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Abstract. Semantic segmentation is a highly challenging task in high-resolution 

remote sensing (HRRS) image due to the complex spatial layouts and significant 

appearance variations of multi-class objects. Convolutional Neural Networks 

(CNNs) have been widely employed as feature extractors for various visual tasks, 

owing to their excellent ability to extract local features. However, due to the in-

herent bias of convolutional operations, CNNs inevitably have limitations in 

modeling long-range dependencies. On the other hand, Transformers excel in 

capturing global representations but unfortunately overlook the details of local 

features and category features, and exhibit high computational and spatial com-

plexity when dealing with high-resolution feature maps. Semantic segmentation 

has traditionally been modeled as predicting each point on a dense regular grid. 

In this work, we propose a novel and effective model, EMRA-proxy, which con-

sists of two parts: homogeneous regions attention proxy (HRA-proxy) and Multi-

class Attention proxy (MCA-proxy). The proposed EMRA-proxy model aban-

dons the common Cartesian feature layout and operates purely at the region level. 

First, to capture contextual information within a region, we use Transformer to 

encode regions in a sequence-to-sequence manner by applying multiple layers of 

self-attention to region embeddings acting as proxies for specific regions. HRA-

proxy then interprets the image into learnable surface subdivisions, each with 

flexible geometry and homogeneous semantics. It is performed by using a single 

linear classifier on top of the encoded region embeddings for prediction per re-

gion, thereby obtaining a homogeneous semantic mask feature map (HSMF-

map). Then MCA-proxy learns the global class attention map (GCA-map) to 

make up for ViT's shortcomings in multi-class information extraction. Finally, 

HSMF-map and GCA-map are integrated to achieve high-precision multi-class 

remote sensing image segmentation. Extensive experiments on three public re-

mote sensing datasets demonstrate the superiority of EMRA-proxy and indicate 

that the overall performance of our method outperforms state-of-the-art methods. 
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1 Introduction 

In recent years, with the rapid development of Earth observation and satellite technol-

ogies, an enormous volume of remote sensing data has emerged, leading to significant 

advancements in remote sensing image analysis. Semantic segmentation stands as one 

of the most crucial tasks in remote sensing, aiming to assign a category label to each 

pixel in an image. Semantic segmentation techniques have found widespread applica-

tions in environmental monitoring [1], smart agriculture [2], land cover detection [3], 

and urban planning [4]. 

The interpretation of high-resolution remote sensing (HRRS) images has long-standing 

challenges in image segmentation. Compared to natural images, HRRS images exhibit 

complex spatial layouts and diverse categories of objects [5]. As depicted in Fig. 1, 

objects of the same category display inconsistent category distributions across different 

scenes, with significant variations in shape and appearance. Ground features manifest 

at multiple scales with relatively intricate texture information, leading to high inter-

class similarity and intra-class diversity, making it challenging to accurately delineate 

their boundaries. Additionally, the high resolution provides finer details for background 

samples and greater intra-class variance, requiring the extraction of more discriminative 

semantic features for precise segmentation. Over the past decade, many research meth-

ods have focused on pixel-wise classification for segmentation, employing traditional 

manual feature design and classifiers, which have yielded some encouraging results 

[6,7,8]. However, these methods are limited by the finite nature of feature extraction, 

leading to poor performance when dealing with large-scale, complex images, particu-

larly severely restricting their application in remote sensing.  

Deep learning methods have emerged as a powerful approach for learning high-level 

abstract features directly from raw data [9], overcoming the limitations of traditional 

methods that heavily rely on handcrafted features and have limited feature representa-

tion capabilities. Convolutional Neural Networks (CNNs) demonstrate strong profi-

ciency in capturing local details, rendering them widely adopted across diverse visual 

recognition tasks [10,11,12]. Since the introduction of Fully Convolutional Networks 

(FCNs) [13], researchers have developed numerous segmentation methods based on 

CNNs, which offer significant advantages and greatly improve segmentation accuracy. 

U-Net [14], for instance, utilizes a symmetrical encoder-decoder structure and employs 

skip connections from shallow to deep layers to fuse multi-level features, recovering 

details lost due to stacked convolutional layers and downsampling operations. Various 

variants of U-Net have been proposed in subsequent studies. MAResU-Net [15] utilizes 

a linear attention mechanism to reshape the skip connections of the original U-Net net-

work, thereby enhancing the utilization of detailed information and improving segmen-

tation performance. Despite the excellent feature extraction capability of CNN-based 

methods, they are unable to effectively model long-range dependencies due to the in-

herent limitations of their structure. Consequently, many approaches tend to enhance 
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contextual modeling by extending the receptive field of CNNs, such as increasing ker-

nel size [16], employing atrous convolutions [17], introducing feature pyramids [18], 

or utilizing multi-scale modules [19]. While these methods enhance feature representa-

tion, CNNs still struggle to learn global semantic information due to the limited recep-

tive field of convolutional kernels, which is crucial for dense prediction tasks. 

 

Fig. 1. In HRRS images, objects exhibit significant differences in shape, proportion, and spatial 

arrangement. In rural scenes, buildings often exhibit chaotic features, with narrow roads, inter-

spersed with small ponds and trees. Conversely, urban scenes boast neatly arranged buildings, 

expansive roads, and a diminished presence of trees and ponds. 

Transformer architecture-based semantic segmentation has gained popularity in recent 

years. The Transformer architecture [20] was initially devised for natural language pro-

cessing, but has recently gained considerable interest in computer vision. It is well-

suited for processing images with large receptive fields due to its ability to model long-

range dependencies between input tokens via a self-attention mechanism. Particularly, 

the ViT [21] has demonstrated remarkable performance in image classification tasks by 

processing image segments directly as input. Several studies [22,23] utilizing ViT as a 

foundation for the semantic segmentation of Remote Sensing Images has produced re-

markable results. ViT's attention mechanism facilitates the acquisition of more com-

prehensive contextual information. However, in current models, ViT only serves as a 

feature extractor for sequence-to-sequence encoders, extracting 2D coarse features sim-

ilar to those of convolutional neural networks. Transformer-based models typically em-

ploy a single class token due to their limited understanding of the spatial relationships 

between objects, which makes it difficult to precisely localize various objects within a 

single image. 

