
Efficient Detection Model of Illegal Driving Behavior in

Two-Wheeled Vehicles

Liuyu Zhu1,2 , Zhiguang Wang1,2 , Zhiqiang Liu1,2 , Xiaoxue Li1,2 and Shen Li1,2

1 China University of Petroleum, Beijing, Beijing 102200, China
2 Beijing Key Laboratory of Petroleum Data Mining. Beijing 102200, China

liuyuzhu9528@gmail.com , cwangzg@cup.edu.cn

Abstract. The intelligent detection of illicit driving behaviors exhibited by two-

wheeled vehicles, encompassing electric two-wheeled vehicles, motorcycles, and

bicycles, constitutes a pivotal facet in developing a contemporary intelligent traf-

fic monitoring system. However, prevailing challenges confront intelligent de-

tection in this domain, manifesting in two principal predicaments. The first chal-

lenge is the absence of pertinent open-source datasets, and the second challenge

is the suboptimal accuracy and swiftness in discerning illicit driving behavior of

two-wheelers within the prevailing object detection model. In response to the

aforementioned challenges, we put forth two potential solutions. Firstly, we con-

struct the two-wheeled vehicle illegal driving behavior detection (TIDBD) da-

taset coupled with annotating 10 driving states, and secondly, we proposed an

efficacious detection model, YOLOv8_VanillaBlock, tailored for detecting ille-

gal driving behavior in two-wheeled vehicles. We experimentally compared

YOLOv8_VanillaBlock with the original YOLOv8 using the TIDBD dataset em-

ploying evaluation metrics such as floating point operations (FLOPs), mean av-

erage precision (mAP), and GPU inference time. The outcomes indicate that

YOLOv8_VanillaBlock yields superior detection results.

Keywords: Illigal driving behavior detection, Dataset, VanillaBlock.

1 INTRODUCTION

The detection of illegal driving behavior of two-wheeled vehicles is to ascertain

whether the driver, captured in an image, is engaged in unlawful activities, such as

helmet-less driving, cell phone usage, or smoking. The intelligent detection of illegal

driving behavior in two-wheelers facilitates prompt interventions by traffic manage-

ment departments, mitigating the occurrence of traffic accidents. Consequently, it holds

significant practical implications.

However, two issues persist in the current deep neural network-based detection of

two-wheeler illegal driving behavior. The first issue is a lack of pertinent open-source

datasets. In the field of two-wheeler illegal driving behavior detection, most of the open

source datasets only label whether the driver is wearing a helmet or not. [1,2], etc. Con-

sequently, a comprehensive open-source dataset encompassing a complete set of la-

2 Liuyu Zhu et.al.

beled classes for detecting illegal riding behavior in two-wheelers is lacking. The sec-

ond issue is as follows: Mainstream object detection models still exhibit potential for

improvement in two-wheeler illegal driving behavior detection.

Hence, we initially formulated the two-wheeled vehicle illegal driving behavior de-

tection (TIDBD) dataset. After that we designed the VanillaBlock module based on the

idea of VanillaNet [3], resulting in the YOLOv8_VanillaBlock model.

The main contributions of this study are as follows:
⚫ We constructed a two-wheeler illegal driving behavior detection dataset, compris

ing 3637 images capturing 10 distinct illegal driving behaviors.

⚫ We designed the VanillaBlock module with a reduced layer count, replacing the

C2f module in YOLOv8. This adaptation led to the development of the YOLOv8

VanillaBlock model.

⚫ Experiments conducted on the TIDBD dataset show that our proposed YOLOv8

VanillaBlock model yielded a significant improvement in detection speed, with a

marginal enhancement in detection accuracy compared to the original YOLOv8.

2 RELATED WORK

2.1 Object Detection Based On Deep Learning

Object detection in deep learning can be broadly categorized into two types based on

the algorithmic approach: two-stage and one-stage object detection algorithms. Most

popular approaches favor one-stage algorithms because they are less time-consuming

than two-stage algorithms. Representative examples of one-stage object detection al-

gorithms are found in the YOLO series. Since the advent of YOLOv1[4], YOLO has

undergone nine iterations. In 2020, the Ultralytics team introduced YOLOv5 [5], mark-

ing another leap in the YOLO series. YOLOv5 optimized the gradient repetitions in the

backbone network by introducing the CSPNet [6] based on YOLOv4 [7]. It compressed

model volume, and replaced the spatial pyramid pooling (SSP) module [8] with the

more efficient spatial pyramid pooling-fast (SPPF) module, substantially improving

computation speed. Since then, the YOLO algorithm has undergone two distinct ver-

sions: YOLOv6[9] and YOLOv7[10]. Another well known version of YOLO is

YOLOv8[11]. YOLOv8 employed the C2f module from the E-ELAN network [10] in-

stead of the C3 module in YOLOv5, providing enhanced gradient flow information.

