannot be unlimited. To ensure that the time series 

data plays a dominant role, we limit the number of words in the prompt: 𝑁𝑊 ≤ 64 and 

token length is smaller than time length 𝐿4 ≤  𝐿2. 

5 Experiment 

Our objective is to validate the feasibility and effectiveness of our method in forecasting 

financial deritives indicators, and subsequently identify its strengths and superiority. 
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5.1 Experiment Settings 

Datasets: We collect a financial time series dataset comprising Chinese financial de-

rivatives, which includes data on stock index futures and their corresponding options. 

This dataset is broadly classified into seven product types, including four futures prod-

ucts: IC, IF, IH, IM; and three options products: IO, MO, HO. The timeframe for all 

products extend from their respective inception dates to January 12, 2024, except IF 

which covers only from September 7, 2015 to January 12, 2024. These datasets consist 

of two distinct subsets: the Minute-level Financial Futures Dataset (FFDm) and the 

Daily Financial Futures Dataset (FFDd). 

Minute-Level Financial Futures Dataset (FFDm) contains approximately 3 mil-

lion records, focusing on micro-level analyses and intraday metrics, where metrics in-

clude latest PRICE, BASIS and VIX. The minute-level price updates that closely track 

and analyze the price movements of futures contracts in time. And the basis between 

spot and futures prices, a key component of this dataset, serves as an essential gauge 

for monitoring market expectations, supply-demand dynamics, and potential risks. The 

VIX is a measure of market risk and investor sentiment, highly related with options and 

it often increases when investors anticipate that stock prices will become more erratic. 

A higher VIX value typically indicates a higher level of fear or uncertainty in the mar-

ket. The VIX is used to understand the mood of the market, hedge against market down-

turns, or speculate on changes in market volatility. 

Daily Financial Futures Dataset (FFDd) holds 9,580 daily observations, capturing 

medium to long-term trends. Among its features are critical indicators such as the Turn-

over Ratio [25], which provides insights into market sentiment and participation levels. 

In addition, it offers daily oscillation measures including the Relative Strength Index 

(RSI) and Moving Average Convergence Divergence (MACD), empowering users to 

identify pivotal turning points and shifts in momentum within prices. 

SOTA Benchmarks: Beyond validating the feasibility of our method, to further an-

alyze the performance of our model, we replicate other SOTA methods and compare 

our approach against these up-to-date methods. Our baselines include deep network 

methods such as TimesNet [6], and Transformer-based methods like PatchTST, 

GPT4TS, and TimeLLM. Notably, among these Transformer based methods, we also 

incorporate a commercialized model, TimeGPT-1 [24]. 

Model Details: In our method, we utilize GPT-2 as the backbone. Besides, the Time-

Series Encoding Module (TEM) adopts two distinct variants: 𝑇𝑒𝑚𝑎𝑙𝑡𝑛, which utilizes 

TimesNet as the TEM part, and 𝑇𝑒𝑚𝑎𝑙𝑚𝑝, employing a Multi-Patch approach. Specif-

ically, in 𝑇𝑒𝑚𝑎𝑙𝑡𝑛, the encoding layers of TimesNet 𝐸𝐿 = 2 are configured to 2. Mean-

while, 𝑇𝑒𝑚𝑎𝑙𝑚𝑝 integrates three different patch sizes, 16, 8, and 3. The base model is 

GPT-2, with number of layers 𝑇𝐿 = 12 and hidden size d = 512. In this setup, all pa-

rameters of GPT-2, except for the position embeddings, are frozen. And the batch size 

B = 64, the stride of sliding window s =
1

2
∗ L, L is the predict length. 

Devices: Our fine-tuning and testing processes were all conducted using 4 A100 

GPUs, each with 40GB of memory. Given that the base model underlying Temal is 

GPT-2, most models in this paper could be fine-tuned on a single GPU. However, for 

TimeLLM specifically, multiple GPUs are used due to its parameter sizes. And other 



 Temal: A Time Encoding Module Augmented LLM 9 

configurations: we follow the pipeline of the project Time-series-library [21], which 

includes the implementation of other baselines, utilizing PyTorch as our training tool, 

and Python 3.9.12, Torch 1.13.0, Pandas 1.4.2, Scikit-Learn 1.0.2. 

5.2 Long-Term Forecasting 

Long-term Forecasting on dataset FFDd. Due to the limited size of product IM, we 

select only IC, IF, and IH for our product. Experiments were conducted with configu-

rations of prediction length {30-15, 30-30, 30-60}. We choose three indicators: Daily 

Turnover Ratio (TOVRatiod), Daily Relative Strength Index (RSId), and Daily Moving 

Average Convergence Divergence (MACDd). In the course of our experiments, we 

unify the parameters across different methods. The experiments are repeated three times 

for epochs of 3, 5, and 10, and their average results were reported. 