In this work, we explore a novel model for semantic segmentation that we believe is 

closer to its essence: we attempt to interpret multi-target images as a set of interrelated 

regions, where each region represents a group of adjacent pixels with homogeneous or 

class-consistent semantic information. As illustrated in Fig. 2, we present an EMRA-

proxy model that aims to utilize homogeneous semantic information of image regions 
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and object category information for segmenting HRRS images. The homogeneous re-

gions attention proxy (HRA-proxy) is employed to identify homogeneous regions and 

object boundaries in the image during the early stages of the model. In addition, we use 

a Multi-class Attention proxy(MCA-proxy) to compensate for the insufficient extrac-

tion of multi-class information by ViT. In summary, our work provides three major 

contributions: 

• We propose HRA-proxy, enabling operations on region embeddings across the net-

work. These embeddings represent specific learnable regions, acting as proxies. In-

stead of pixel-wise predictions, we directly predict region embeddings for segmen-

tation using a linear classifier. This approach effectively captures the homogeneous 

information of the image, enhancing the segmentation performance of complex ge-

ometric-shaped targets. 

• We introduce MCA-proxy to address the limitation of ViT in extracting local fea-

tures for multi-class targets, thereby compensating for inconsistent class distribu-

tions enabling the capture of a wider variety of class-specific feature information. 

• We qualitatively and quantitatively evaluate the segmentation performance of 

EMRA-proxy on three challenging datasets, LoveDA, Potsdam and Vaihingen. Ex-

perimental results demonstrate a significant superiority over current methods. 

• The remaining parts of this article are organized as follows. 

In Section 2, a review of the literature on traditional image segmentation methods and 

deep learning-based semantic segmentation methods utilizing Convolutional Neural 

Networks and Transformer models is provided. In Section 3, we first introduce the 

overall architecture of EMRA-proxy. Following that, we provide a detailed explanation 

of the principles and implementation steps of HRA-proxy and MCA-proxy. Section 4 

provides a detailed overview of our study's dataset and experimental setup. It covers 

the dataset's source, size, features, and the specifics of our experimental design, includ-

ing model architecture, hyperparameters, training, and evaluation methods. We then 

present and analyze the results, offering insights into the performance and efficacy of 

our approach. The conclusion of this article will be drawn in Section 5. 

2 Related work 

CNN-based Semantic Segmentation. Semantic segmentation has always been an im-

portant task in remote sensing applications. Traditional methods generally rely on man-

ual feature extraction, such as spectral information, image texture, and spatial features, 

followed by selecting feature classifiers to achieve segmentation. Due to high labor 

costs and inadequate feature representation, it is difficult to describe complex scenes 

accurately. In recent years, with the assistance of deep CNNs, various FCN-based mod-

els have significantly improved the segmentation accuracy of remote-sensing images. 

Addressing the challenge of complex scenes and diverse objects in remote sensing im-

ages commonly involves aggregating multi-scale contextual information. Zhao et al. 

[24] introduced attention mechanisms into the dilated spatial pyramid pooling module 
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to achieve adaptive feature refinement and restored fine-grained features by fusing the 

pooling index map with high-level feature maps. Liu et al. [25]  sequentially aggregated 

global-to-local context with low-level features to progressively refine target objects. 

Yue et al. [26] constructed a Tree-CNN block to fuse multi-scale feature maps, greatly 

enhancing discriminative power for confusable categories. Additionally, some studies 

focus on segmenting small objects. Zheng et al. [27] enhanced foreground feature 

recognition by learning foreground-related context from a foreground modeling per-

spective. Ma et al. [28] proposed a foreground-activated object representation frame-

work to enhance the recognition of weak features in small objects. Peng et al. [16] en-

coded more accurate small-scale semantic information by selecting informative fea-

tures and expanding the receptive field of low-level feature maps, significantly improv-

ing the segmentation accuracy of small targets. Another research direction is further 

improving results through attention mechanisms. Ding et al. [29] designed a patch at-

tention module and attention embedding module to enhance feature representation and 

bridge spatial distribution differences between high-level and low-level features. Li et 

al. [30] proposed a boundary attention module to extract boundary information of ob-

jects from hierarchical feature aggregation and eliminate noise information from low-

level features. However, the contextual information obtained by these models is still 

insufficient, and further improvement is needed for the segmentation accuracy of fine 

objects in HRRS images.

 

Fig. 2. Illustration of EMRA-proxy. We utilize HRA-proxy and MCA-proxy to respectively ex-

tract homogeneous semantic mask feature maps (HSMF-maps) and global class attention maps 

(GCA-maps). Finally, merge the two maps to achieve precise image segmentation. 

ViT-based Semantic Segmentation. In recent years, Transformers have been effec-

tively applied to a variety of computer vision tasks, including semantic segmentation.  

Utilizing attention mechanisms inspired by Transformers has enhanced segmentation 
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model performance [31,32]. ViT [33] has garnered significant interest due to its effi-

cacy in image classification and other computer vision tasks. Several enhanced ViT 

models with varying architectures, such as CaiT [34], and Swin Transformer [35], has 

been proposed. These models use hierarchical models to generate 2D features, recent 

studies have investigated the use of Transformer-based models for semantic segmenta-

tion tasks. For example, SETR [36] integrated ViT backbones into the semantic seg-

mentation task, while Segmenter [37] employed Transformers to predict per-class 

masks. Other methods, such as SegFormer [38] and DPT [39], proposed hierarchical 

ViT backbones for dense prediction tasks. MCTformer [40] proposed employing a 

Multi-class Token Transformer to enhance weakly supervised semantic segmentation. 