2.2 Lightweight Feature Extraction Network

Exploring lightweight feature extraction networks remains a prominent focus in re-

search. GhostNet [12] introduced the concept of “generating redundant feature maps

by intrinsic feature maps” to design a lightweight neural network. Nevertheless, the

utilization of depthwise separable convolution by Ghostnet enables accelerated pro-

cessing on ARMS, CPUs. However, this acceleration is not observed on GPU devices

with sufficient parallel computing capabilities. Therefore, Huawei Noah’s Ark Lab in-

 Efficient Detection Model of Illegal Driving Behavior in Two-Wheeled Vehicles 3

troduced G-GhostNet [13]. Chen et al. proposed VanillaNet [3] to further achieve ac-

celeration on GPU. VanillaNet seeks to construct the network with as few layers as

possible. Simultaneously, it introduces the series of activation function and the deep

training strategy to address the limited nonlinear capability of shallow networks.

3 TIDBD DATASET

A paucity of datasets pertaining to the detection of illegal driving behavior on two-

wheelers currently exists. Consequently, we have constructed our own dataset TIDBD

which is tailored for detecting illegal driving behavior on two-wheeled vehicles, sur-

passed existing resources by encompassing a broader spectrum of scenarios, collection

methods and diversity of annotation classes. This section explains the data collection

methods, data cleaning contents, and data labeling techniques.

3.1 Data Acquisition

This study employed two approaches for data collection. The first method used a hori-

zontal camera to capture footage at fixed intersections on inner-city roads. Continuous

shooting was conducted at two specific intersections in Wuxi City, spanning from 7:05

am to 10:44 pm on August 11, 2023. We then extracted 1915 images from the captured

videos. The second method entailed capturing images on national, provincial, and

county highways and inner-city roads in Guizhou province, using overhead cameras

positioned on the road. The second method involved collecting a total of 2183 images.

3.2 Data Cleaning and Annotation

Data cleaning adhered to two fundamental principles, ensuring the utilization of perti-

nent and valuable data for the model. The first principle entailed eliminating images

devoid of a moving two-wheeler in the entire image. The second principle involved

cleaning images containing mutilated two-wheelers. After data cleaning, a total of 3637

images were retained. The distribution of the cleaned data is presented in Table 1.

Data annotation also adhered to several principles. The first one is the occlusion

problem, heavily occluded objects were treated as background and remained unlabeled

because the collected data consisted of individual frames without continuity. The sec-

ond principle pertained to the annotation of drivers using mobile phones. Conventional

annotation methods, focusing solely on annotating the cell phone, are logically flawed

for inferring whether the driver is using a cell phone. Additionally, the small and in-

conspicuous shape of the cell phone complicates both annotation and model detection.

We found noticeable bending movement of the arm of the driver when using the cell

phone. Therefore, we also labeled the arm movement (see Fig. 1(b)).

4 Liuyu Zhu et.al.

Fig. 1 depicts some of the labeling methods used in this study. Panel (a) illustrates

the conventional labeling method for “use phone”, while panel (b) showcases the mod-

ified labeling method adopted in this study. Panels (c) and (d) represent the labeling

classes for “helmet” and “no helmet ,” respectively. Panels (e) and (f) portray the label-

ing classes for “smoking” and “canopy (retrofit canopy)”, respectively.

Table 1. The proportion of different data collection methods and Collection locations in the

clean dataset

 National

Highways

Provincial

Highways

Prefectural

Highways

Inner-city

Roads

Sum

Horizontal Camera 0% 0% 0% 100% 1654

Overhead Camera 2.67% 8.47% 2.27% 86.59% 1983

Fig.1. Displaying the certain label classes

4 METHOD

Despite the capability of the YOLOv8 detection model to produce results, it exhibited

slow detection speed and unsatisfactory accuracy when applied to our dataset. Hence,

we replaced the C2f module in the backbone of the YOLOv8 model with our improved

VanillaBlock. This section introduces the key components of YOLOv8, including the

CBS module, Bottleneck, and C2f module. Furthermore, it outlines the structure of the

 Efficient Detection Model of Illegal Driving Behavior in Two-Wheeled Vehicles 5

backbone network used by YOLOv8, followed by an in-depth explanation of the back-

bone network within our proposed YOLOv8_VanillaBlock. The mathematical proof of

the acceleration ratio of the VanillaBlock relative to the C2f module is also discussed.