Due to the small magnitudes of features such as Turnover Ratio, we opt for Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) as our evaluation metrics 

to ensure clear discrimination, and we use Mean Square Error (MSE) as the loss func-

tion.  

MAE measures the average magnitude of the errors in a set of predictions, without 

considering their direction. MSE calculates the average of the squares of the errors, 

which means it gives more weight to larger errors. RMSE is the square root of the MSE. 

It's a measure that provides the standard deviation of the prediction errors, showing how 

spread out the errors are. Where, n is the number of observations, 𝑦𝑖 is the actual value 

for the i-th observation, and 𝑦�̂� is the predicted value for the i-th observation. The full 

results of long-term forecasting on FFDd are summarized in Tab. 1. Evaluation of 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is a synthesis of RMSE and MAE, where IMP𝑅𝑀𝑆𝐸  is the improvement 

of our method compared to the average RMSE of PatchTST, TimesNet, TimeLLM and 

Tempo, and 𝐼𝑀𝑃𝑀𝐴𝐸  is the improvement of our method compared to other algorithms 

using average MAE. 

RMSE = √
1

𝑛
∗ ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                                                  (1) 

MAE =
1

n
∗ ∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1                                                        (2) 

MSE =
1

𝑛
∗ ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                                                        (3) 

Improvement =
𝐼𝑀𝑃𝑅𝑀𝑆𝐸+𝐼𝑀𝑃𝑀𝐴𝐸

2
                                              (4) 

As illustrated in Tab. 1, our method demonstrates better performance on the dataset 

TOVRatiod. In an overarching assessment across all time series forecasts, the improve-

ments on Datasets TOVRatiod, RSId, and MACDd reach 10.8%, 2.2% and 3.5% re-

spectively. Particularly, for the IH product, our method exhibits a significant enhance-

ment compared to other SOTA models, with Turnover Ratio predictions showing an 

impressive improvement of 20.2%. Moreover, the table data clearly indicates that our 

𝑇𝑒𝑚𝑎𝑙𝑚𝑝 method performs well in the {30-60} prediction tasks, achieving an overall 

improvement of 6.1%. 

Long-term Forecasting on FFDm. FFDm has a more abundant data volume, we 

select the futures product IM and options products IO, HO, MO for experimentation, 

with configurations of prediction length {60-60, 60-120, 60-240}. For the product IM, 
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we choose PRICE and BASIS as the forecasting targets to construct the datasets 

PRICEm𝐼𝑀 and BASISm𝐼𝑀. In the case of options, we choose VIX as the forecasting 

target to build the datasets VIXm𝐼𝑂 , VIXm𝑀𝑂 , and VIXm𝐻𝑂 . The experiments are also 

repeated three times for epochs of 3, 5, and 10, and their average results were reported. 

Table 1. Daily Financial Futures Dataset Prediction. RMSE, MAE for {30-15, 30-30, 30-60} 

prediction on Datasets TOVRatiod, RSId, MACDd of FFDd, comparing Temal𝑚𝑝, 

𝑇𝑒𝑚𝑎𝑙𝑡𝑛with PatchTST, TimesNet, TimeLLM, Tempo. The numbers with bold denote the 

best. 

Da-

tasets 

Pr

od 

P 𝐓𝐞𝐦𝐚𝐥𝐦𝐩 𝐓𝐞𝐦𝐚𝐥𝒕𝒏 PatchTST TimesNet TimeLLM Tempo 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

 

TOV-

Ratiod 

 

IC 

15 0.056 0.045 0.055 0.046 0.055 0.046 0.057 0.058 0.061 0.05 0.055 0.046 

30 0.058 0.061 0.061 0.049 0.066 0.054 0.067 0.054 0.068 0.055 0.068 0.056 

60 0.051 0.043 0.051 0.041 0.065 0.05 0.061 0.047 0.065 0.05 0.064 0.049 

 

IF 

15 0.683 0.573 0.787 0.679 0.649 0.538 0.71 0.582 0.688 0.572 0.6 0.58 

30 0.759 0.649 0.834 0.7 0.743 0.625 0.795 0.673 0.759 0.631 0.729 0.617 

60 0.633 0.525 0.733 0.608 0.676 0.551 0.778 0.625 0.675 0.551 0.664 0.545 

 