In subsequent research, researchers have actively explored the application of Trans-

formers to address various remote-sensing tasks. Chen et al. [41] designed a dual-tem-

poral image Transformer to model context in the spatiotemporal domain and improve 

the efficiency of change detection. Hong et al. [42] utilized Transformers for pan-sharp-

ening of HRRS images, achieving optimal results both visually and quantitatively. Tao 

et al. [43] proposed an Enhanced Multi-scale Representation Transformer (EMRT), 

leveraging the advantages of convolutional operations and Transformers to enhance 

multi-scale representation learning. 

CNN-based methods struggle to capture global information in remote sensing image 

segmentation, resulting in relatively imprecise segmentation outcomes, whereas ViT-

based methods require more remote sensing image categories localization and bounda-

ries. To overcome these limitations, we present a novel strategy.  Specifically, we pro-

pose an EMRA-proxy to extract homogeneous semantic information of image regions 

and object category information for segmenting HRRS images. 

3 Methods 

Our proposed EMRA-proxy model aims to utilize homogeneous semantic information 

of image regions and object category information for segmenting HRRS images. An 

overview of the model overall architecture is presented in Fig. 3. Next, we will provide 

a comprehensive and detailed explanation of the EMRA proxy method. 

In Section 3.1, we first introduce the overall architecture of the EMRA-proxy and the 

process of utilizing the Transformer to extract contextual information from regions. In 

Section 3.2, we provide a detailed explanation of the principle and process of HRA-

proxy for extracting homogeneous region geometric features. In Section 3.3, we will 

describe the process of MCA-proxy extracting image category information, as well as 

delineate the process of generating the final segmented image. 

3.1 Overall Network Architecture 

HRRS images have complex background elements and ground objects of various 

shapes, so extracting local region features and category features is crucial to further 
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improve segmentation performance. We proposed a method called EMRA-proxy to ad-

dress the aforementioned issues. Fig. 3 illustrates the overall structure of EMRA-proxy, 

where features are first extracted from the image using Transformer. These features are 

then separately utilized by MCA-proxy and HRA-proxy to obtain the image's category 

and region geometry information, respectively. Finally, the information obtained from 

MCA-proxy and HRA-proxy is merged to generate the final segmentation map. 
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Fig. 3. Overview of our EMRA-proxy approach. We first split and transform an input RGB im-

age into a sequence of patch tokens. Additionally, we propose to incorporate the learning of C 

extra class tokens, where C represents the number of classes. The C class tokens are concate-

nated with patch tokens and augmented with position embeddings (PE) which then undergo 

consecutive L transformer encoding layers. The HR proxy utilizes the outputs of the encoder's 

initial layers to generate a homogeneous semantic mask feature map (HSMF-map). Addition-

ally, the MCA-proxy can generate a global class attention map (GCA-map) from the encoder's 

outputs. Finally, the fusion of HSMF-maps and GCA-maps produces the final segmentation re-

sults. 

Transformer is a type of sequence-to-sequence model, that applies multi-layer self-at-

tention on its computation primitives, i.e. tokens. In this work, we take full advantage 

of the Transformer architecture to learn the global context for images by directly mod-

eling inter-region relations using self-attention. An image is split into a series of seg-

ments 𝑁 × 𝑁 patches, which are then transformed into a sequence of patch tokens 𝑇𝑝 ∈

𝑅𝐸×𝐷, where D is the embedding dimension, 𝐸 = 𝑁2. We propose multi-class tokens 

𝑇𝑐𝑙𝑠 ∈ 𝑅𝐶×𝐷 to learn category features, where 𝐶 is the number of classes. The class em-

beddings 𝑇𝑐𝑙𝑠  are randomly initialized and designated to a specific semantic class to 

generate the multi-class tokens. To learn positional information, position embedding 

𝑝𝑜𝑠 = [𝑝𝑜𝑠1, … , 𝑝𝑜𝑠𝑁] ∈ 𝑅𝑁×𝐷 is added to the sequence of patches 𝑇𝑝 and 𝑇𝑐𝑙𝑠. The 

final input sequence of tokens is 𝑇𝑖𝑛 ∈ 𝑅(𝐸+𝐶)×𝐷. 

The token sequence 𝑇𝑖𝑛 is processed by a transformer encoder [44] with L layers to 

generate contextualized encodings 𝑇𝐿 ∈ 𝑅𝑀×𝐷. As shown in Fig. 4, each transformer 

layer consists of a multi-headed self-attention (MSA) block and a point-wise MLP 

block with two layers. Before and after each block, Layer norm (LN) is applied, and 

residual connections are added after each block. The formula of MSA and MLP formu-

las are as follows: 
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 𝑎{𝑙−1} = 𝑀𝑆𝐴 (𝐿𝑁(𝑇{𝑙−1})) + 𝑇{𝑙−1} (1) 

 𝑇𝑙 =  𝑀𝐿𝑃 (𝐿𝑁(𝑎{𝑙−1})) + 𝑎{𝑙−1} (2) 

 where 𝑙 ∈  {1, … , 𝐿}. 

 

Fig. 4. Transformer encoder 

Following the standard definition in [33,45] we experimented with four ViT model 

sizes (ViT-{Ti/16, S/16, B/16, L/16}) as backbones. The multi-class transformer en-

coder maps input patches with position encoding (𝑇𝑖𝑛) to a contextualized encoding 

sequence (𝑇𝑙) that contains semantic information. In the subsequent section, we will 

provide a detailed exposition of how MCA-proxy and HRA-proxy leverage the features 

extracted by the encoder. 