4.1 YOLOv8 Backbone

We introduce some key components before delving into the backbone network of

YOLOv8, namely the CBS module, the Bottleneck, and the C2f module.

CBS Module. The main module for convolutional operations in YOLOv8 was the CBS

module. It comprised a convolutional layer (Conv2d), a batch normalization layer (BN),

and a SiLU activation function.

Bottleneck. The Bottleneck module adopted a distinctive residual structure incorporat-

ing multiple small convolution kernels instead of a large one. This structural modifica-

tion enhanced network depth while concurrently reducing the overall number of param-

eters. YOLOv8 integrated two variants of the Bottleneck module: with or without a

shortcut connection.

C2f Module. C2f essentially combines the ideas of C3 module and ELAN module [14].

C2f module improves the network structure while obtaining rich gradient streaming

information, resulting in enhanced performance of the YOLOv8 model. However, the

C2f module required feature fusion, which increased the computational complexity of

the model, leading to extended training and inference times. Fig. 2 provides an over-

view of the comprehensive structure of the C2f module.

Based on the above components, we give the structure diagram of YOLOv8(Fig. 3.)

Fig. 2 C2f module structure diagram Fig. 3. YOLOv8 backbone diagram

6 Liuyu Zhu et.al.

4.2 VanillaBlock

Chen et al. [3] discovered that the computational speed of neural networks encountered

a bottleneck in the number of layers rather than the number of parameters when using

GPUs with sufficient parallel computing power. We built upon this concept to introduce

VanillaBlock. Unlike the block used in Vanillanet, our VanillaBlock did not incorpo-

rate the deep training strategy. This deviation was intentional as the deep training strat-

egy while reducing computational effort during the inference stage, presents challenges

such as high training costs, and slow convergence speed. The impact of not employing

the deep training strategy on the nonlinear loss was deemed insignificant since

VanillBlock was not exclusively used to construct the backbone of YOLOv8_Va-

nillaBlock but served as an integral part of the entire backbone network together with

other modules. Fig. 4 illustrates the structure of our VanillaBlock, consisting of two

convolutional layers and two pooling layers with an activation function in between. The

final component of the VanillaBlock module was the series activation function consist-

ing of n activation functions, as represented by equation (1).

Fig. 4. VanillaBlock module structure diagram

𝐴𝑠(𝑥) = ∑ 𝑎𝑖𝐴(𝑥 + 𝑏𝑖)

𝑛

𝑖=1

(1)

Equation (1) defines 𝐴(𝑥) as a single activation function in the neural network with

input x. The scaling factor and bias of each activation function, 𝑎𝑖and 𝑏𝑖 respectively,

are used to prevent the accumulation of identical activation functions.

We estimated the computational complexity of each component in both VanillaBlock

and the C2f module to demonstrate that our proposed VanillaBlock requires less com-

putation than the C2f module. The equations used for the estimation are provided below

𝑂(𝐶𝐵𝑆𝑖) = 𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 𝑘𝑖 × 𝑘𝑖 (2)

𝑂(𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘) = 𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 2𝑘𝐵
2 × 𝑛𝑢𝑚 × 𝑑 (3)

𝑂(𝐶𝐵𝑗) = 𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 𝑘𝑗 × 𝑘𝑗 (4)

𝑂(𝑆𝐴) = 𝐻 × 𝑊 × 𝐶𝑖𝑛 × 𝑛2 (5)

We only considered the computational complexity of the convolution operation in

the C2f module to simplify the equations because it required more computation than

the batch normalization and activation layers. However, we considered the sum of the

computational complexity of the convolutional layer and the activation layer in Va-

nillaBlock. Our standards for computational complexity differed in the C2f module and

 Efficient Detection Model of Illegal Driving Behavior in Two-Wheeled Vehicles 7

VanillaBlock. However, this difference better illustrated that VanillaBlock required

less computational complexity. Additionally, we assumed that the input feature maps

of each module had the same height (𝐻), width (𝑊), number of input channels (𝐶𝑖𝑛),

and number of output channels (𝐶𝑜𝑢𝑡).