IH 

15 0.074 0.06 0.077 0.064 0.078 0.061 0.085 0.068 0.088 0.065 0.086 0.067 

30 0.077 0.065 0.078 0.065 0.087 0.069 0.095 0.075 0.089 0.07 0.097 0.076 

RSId 

60 0.072 0.059 0.073 0.059 0.094 0.075 0.108 0.087 0.089 0.071 0.1 0.078 

 

IC 

15 1.113 0.918 1.168 0.96 1.17 0.964 1.058 0.862 1.111 0.907 1.111 0.908 

30 1.159 0.954 1.173 0.978 1.153 0.947 1.08 0.884 1.224 0.992 1.155 0.949 

60 1.114 0.918 1.186 0.982 1.17 0.965 1.108 0.912 1.179 0.968 1.156 0.951 

 

IF 

15 1.096 0.9 1.157 0.963 1.096 0.899 1.68 0.883 1.1 0.906 1.115 0.919 

30 1.12 1.1006 1.207 1.013 1.147 0.955 1.128 0.932 1.133 0.942 1.148 0.957 

MACDd 

60 1.102 0.892 1.201 1.017 1.208 0.994 1.16 0.959 1.2 0.988 1.211 0.955 

 

IH 

15 1.07 0.873 1.102 0.898 1.074 0.979 1.042 0.857 1.072 0.873 1.068 0.872 

30 1.134 0.94 1.15 0.952 1.144 0.942 1.099 0.907 1.134 0.937 1.128 0.93 

60 1.12 0.911 1.2 1 1.174 0.997 1.121 0.918 1.178 0.97 1.178 0.973 

 

IC 

15 0.292 0.214 0.353 0.264 0.296 0.215 0.292 0.214 0.283 0.209 0.306 0.223 

30 0.388 0.286 0.454 0.342 0.39 0.285 0.363 0.273 0.387 0.289 0.432 0.32 

60 0.415 0.307 0.468 0.35 0.423 0.313 0.453 0.34 0.435 0.318 0.433 0.324 

 

IF 

15 0.57 0.445 0.582 0.441 0.56 0.42 0.563 0.441 0.568 0.426 0.571 0.435 

30 0.687 0.545 0.792 0.599 0.775 0.583 0.722 0.561 0.751 0.582 0.783 0.613 

60 0.908 0.709 0.947 0.734 0.947 0.73 0.979 0.77 0.913 0.719 0.94 0.737 

 

IH 

15 0.512 0.377 0.521 0.401 0.509 0.379 0.51 0.394 0.545 0.406 0.512 0.377 

30 0.717 0.536 0.745 0.54 0.735 0.545 0.68 0.53 0.742 0.564 0.716 0.535 

60 0.795 0.625 0.945 0.712 0.898 0.672 0.824 0.632 0.889 0.67 0.931 0.73 
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As shown in Tab. 2, we compare the Temal series with TimesNet and TEMPO. The 

best experimental results are highlighted in bold. The results demonstrate that the Te-

mal series also performs well in forecasting on minute-level datasets, particularly the 

Temal𝑚𝑝 , which reuse the TimesNet structure and achieve a 5.7% improvement in 

RMSE and 7.4% in MAE over TimesNet itself. And we also find that compared to 

making particularly long sequence predictions of {60-120} and {60-240}, our method 

excels more in mid-range predictions like {60-60}. When the prediction length exceeds 

a certain range, the predictive capability diminishes. 

Table 2. Minute-Level Financial Futures Datset Prediction, RMSE, MAE for {60-60, 60-120, 

60-240} prediction on Datasets PRICEm𝐼𝑀, BASISm𝐼𝑀, VIXm𝐼𝑂, VIXm𝑀𝑂, VIXm𝐻𝑂 and com-

paring Temal𝑚𝑝, Temal𝑡𝑛 with PatchTST, TimesNet and Tempo. The numbers with bold de-

note the best. 

Da-

tasets 

P 𝐓𝐞𝐦𝐚𝐥𝐦𝐩 𝐓𝐞𝐦𝐚𝐥𝒕𝒏 TimesNet TEMPO 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