3.2 Homogeneous regions attention proxy 

Learning and describing the geometric features of regions is challenging due to their 

irregular shapes and varying scales. While predicting a binary mask for each region 

seems intuitive, it's not feasible for sequence-to-sequence models. Predicting full-size 

masks for each token would be computationally expensive. On the other hand, predict-

ing small-size masks for local regions may compromise the coherence of the areas, 

resulting in overlaps or loss of information. 

Extracting geometric region.  

Revisiting classical superpixel segmentation [46], it is a process that entails grouping 

pixels based on low-level information, such as color, to form perceptually similar re-

gions. This technique provides a foundational image representation for a variety of 

high-level visual tasks, including semantic segmentation. Following the findings out-

lined in [47], the semantic meaning of pixels with similar low-level attributes within 

close proximity should exhibit homogeneity. Leveraging this principle, we attempt to 

batch the pixel labeling by classifying superpixels. 

To address this, we introduce a novel mechanism homogeneous regions attention proxy 

(HRA-proxy) for describing the geometric shapes of regions through pixel-to-token as-

sociations. HRA-proxy is to use region proxies to describe the geometric shapes of 

images with homogeneous superpixel groups. We start with an initial 𝐻𝑔 × 𝑊𝑔 grid, 
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where 𝐻𝑔 × 𝑊𝑔 = 𝑁𝑔  . Each token resides on a grid cell. The cells themselves act 

merely as token position indicators, unrelated to the actual geometric shapes of the re-

gions. We establish associations between pixels  𝑝 = (𝑢, 𝑣)  and tokens for region s by 

assigning them probabilities 𝑞𝑠(𝑝). We only associate a pixel p with tokens located in 

its neighborhood 𝑁𝑝, which satisfies: 

 ∑ 𝑞𝑠(𝑝)𝑠∈𝑁𝑝
=  1. (3) 

Fig. 5 illustrates this concept, where each pixel p is allocated to one of nine regions. 

Mathematically, we describe the inter-pixel associations using an affinity graph 𝐺 ∈

ℝ(𝐻𝑔×ℎ)×(𝑊𝑔×𝑤)×|𝑁𝑝|  that is agnostic to categories, portraying the actual geometric 

shapes of the regions. The dimensions (𝐻𝑔 × ℎ, 𝑊𝑔 × 𝑤) represent the size of the out-

put segmentation map, where (ℎ, 𝑤) denotes the relative stride of the initial token grid. 

Observations indicate that a neighborhood size of 3 × 3 and |𝑁𝑝| = 9 is effective for 

all model sizes. Based on empirical observations [47], we set the domain size to 3x3 

and Np=9, which is suitable for images of all model sizes. 

For a more intuitive understanding, the "core" of a region is represented by its location 

on the initial  𝐻𝑔 × 𝑊𝑔  cell, whereas the surrounding pixels are represented by proba-

bilities. Following the constraint of equation (3), the probabilistic regions form a tes-

sellation that completely encompasses the image plane without any gaps or overlaps. 

P

S

local pixel-region association

)(q
s

p

 

Fig. 5. Describing region geometrics by local pixel-region association. 

HRA-proxy Implementation.  

As illustrated in  Fig. 6, We utilize HRA-proxy to learn geometric descriptions of G, 

using embed region features as input. To embed region features into tokens, we employ 

a portion of the ViT backbone as token heads, generating E tokens with dimension D. 

Through comparative experiments across different layers, we determine the optimal M, 

selecting the first M Transformer layers of ViT as token heads. 

In detail, the convolution module comprises one depth-wise convolution layer and one 

convolution layer. The depth-wise convolution layer with a kernel size of 3 × 3, is then 
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followed by a 1 × 1 convolution layer. After convolution, the HSMF-maps are subjected 

to Softmax activation, which generates normalized probabilities. Convolutional opera-

tions excel at capturing local information within images and extracting geometric fea-

tures of regions. 

Conv
Module

R
H×W×9hw

HRA-proxy

HhxWw×9

Token 
head

M early
layers

E x DImage

 

Fig. 6.  lustration of the HRA-proxy, where Conv Module stands for depthwise separable con-

volution and R stands for reshape and rearrange of dimensions. 

3.3 Multi-class Attention proxy 

During training, to ensure that tokens from different classes can learn distinct class-

specific features, we incorporate additional class tokens into the input, as depicted in 

Fig. 3. In the learning process of the Transformer encoder, we directly compute the 

classification loss to establish a strong connection between each token and its class 

label. By utilizing a Multi-class Attention proxy (MCA-proxy), we extract class scores 

for different pixels to serve as proxies for the class of region pixels, thereby guiding 

image segmentation. 

As illustrated in Fig. 7, MCA-proxy uses the standard self-attention layer to capture 

the long-range dependencies between tokens. The self-attention mechanism consists of 

three point-wise linear layers that map tokens to intermediate representations, including 

queries 𝑄 ∈ ℝ(𝐸+𝐶)×𝑑 , keys 𝐾 ∈ ℝ(𝐸+𝐶)×𝑑  and values 𝑉 ∈ ℝ(𝐸+𝐶)×𝑑 . We utilize the 

Scaled Dot-Product Attention [44] mechanism to calculate the attention scores between 

queries and keys. Each resultant token is derived from a weighted sum of all tokens, 

with attention scores serving as the weights. This can be formulated as: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝐷
) 𝑉, (4) 

where we can obtain a global class attention map (GCA-map)  𝐴𝑡2𝑡 ∈ ℝ(𝐶+𝑀)×(𝐶+𝑀)  

and 𝐴𝑡2𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
). We aggregate the transformer attentions from the last P 

layers and multiple heads to produce a final attention map. From this map, we derive 

class-specific object localization maps and a patch-level pairwise affinity map using 

the class-to-patch and patch-to-patch attentions, respectively. The patch-level pairwise 

affinity can refine the GCA-map, resulting in enhanced image segmentation. We con-

ducted a series of comparative experiments to determine how to choose K, as illustrated 

in . The Impact of Parameter P on the Accuracy of MCA-proxy.. 
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Fig. 7. We aggregate the transformer attentions from the last P layers and multiple heads to pro-

duce a final attention map. 