Equation (2) defines 𝑂(𝐶𝐵𝑆𝑖) as the computational complexity of the convolution

operation in the 𝑖𝑡ℎ CBS structure in the C2f module, where 𝑖 = 1,2, and 𝑘𝑖 denotes the

convolution kernel size in the 𝑖𝑡ℎ CBS structure. Equation (3) defines 𝑂(𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘)

as the computational complexity of the Bottleneck structure in the C2f module, where,

𝑘𝐵 corresponds to the size of the convolution kernel used in the Bottleneck structure,

𝑛𝑢𝑚 represents the number of Bottlenecks required in the C2f module (which varied

in different C2f modules at different locations in YOLOv8), and 𝑑 denotes the scaling

factor for different C2f module in different sizes of YOLOv8 models.Equation (4) de-

fines 𝑂(𝐶𝐵𝑗) as the computational complexity of the 𝑗𝑡ℎ CB structure

(Conv+BatchNorm) in VanillaBlock, where 𝑗 = 1,2, and 𝑘𝑣𝑗 denotes the size of the

convolution kernel used in the 𝑗𝑡ℎCB structure. Equation (5) defines 𝑂(𝑆𝐴) as the com-

putational complexity of the series activation structure in VanillaBlock, where 𝑛 corre-

sponds to the number of activation functions in the series activation function. The

speedup ratio 𝑆 of VanillaBlock with respect to C2f can be calculated using (5)-(6).

𝑆 =
𝑂(𝐶2𝑓)

𝑂(𝑉𝑎𝑛𝑖𝑙𝑙𝑎𝐵𝑙𝑜𝑐𝑘)
=

∑ 𝑂(𝐶𝐵𝑆𝑖)
2
𝑖=1 + 𝑂(𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘)

∑ 𝑂(𝐶𝐵𝑗)2
𝑖=1 + 𝑂(𝑆𝐴)

(5)

𝑆 =
𝐶𝑜𝑢𝑡 × (𝑘1

2 + 𝑘2
2 + 2𝑘𝐵

2 × 𝑛𝑢𝑚 × 𝑑)

𝐶𝑜𝑢𝑡 × (𝑘𝑣1
2 + 𝑘𝑣2

2) + 𝑛2
(6)

For example, let us examine the last C2f module of the YOLOv8l backbone and the

last VanillaBlock of the YOLOv8_VanillaBlock_l backbone. In this case, we

have 𝑘1 = 𝑘𝐵 = 3, 𝑛𝑢𝑚 = 3, 𝑑 = 1,𝑘2 = 1, 𝑘𝑣1 = 𝑘𝑣2 = 1, and 𝑛 = 4. We can ig-

nore 𝑛 because it is significantly smaller than 𝐶𝑜𝑢𝑡, leading us to conclude that 𝑆 = 32.

4.3 YOLOv8_VanillaBlock

We developed a novel backbone network named YOLOv8_VanillaBlock to enhance

the detection speed of YOLOv8 on GPUs, built upon the VanillaBlock. The overall

structure of YOLOv8_VanillaBlock is elucidated in Fig. 5. YOLOv8_VanillaBlock

comprised five CBS modules and four VanillaBlock modules, culminating with the

SPPF module.

Fig. 2. indicates that each C2f module encompassed a substantial number of bottle-

necks involving operations such as feature fusion and shortcut connections, increasing

the complexity of the network. Additionally, each bottleneck module includes at least

two ordinary convolutional modules and several activation functions, resulting in a high

number of layers that are not suitable for GPU parallel computing. We replaced the C2f

module—the most intricate module with the highest number of layers in the YOLOv8

backbone—with the straightforward and efficient VanillaBlock module introduced in

8 Liuyu Zhu et.al.

the preceding section to alleviate the computational burden and streamline the com-

plexity of the backbone network. We retained the CBS module to increase the nonlin-

earity of the network and the already efficient SPPF module.

Fig. 5. YOLOv8_VanillaBlock backbone network structure diagram

5 EXPERIMENT

The TIDBD dataset, introduced in Chapter 3, was divided into three parts: 10% was

allocated for the test set, 15% for the validation set, and the remaining part served as

the training set. The NVIDIA RTX 3090 GPU was employed for training, while the

NVIDIA RTX 3070ti GPU was used for testing.