PRICEm𝐼𝑀 

60 0.14 0.094 0.135 0.83 0.151 0.1 0.13 0.091 

120 0.163 0.112 0.157 0.108 0.165 0.113 0.16 0.109 

240 0.193 0.138 0.184 0.133 0.189 0.135 0.185 0.133 

BASISm𝐼𝑀 

60 0.48 0.359 0.458 0.32 0.503 0.379 0.48 0.359 

120 0.556 0.416 0.556 0.42 0.575 0.437 0.556 0.417 

240 0.626 0.488 0.598 0.466 0.625 0.486 0.654 0.502 

VIXm𝐼𝑂 

60 0.161 0.123 0.162 0.124 0.179 0.136 0.162 0.123 

120 0.182 0.14 0.184 0.143 0.214 0.154 0.187 0.143 

240 0.211 0.164 0.214 0.165 0.24 0.186 0.207 0.161 

VIXm𝑀𝑂 

60 0.246 0.169 0.243 0.165 0.245 0.172 0.242 0.166 

120 0.281 0.194 0.279 0.194 0.28 0.194 0.278 0.19 

240 0.317 0.212 0.318 0.221 0.328 0.24 0.311 0.221 

VIXm𝐻𝑂 

60 0.268 0.147 0.258 0.139 0.264 0.149 0.26 0.141 

120 0.273 0.159 0.282 0.166 0.297 0.182 0.283 0.166 

240 0.302 0.191 0.304 0.192 0.341 0.221 0.31 0.195 

AVG 0.293 0.207 0.288 0.202 0.306 0.219 0.294 0.208 

5.3 Zero-Shot Forecasting 

To assess the zero-shot prediction capabilities of different methods, we initially train 

our model using generic datasets: ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), and 

Weather datasets [6]. The results of the zero-shot prediction tasks are presented in Tab. 

3, our Temal𝑚𝑝  method achieves an impressive improvement 9.1%, reflected as a 

4.3% improvement compared to the second best method TimeGPT-1, a 17.9% im-

provement over TimesNet, and 5.2% improvement over GPT4TS. 
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As shown in Fig. 4, we compare the performance of our 𝑇𝑒𝑚𝑎𝑙𝑚𝑝  method with 

TimeGPT-1 in the {30-15} forecast. It can be observed that TimeGPT-1 makes more 

conservative predictions with smaller fluctuations, while our method exhibits higher 

variability. In terms of curve fitting and trend prediction, our method aligns more 

closely with the ground-truth. 

Table 3. RMSE on daily financial Dataset of TOVRatiod compared with GPT4TS, TimeGPT-

1. The numbers with bold denote the best. 

 Methods 𝐓𝐞𝐦𝐚𝐥𝐦𝐩 GPT4TS TimeGPT-1 TimesNet 

DataSets Period RMSE RMSE RMSE RMSE 

𝑇𝑂𝑉𝑅𝑎𝑡𝑖𝑜𝑑𝐼𝐶 

30-15 0.112 0.122 0.118 0.138 

30-30 0.141 0.147 0.144 0.178 

30-60 0.125 0.136 0.133 0.183 

𝑇𝑂𝑉𝑅𝑎𝑡𝑖𝑜𝑑𝐼𝐹 

30-15 0.178 0.184 0.176 0.201 

30-30 0.217 0.231 0.224 0.262 

30-60 0.199 0.211 0.217 0.245 

𝑇𝑂𝑉𝑅𝑎𝑡𝑖𝑜𝑑𝐼𝐻 

30-15 0.178 0.186 0.178 0.211 

30-30 0.208 0.219 0.218 0.5 

30-60 0.189 0.195 0.214 0.214 

 
Fig. 4. The six images represent comparisons between Temal, TimeGPT-1, and ground 

truth for the 30-15 forecast task on different dates. The upper images (a), (b), and (c) 

display the prediction curves of Temal, while the lower images labeled (d), (e), and (f) 

illustrate the prediction curves of TimeGPT-1. 

6 Discussion and Future Direction 

This study explores the efficacy of Large Language Models (LLMs) in financial fore-

casting through significant modifications, including the integration of a Time-Series 
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Encoding Module (TEM), the development of a Multi-Patch technique, and the adop-

tion of a hybrid fine-tuning approach that combines prompts with time-series data. De-

spite these enhancements, the model encounters two primary challenges. Firstly, the 

acquisition of time-series data is more difficult than that of textual data, which hinders 

the full utilization of LLMs' extensive parameters during fine-tuning with limited da-

tasets, potentially leading to suboptimal model performance. Secondly, in line with the 

feature collapse phenomenon detailed in [31], a similar issue has been observed in 

LLMs when processing time-series data, further complicated by the significant differ-

ence between time and word embeddings, potentially deteriorating the model's effec-

tiveness. 

In our future work, our research will focus on two main objectives. Initially, we plan 

to expand our dataset and conduct fine-tuning using a more varied collection of data, 

including public opinion metrics and sentiment analysis, to improve the model’s gen-

eralization capabilities. Furthermore, we aim to thoroughly investigate the feature col-

lapse issue within LLMs and devise specific strategies to address it, especially in terms 

of their applicability to time-series analysis. Our ultimate goal is to enhance the adapt-

ability and efficiency of LLMs for handling time-series data, making them more suita-

ble for such applications. 
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