Finally, we fuse the GCA-map obtained from the MCA-proxy with the HSMF-map 

generated by the HRA-proxy to produce the final segmentation results, as shown in Fig. 

3. The segmentation results are efficiently drawn on a per-pixel basis. The class mask 

for a given pixel p = (u, v) is calculated directly: 

 𝑀′[𝑢, 𝑣] =  ∑ 𝐴𝑡2𝑡𝑠∈𝑁𝑝
(𝑠) ⋅ 𝑞𝑠(𝑝) (5) 

where 𝑀′𝜖 𝑅(𝐻𝑔ℎ)×(𝑊𝑔𝑤)×𝐶   is the output logits map, 𝐴𝑡2𝑡(𝑠)corresponds to the class 

logits for region s obtained from the multi-class token. We set (𝑤, ℎ) = (4,4) to gen-

erate the ×4 stride logits map for Ours-x/16 models. Our model is trained end-to-end 

using cross-entropy loss without class balance or hard example mining techniques. To 

get the final segmentation map, we first enhance the resolution of the intermediate fea-

ture map 𝑀′ using bilinear interpolation. We then apply Softmax and layer normaliza-

tion to obtain per-pixel class scores, which are used to generate the final segmentation 

map. 

4 Experiments and results 

4.1 Datasets and Metrics 

To evaluate the performance of our proposed method, we conducted experiments on 

three open datasets, including two high-resolution datasets Potsdam and Vaihingen, as 

well as the more challenging LoveDA dataset. We used three evaluation metrics in-

cluding mIoU, OA, and F1 score. Below is a detailed description of the datasets and 

evaluation metrics. 

LoveDA [5]: The dataset is a comprehensive collection of high-resolution (HSR) im-

ages with meticulous annotations of land-cover objects from three Chinese cities: Nan-

jing, Changzhou, and Wuhan. The dataset consists of 5987 images, of which 2713 are 

urban scenes, and 3274 are rural scenes, offering a diverse range of environments for 

computer vision research.  The dataset is divided into training, validation, and testing 

sets, with 2522, 1669, and 1796 images, respectively. The dataset is annotated with 

166768 objects across seven semantic categories, as shown in Table 1. 
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Table 1. RGB values of the categories. 

category RGB Value 

background (255, 255, 255) 

building (255, 0, 0) 

road (255, 255, 0) 

water (0, 0, 255) 

barren (159, 129, 183) 

forest (0, 255, 0) 

agriculture (255, 195, 128) 

Postsdam: The Potsdam dataset consists of 38 high-resolution images collected from 

urban scenes, each with dimensions of 6000 × 6000 pixels and a spatial pixel resolu-

tion of 5 centimeters. The source images include large building blocks, narrow streets, 

and dense settlement structures. Ground objects are classified into six categories: im-

pervious surfaces, buildings, low vegetation, trees, cars, and clutter/background. We 

used 24 images for training, and the remaining 14 images were used for testing. 

Vaihingen: The Vaihingen dataset showcases a small village with many independent 

multi-story buildings and small multi-story buildings. The dataset consists of 33 or-

thoimage blocks, each with a spatial resolution of 9 centimeters and an average size of 

2494 × 2064 pixels. These images are densely classified into six categories, the same 

as those in the Potsdam dataset. In experiments, 16 images are used for training, and 

the remaining 17 images are used for testing. 

Metrics. To comprehensively measure the performance of our proposed model, the 

mean intersection over union (mIoU), the overall accuracy (OA), and the F1 score are 

used as evaluation metrics. Among them, mIoU denotes the ratio of intersection and 

union of the true and predicted values, OA refers to the ratio of correctly predicted 

pixels by category to the total pixels, and the F1 score is the harmonic mean between 

the accuracy and recall of the model. 

 𝑚𝐼𝑜𝑈 =
1

𝑁
∑

𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘+𝐹𝑁𝑘

𝑁
𝑘=1  (6) 

 𝑂𝐴 =
∑ 𝑇𝑃𝑘

𝑁
𝑘=1

𝑇𝑃𝑘+𝐹𝑃𝑘+𝑇𝑁𝑘+𝐹𝑁𝑘
 (7) 

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

In addition, precision and recall are defined as: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁
∑

𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘

𝑁
𝑘=1  (9) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑁
∑

𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑁𝑘

𝑁
𝑘=1  (10) 
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where 𝑇𝑃𝑘 , 𝐹𝑃𝑘 , 𝑇𝑁𝑘, 𝑎𝑛𝑑 𝐹𝑁𝑘 represent the counts of true positive, false positive, true 

negative, and false negative pixels for the object categorized as class k, respectively. 

4.2 Implementation Details 

ViT backbone. We employ the Vision Transformer (ViT) as our encoder, which is 

available in four various sizes: Large, Base, Small, and Tiny, as shown in Table 2. The 

parameter count of the transformer encoder varies with different layers and token sizes. 

Specifically, we fix the head size to 64 in the multi-headed attention mechanism, while 

the number of heads is determined by the token size divided by the head size. Addition-

ally, the hidden size of the MLP following MSA is set to four times the token size. We 

use weights pre-trained on ImageNet21k [48] following recent works [37,47]. 