5.1 Metrics

The metric employed for accuracy was mAP50, denoting the mean average precision

(mAP) across each class at an IOU threshold of 0.5. Equation (7) shows the calculation

formula.

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑐𝑐∈𝐶

|𝐶|
(7)

where 𝐶 represents all classes to be detected and 𝐴𝑃𝑐 corresponds to the average pre-

cision for class 𝑐.

 Efficient Detection Model of Illegal Driving Behavior in Two-Wheeled Vehicles 9

The detection speed was evaluated by considering the time required for the entire

detection model to predict an image, including preprocessing time, inference time, and

postprocessing time. We used the frames per second (FPS) evaluation metric to demon-

strate the improved real-time performance of our method.

Furthermore, we tested the number of FLOPs required by each model. This metric

offered a more intuitive explanation for the reduction in detection time achieved by our

models on GPUs.

5.2 Evaluation Using TIDBD Dataset

Comparison of Detection Accuracy and FLOPs. We conducted experiments on the

TIDBD dataset using larger-sized YOLOv8l and YOLOv8_VanillaBlock_l models to

balance detection accuracy and model size. We compared the two models based on the

average precision (AP50) evaluation criterion. The experimental results (Fig. 6) demon-

strated that our proposed YOLOv8_VanillaBlock_l outperformed the original

YOLOv8l in detecting “use phone”, “canopy” and other classes.

We conducted experiments on the following five models to illustrate the effective-

ness of the proposed VanillaBlock in improving accuracy and reducing computation

across all YOLOv8 sizes: n, s, m, l, and x. The results are summarized in Table 2, which

clearly shows the significant advantages of our YOLOv8_VanillaBlock model across

all sizes. Our proposed YOLOv8_VanillaBlock model with corresponding sizes re-

duced the FLOPs by 18.5%, 21.8%, 30.2%, 26.7%, and 37.5% compared to the original

YOLOv8 model with sizes n, s, m, l, x, respectively. It improved mAP50 by 1.45%,

0.5%, 0.18%, 1.31%, and 2.2%, respectively. These results demonstrate that our

YOLOv8_VanillaBlock model attained higher accuracy while reducing FLOPs than

the original YOLOv8 model.

Fig. 6. Comparison of AP50 of different detection classes on the TIDBD dataset between

YOLOv8_VanillaBlock_l and YOLOv8l

10 Liuyu Zhu et.al.

Table 2. Comparison of mAP50 and FLOPs between all sizes of YOLOv8_VanillaBlock and

YOLOv8

Models FLOPs(G) mAP50 Image size

(pixels)

YOLOv8n 8.1 49.10 1088

YOLOv8s 28.5 61.63 1088

YOLOv8m 78.8 64.15 1088

YOLOv8l 165.0 64.79 1088

YOLOv8x 257.6 66.73 1088

YOLOv8_Va-

nillaBlock_n
6.6 50.55 1088

YOLOv8_Va-

nillaBlock_s
22.3 62.13 1088

YOLOv8_Va-

nillaBlock_m
55.0 64.33 1088

YOLOv8_Va-

nillaBlock_l
120.9 66.10 1088

YOLOv8_Va-

nillaBlock_x
161.1 68.93 1088

Comparison of Detection Speed and Real-time Performance. We conducted tests on

detection time and FPS for input images scaled to 320, 640, and 1088 to underscore the

superiority of the proposed model in terms of detection speed and real-time perfor-

mance. The detection time test results are presented in Fig. 7, and the FPS test results

are depicted in Table 3.

Fig. 7 shows the models of the same size by lines of the same color, with

YOLOv8_VanillaBlock represented by a solid line and original YOLOv8 by a dashed

line. From Fig. 7 we can see that the detection time of the YOLOv8_VanillaBlock

model was consistently lower than that of the original YOLOv8 model of the corre-

sponding size for the same input image size. The improvement in detection speed was

notably pronounced when the input image size was 1088.

Table 3 illustrates that, with the input images of the same size, the YOLOv8_Va-

nillaBlock model processed a higher number of frames per second than the original

YOLOv8 model. When the input image was 1088, the FPS of YOLOv8_VanillaBlock

was 14.2%, 3.9%, 13.7%, 16.1%, 30.2% higher than that of original YOLOv8 of the

corresponding size. The outcome demonstrates that our proposed method can signifi-

cantly enhance the detection speed of YOLOv8.