Table 2. Details of Transformer variants. 

method          backbone    Layers Token size Heads Params    

EMRA-proxy-T ViT-Ti/16 12 192 3 6.69M 

EMRA-proxy-S ViT-S/16 12 384 6  26.19M 

EMRA-proxy-B ViT-B/16 12 768  12  103.1M 

EMRA-proxy-L  ViT-L/16 24 1024 16 334.3M 

Train Details. Our method is implemented using the publicly available mmsegmenta-

tion [49] codebase, with minimal modifications made to its default settings that are 

widely adopted by the community. We use input sizes of 512 × 512 for LoveDA, Pots-

dam and Vaihingen. We train our "Large" model using a 640 × 640 crop following 

[37,38,47]. We use a batch size of 16 and train for 100 epochs. We use stochastic gra-

dient descent (SGD) [50] as the optimizer with a base learning rate γ0 and set weight 

decay to 0. Inspired by the seminal work of segmenter [37], we employ the "poly" 

learning rate decay, which is defined as γ = γ0 (1 −
𝑁𝑒𝑝𝑜𝑐ℎ

𝑁𝑡𝑜𝑡𝑎𝑙
)

0.9

, where 𝑁𝑒𝑝𝑜𝑐ℎ  and 

𝑁𝑡𝑜𝑡𝑎𝑙 represent the current epoch number and the total iteration number, respectively. 

Our work sets the base learning rate γ0 to 10−3. We maintain the default settings for 

data augmentations and all other training parameters in [49]. To fine-tune the pre-

trained models for semantic segmentation, we employ the standard pixel-wise cross-

entropy loss without weight rebalancing.   

Inference. In order to accommodate images of varying sizes, we employ a sliding win-

dow technique that is congruent with the training dimensions. For multi-scale inference, 

we adhere to established standard practice [51] by utilizing rescaled iterations of the 

images with scaling factors of (0.5, 0.75, 1.0, 1.25, 1.5, 1.75), alongside left-right mir-

roring. Subsequently, the outcomes of these rescaled iterations are averaged to derive 

the ultimate prediction. 
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4.3 Results 

Ablation study.  

In this section, we ablate various variants of our methodology on the LoveDA valida-

tion set. Following recent works [37,47], we augment bare ViT by adding a linear clas-

sifier to generate per-patch predictions. Following the standard segmentation pipeline, 

these predictions are upsampled to the image size for training and inference. 

Ablation Study for Backbone.  

In our study, we conducted an extensive ablation analysis to investigate the impact of 

different backbone architectures on the performance of our method. The results of this 

analysis, summarized in Table 3, clearly illustrate the significance of backbone capac-

ity in determining the overall performance of the model. Specifically, we observed that 

increasing the capacity of the backbone consistently leads to improved performance 

across various evaluation metrics. 

To balance performance with computational efficiency, we also evaluated the trade-off 

between mIoU and Floating Point Operations (FLOPs). As depicted in Fig. 8, our anal-

ysis indicates that the EMRA-proxy-B configuration emerges as the optimal choice. 

This configuration strikes an optimal balance between achieving high mIoU scores and 

minimizing computational complexity, making it well-suited for practical deployment 

in real-world scenarios. 

Table 3. Performance comparison of our models with varying backbones and input patch sizes 

on LoveDA validation set. 

method          backbone    FLOPs aAcc(%) mIoU(SS/MS %) 

EMRA-proxy-T ViT-Ti/16 4.47G 70.79 52.4 53.59 

EMRA-proxy-S ViT-S/16 17.78G 71.29 52.87  54.62 

EMRA-proxy-B ViT-B/16 70.36G 72.13 54.50 55.22 

EMRA-proxy-L  ViT-L/16 356.01G 72.11 54.60 55.47 

Ablation Study for Improvement Strategies.  

proxy on the segmentation performance using ViT-base as the benchmark. As shown 

in Table 4. The results indicate a significant improvement in mIoU compared to the 

baseline. The MCA-proxy and HRA-proxy contributed to varying degrees of improve-

ment over the baseline. The optimal performance was achieved by combining the two, 

with single-scale (SS) mIoU and multi-scale (MS) mIoU reaching 54.50% and 55.22% 

respectively. Fig. 9 shows the efficacy curves of how the HRA-proxy and MCA-proxy 

strategies, based on the ViT-B backbone, work during the training phase. We can ob-

serve that combining the two proxy modules results in varying degrees of improvement 

across different categories, thereby achieving excellent segmentation performance. 
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Upon comparing the F1 scores, precision, and recall of various categories as illustrated 

in Fig. 10, it is evident that most categories demonstrate strong performance in preci-

sion and recall. However, in the Barren category, the precision is high while the recall 

is low, indicating the presence of missed detections. This is mainly because the data 

volume of the Barren category is relatively small, resulting in weaker classification 

capability. 

We present a qualitative comparison of the ablation study in Fig. 11. The figure illus-

trates the enhanced semantic segmentation performance achieved by the MCA-proxy 

and HRA-proxy methods across various scenarios. Through analysis of the depicted 

black boxes, it is evident that the MCA-proxy effectively localizes objects from diverse 

categories, resulting in improved segmentation outcomes for geometrically regular ob-

jects, indicative of its sensitivity to object categories. However, when faced with objects 

exhibiting complex geometric shapes, the MCA-proxy struggles to accurately segment 

fine details in local regions. To mitigate this limitation, we leverage the HRA-proxy to 

extract homogeneous semantic mask feature maps. As highlighted in the white box 

within the figure, the HRA-proxy facilitates finer segmentation of objects, particularly 

in regions with intricate geometry. Ultimately, we integrate both methods (EMRA-

proxy) to achieve a more accurate segmentation effect, capitalizing on the strengths of 

each proxy module. This comprehensive approach can achieve strong segmentation 

performance in various object categories and geometries, validating the effectiveness 

of our proposed method. 

 

Fig. 8. Performance vs. GFLOPs using Ours approach on LoveDA val split. We report results 

with single-scale (SS) and multi-scale (MS) inference. 
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Table 4. Impact of MCA-proxy and HRA-proxy on Segmentation Performance. We report 

mIoU results of EMRA-proxy-B/16 on LoveDA. 

method MCA-

proxy 

HRA-

proxy 

IoU per category (%) mIoU 

(%) 

   Back-

ground 

Build-

ing 

Road Water Bar-

ren 

Forest Agricul-

ture 

 

ViT-B/16 - - 42.93 44.97 36.85 51.85 14.8 33.01 42.63 38.15 

EMRA-proxy-

B/16 

+ - 51.43 60.4 55.81 69.44 30.86 40.66 59.58 52.6 

EMRA-proxy-

B/16 

- + 53.01 60.49 56.19 70.28 27.99 41.61 60.1 52.81 

EMRA-proxy-

B/16 

+ + 54.54 65.14 57.56 71.45 29.04 45.66 63.11 55.22 

Depth of HRA-proxy Token Head. 

As shown in Fig. 6, we utilize the first M layers of the Transformer as the Token head. 

Through experimentation, as shown in Table 5, we observed that the performance is 

optimal within the initial layers, particularly within layers 3-5. Deeper or shallower 

configurations negatively affect performance. According to the results, it can be seen 

that if the M layer is too deep, the information loss will increase, and it is difficult for 

HRA-proxy to obtain accurate regional geometric information. If M is too shallow, the 

HRA-proxy module has limited capabilities and cannot extract the required features. 

Therefore, after experiments, it was verified that when M=3, HRA-proxy can obtain 

regional feature information to the greatest extent. 

The Impact of Parameter P on the Accuracy of MCA-proxy. 

The segmentation accuracy of the global category attention map generated by fusing 

the last P layers of Transformer layers was evaluated. From Fig. 12, it can be observed 

that the segmentation accuracy is highest at P=4. Excessive aggregation of layers leads 

the model to learn numerous features unrelated to the categories, thereby diminishing 

the accuracy of class-specific feature extraction. Conversely, insufficient layer aggre-

gation results in the loss of significant information, making it challenging to learn pre-

cise category information. 

Comparison with state-of-the-art.  

In this section, we compare the performance of EMRA-proxy with respect to the 

state-of-the-art methods on LoveDA, Potsdam and Vaihingen datasets. 

Comparison on the LoveDA Dataset. 

We compared the segmentation performance of EMRA-proxy with some of the latest 

methods on the LoveDA dataset. These methods include both CNN-based approaches 

and Transformer-based methods. They followed their own optimal parameters and loss 

function settings in the comparison experiments. Unlike typical datasets, LoveDA has 
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a larger data volume and more complex backgrounds. The overall results for each 

method are presented in Table 6. Comparison to state-of-the-art methods on LoveDA 

test set.. Our method achieved an mIoU of 55.22% an OA of 73.29% and an mF1 of 

70.14% representing a 2.08% improvement in mIoU compared to the state-of-the-art 

methods. 

 

Fig. 9. The curves demonstrate the effectiveness of MCA-proxy and HRA-proxy, recording the 

mIoU value with epoch during the training phase of different module combinations in EMRA-

proxy. 

Table 5. Selecting the Depth of HRA-proxy Token Head for Region Learning. We report sin-

gle scale mIoU results of EMCR-proxy on LoveDA 

M 0 3 5 7 9 12 

mIoU(%) 53.45 55.22 54.52 53.4 52.59 51.20 
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Fig. 10. The distribution of F1 scores, precision, and recall across different classes. 

LabelBaseline MCA-proxy HRA-proxy EMRA-proxyImage(RGB)

Background Building Road Water Barren Agricultural Forest  

Fig. 11. Qualitative comparison of ablation study on LoveDA. We compare the influence of 

different network architectures on remote sensing image segmentation. Best viewed zoom in. 
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Fig. 12. The Impact of Parameter P on the Accuracy of MCA-proxy. 

Furthermore, our proposed method achieved the highest IoU and F1 values for most 

categories, particularly for categories with significant intra-class variations, such as wa-

ter, buildings, and forests. This validates the effectiveness of MCA-proxy for extracting 

multi-class category information and HRA-proxy for extracting complex geometric 

feature information. 

Fig. 13 provides some qualitative comparison examples. As observed, some methods 

perform well in rural scenes but poorly in urban scenes, such as Reproxy. In contrast, 

HRNet and EMRT perform well only in urban scenes. The proposed EMRA-proxy 

achieves the best results in both scenarios, as demonstrated by more accurate predic-

tions for large-scale objects (e.g., agriculture and forests) and small-scale multi-scale 

objects (e.g., roads and building) without the need for any post-processing to maintain 

accuracy along the boundaries. These results indicate that EMRA-proxy is more accu-

rate in segmenting edges between neighboring objects and preserves spatial details ef-

fectively. 

Comparison on the Potsdam Datasets. 

To verify the universality of the EMRA-proxy method, we conducted experiments 

on the ISPRS Potsdam dataset, and the results are shown in Table 7. Comparison to 

state-of-the-art methods on Potsdam test set.. Across all six categories, the EMRA-

proxy method demonstrates superior performance. Due to the high visual similarity be-

tween low vegetation and trees, which often appear in adjacent areas, many methods 

tend to misclassify low vegetation areas as trees. However, EMRA-proxy is able to 

accurately distinguish between them. This is attributed to the effectiveness of EMRA-

proxy's HRA-proxy and MCA-proxy, which excel at distinguishing complex categories 
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and geometric regions in images. EMRA-proxy combines CNN and Transformer ar-

chitectures to some extent, leveraging the strengths of both architectures. It achieves 

excellent performance in segmenting both small and large targets, particularly excelling 

in tasks such as segmenting impervious surface, building, tree, and car. 

We also compared these state-of-the-art methods on the ISPRS Vaihingen dataset. This 

dataset contains relatively fewer training samples, smaller image resolutions, and more 

small-scale objects, leading to inferior performance of most compared methods com-

pared to the Potsdam dataset. The results recorded in Table 8 show that EMRA-proxy 

has reached a new level, achieving an mIoU of 70.03% an OA of 87.14% and an mF1 

of 81.96%. This demonstrates the generality of our approach, which is effective for 

remote sensing image segmentation in various scenarios. 