 Efficient Detection Model of Illegal Driving Behavior in Two-Wheeled Vehicles 11

Fig. 7. Comparison of detection speed of YOLOv8_VanillaBlock and

YOLOv8 on images of different scaled versions

Table 3. FPS of YOLOv8_VanillaBlock VS YOLOv8 with different

sizes of input images

Image sizes(pixels)

Models

320 640 1088

YOLOv8n 90.87 86.43 60.94

YOLOv8s 88.51 86.21 52.49

YOLOv8m 73.74 60.38 30.20

YOLOv8l 68.17 48.37 20.65

YOLOv8x 58.56 32.76 14.46

YOLOv8_VanillaBlock_n 101.03 98.38 69.62

YOLOv8_VanillaBlock_s 94.90 94.17 54.52

YOLOv8_VanillaBlock_m 89.48 69.82 34.35

YOLOv8_VanillaBlock_l 82.22 53.30 23.98

YOLOv8_VanillaBlock_x 77.39 43.54 18.84

6 CONCLUSION

This study introduces the detection of illegal driving behavior in two-wheelers employ-

ing the YOLOv8_VanillaBlock model. In the initial phase, real-world data was col-

lected, cleaned, labeled, and used to construct the TIDBD dataset. Subsequently, the

YOLOv8_VanillaBlock model was proposed. Next, we mathematically proved that our

12 Liuyu Zhu et.al.

proposed model has smaller computational complexity. Finally, we did a comparative

experiment on TIDBD dataset. The experimental results on the TIDBD dataset showed

a substantial increase in detection speed with a minor improvement in accuracy com-

pared to YOLOv8. Future endeavors include accomplishing more complex tasks of de-

tecting two-wheeler illegal driving behavior on our dataset while continually improving

the performance of the model.

Acknowledgments. This study was funded by Beijing Key Laboratory of Petroleum Data Min-

ing, China University of Petroleum, Beijing.

References

1. “TWHD:two wheeler helmet dataset.” https://gitee.com/bilibilee/TWHD, last accessed

2024/3/25

2. “Helmet Detection.” https://tianchi.aliyun.com/dataset/90136, last accessed 2024/3/25

3. H. Chen, Y. Wang, J. Guo, and D. Tao, “Vanillanet: the power of minimalism in deep learn-

ing,” arXiv preprint arXiv:2305.12972 (2023)

4. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” In: IEEE conference on computer vision and pattern recognition, pp.

779–788 IEEE Press Las Vegas, NV, USA (2016)

5. Ultralytics, “Model Structure.” https://docs.ultralytics.com/yolov5/tutorials/architecture de-

scription/#1-model-structure, last accessed 2024/3/25

6. C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “Cspnet: A

new backbone that can enhance learning capability of cnn,” In: IEEE conference on com-

puter vision and pattern recognition workshops, pp. 390–391. IEEE Press Seattle, WA, USA

(2020)

7. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of

object detection,” arXiv preprint arXiv:2004.10934 (2020)

8. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional net-

works for visual recognition,” IEEE transactions on pattern analysis and machine intelli-

gence, 37 (9), pp. 1904–1916 (2015)

9. C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie et al.,

“Yolov6: A single-stage object detection framework for industrial applications,” arXiv pre-

print arXiv:2209.02976 (2022)

10. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets

new state-of-the-art for real-time object detectors,” In: IEEE Conference on Computer Vi-

sion and Pattern Recognition, pp. 7464–7475. IEEE Press Vancouver, BC, Canada (2023)

11. “YOLO by Ultralytics,” https://github.com/ultralytics/ultralytics, 2023,last accessed

2024/3/25

12. K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More features from cheap

operations,” In: IEEE conference on computer vision and pattern recognition, pp. 1580–

1589. IEEE Press Seattle, WA, USA (2020).

13. K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, E. Wu, and Q. Tian, “Ghostnets on heterogeneous

devices via cheap operations,” International Journal of Computer Vision, 130(4), pp. 1050–

1069 (2022)

14. X. Zhang, H. Zeng, S. Guo, and L. Zhang, “Efficient long-range attention network for image

super-resolution,” In: European Conference on Computer Vision, pp. 649–667. Springer,

Tel Aviv, Israel (2022)