DeepLabV3+Image HRNetbaseline PSPNet Segmenter RegProxy EMRA-proxy Ground Truth

Background Building Road Water Barren Agricultural

 

Fig. 13. Qualitative comparison with different methods on the LoveDA dataset. The top three 

rows are selected from the rural scene, and the bottom three rows are selected from the urban 

scene. Best viewed zoom in. 

Table 6. Comparison to state-of-the-art methods on LoveDA test set. 

method 
Publica-

tion 

IoU per category (%) 

mIoU 

(%) 

OA 

(%) 
mF1(%) 

Back-

groun

d 

Build-

ing 
Road Water Barren Forest 

Agricul-

ture 

FCN8S [13] CVPR15 42.60 49.51 48.05 73.09 11.84 43.49 58.30 46.69 66.07 62.63 
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DeepLabV3+ 

[51] 
ECCV18 42.97 50.88 52.02 74.36 10.40 44.21 58.53 47.62 68.10 64.60 

UNet [14] 
MICCAI1

5 
43.06 52.74 52.78 73.08 10.33 43.05 59.87 47.84 66.50 64.70 

UNet++ [52] DLMIA18 42.85 52.58 52.82 74.51 11.42 44.42 58.80 48.20 67.58 65.25 

PSPNet [53] CVPR17 44.40 52.13 53.52 76.50 9.73 44.07 57.85 48.31 67.85 65.20 

HRNet [54] CVPR19 44.61 55.34 57.42 73.96 11.07 45.25 60.88 49.79 67.80 65.50 

Segmenter 

[37] 
ICCV21 51.43 60.4 55.81 69.44 30.86 40.66 59.58 52.60 68.94 66.10 

RegProxy [47] CVPR22 50.96 60.24 56.62 70.79 28.63 42.31 59.96 52.79 70.23 68.54 

TrSeg [55] PRL21 50.08 59.23 48.83 61.52 28.67 39.48 49.60 48.20 66.41 64.43 

𝐼2𝐻𝑁 [56] TIP23 51.96 61.56 55.84 70.88 28.55 42.31 60.98 53.14 71.56 69.33 

EMRT [43] TGRS23 50.58 60.48 52.78 66.73 32.88 40.28 52.51 50.89 68.27 66.78 

Ours - 54.54 65.14 57.56 71.54 29.04 45.66 63.11 55.22 73.29 70.14 

Table 7. Comparison to state-of-the-art methods on Potsdam test set. 

method Publication 

IoU per category (%) 

mIoU 

(%) 

OA 

(%) 

mF1 

(%) 

Impervi-

ous Sur-

face 

Build

ing 

Low 

Vegeta-

tion 

Tree Car 
Back-

ground 

FCN8S [13] CVPR15 81.64 89.11 71.36 73.34 79.32 33.87 71.44 87.17 81.85 

PSPNet [53] CVPR17 82.68 90.17 72.72 74.00 80.56 35.86 72.67 87.90 82.75 

DeepLabV3+ 

[51] 

ECCV18 82.10 89.16 71.94 73.65 79.97 36.70 72.25 87.44 82.59 

TrSeg [55] PRL21 82.39 90.15 72.37 74.20 80.58 36.21 72.65 87.82 82.79 

RegProxy [47] CVPR22 83.10 90.50 72.50 73.87 81.76 38.31 73.34 88.15 82.78 

EMRT [43] TGRS23 83.27 90.22 72.59 74.26 82.34 39.04 73.62 88.12 83.59 

 Ours - 83.89 91.23 72.75 75.10 83.23 40.16 74.39 88.87 83.96 

Table 8. Comparison to state-of-the-art methods on Vaihingen test set. 

method 
Publica-

tion 

IoU per category (%) 

mIoU 

(%) 

OA 

(%) 

mF1(%

) 

Imper-

vious 

Surface 

Build-

ing 

Low 

Vegeta-

tion 

Tree Car 
Back-

ground 

FCN8S [13] CVPR15 78.11 84.82 63.78 75.08 53.38 38.05 65.54 85.86 77.98 

PSPNet [53] CVPR17 79.16 85.90 64.36 74.94 60.93 40.84 67.69 86.26 79.75 

DeepLabV3

+ [51] 

ECCV18 78.62 88.07 64.47 75.43 58.69 40.41 67.28 86.27 79.41 

TrSeg [55] PRL21 79.40 86.31 63.56 75.28 61.87 39.93 67.72 86.37 79.72 

RegProxy 

[47] 

CVPR22 80.20 86.52 64.90 74.14 66.71 40.45 68.82 86.10 81.54 

EMRT [43] TGRS23 80.44 86.35 64.87 76.28 66.84 43.98 69.79 86.97 81.38 

 Ours - 80.53 87.47 64.97 76.80 67.24 43.16 70.03 87.14 81.96 
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5 Conclusion 

In this paper, we propose a breakthrough semantic segmentation method EMRA-proxy 

for remote sensing images, specifically tailored for remote sensing land cover images, 

which is integrated with HRA-proxy and MCA-proxy. Our method first utilizes Vision 

Transformer to effectively capture contextual information and then exploits the intro-

duction of HRA-proxy to allow the interpretation of images into adaptive segments 

with homogeneous semantics, improving segmentation accuracy for targets with com-

plex geometric shapes. In addition, we use MCA-proxy to extract multi-category fea-

tures in complex images to further improve the segmentation effect of remote sensing 

images. The experiments on three public datasets demonstrate that our method signifi-

cantly outperforms existing CNN and Transformer-based methods in cases with com-

parable parameters, and shows robustness across various scenarios of remote sensing 

images. 
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