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Abstract. When using visual information to complement textual data for event 

extraction, current approaches primarily focus on processing text and images in-

dependently using different pre-trained models and then fusing the feature infor-

mation from different modalities. How- ever, pre-training and fine-tuning 

schemes have been extended to the joint domain of vision and language, leading 

to the development of vision-language pre-trained models (VLPs). These models 

are extensively trained on text and its corresponding images and then fine-tuned 

for vision-language tasks. In this paper, we propose a method for event detection 

in Chinese glyphs and VLP models. Since Chinese characters are hieroglyphs, 

some radical features of the trigger words play a certain and auxiliary role in the 

detection of text trigger words. We convert the text in the ACE Chinese corpus 

into text images, and transport the text and images into the Vision-Language 

model to obtain multimodal features for event detection. Experimental results on 

the ACE 2005 Chinese corpus show that our proposed model outperforms the 

SOTA baselines 

Keywords: VLP, Chinese glyphs, event detection 

1 Introduction 

Event extraction is a crucial area within the field of natural language processing, carry-

ing significant research importance. The fundamental benefit of event extraction tech-

niques is their ability to transform semi-structured and unstructured data into structured 

event descriptions, which can then facilitate the development of advanced downstream 

applications. Event extraction is typically divided into two sub-tasks: event detection 

and argument extraction. Event detection aims to recognize specific types of event trig-

gers and is a crucial step in event extraction. For example, the event detection system 

should be able to detect the “Attack” event triggered by “bite” and the “Attack” event 

triggered by “push down”. 

John (Artifact) came back (Traлsport) from Cuba (Origin). 

In this example, the task of event detection (i.e., trigger detection) involves identify-

ing “came back” as a trigger mention and assigning the event type "Move- ment" to this 

identified trigger mention. The task of argument extraction involves identifying the en-

tities “John” and “Cuba” as the arguments of this Movement event mention and assign-

ing the roles “Artifact” and “Origin” to them, respectively. 
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This paper focuses on Chinese event extraction. A Chinese sentence typically con-

sists of multiple Chinese characters. Chinese characters are pictographs, and the earliest 

Chinese oracle bones were derived from the shapes of objects to represent their mean-

ings. Commonly, a Chinese character consists of semantic- phonetic compounds and 

pictophonetic compounds. The former conveys the general meaning of the compound 

character, while the latter indicates the pronunciation of the compound character. In 

most cases, the semantic indicator refers to the radical under which the character is 

listed in dictionaries. Therefore, each Chinese character is an attempt to combine sound, 

image, and idea in a mutually reinforcing manner. These character features can some-

times be used as criteria for classifying the attributes of Chinese characters. For exam-

ple, many verbs will involve words related to human body parts because most actions 

are performed by humans. These features are integrated into the creation of Chinese 

characters. 

In light of this, we propose that the radical features of trigger words can also serve 

as supplementary features for trigger word recognition. Inspired by the characteristics 

of Chinese characters, we found that many trigger words in a specific event type share 

relatively similar radical features. In view of this, the radical features of trigger words 

may be used as auxiliary features to aid in detecting trigger words in the text. For ex-

ample, as shown in Fig. 1, the event trigger “推跌” (push) contains the radical of “扌” 

(hand), and the event trigger “拘捕” (arrest) contains the radical of “扌” (hand). These 

two event triggers have the same radical and refer to the same type of event. We hope 

that these glyph features will be helpful for recognizing trigger words. Unlike the time-

consuming and challenging process of searching for high-quality images for text, cre-

ating glyph-based images for Chinese text (e.g., screenshots) is easy. Therefore, it is 

easy and fast to create a multimodal event dataset of texts and their glyph-based images, 

derived from existing text-style event datasets. 

In this paper, we propose a multimodal event detection method VLGMM, which 

based on Chinese glyphs and a Vision-Language model. Specifically, we use various 

fonts to convert text into images, and then extract the image features through a bridge 

framework that establishes a connection between the top layers of unimodal encoders 

and each layer of the cross-modal encoder. This facilitates the efficient alignment and 

fusion of visual and textual representations at various semantic levels of pre-trained 

unimodal encoders in the cross-modal encoder. Finally, we fuse them with the textual 

features acquired through the dynamic multi-pooling mechanism to form the feature 

vectors for multimodal event detection. Experimental results on the ACE 2005 Chinese 

 

Fig. 1. Example of triggers with similar radicals 
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corpus demonstrate that our proposed model outperforms the baselines. In summary, 

the contribution of this paper lies in the following two points: 

• We propose a multimodal event detection method based on Chinese text and the 

glyph of Chinese characters. 

• We apply the Vision-Language model to the task of event detection. 

2 Related Work 

2.1 Text-based Event Detection 

Models based on neural networks have a strong ability to learn feature representation 

and have a broad range of applications. They can automatically extract event features 

from natural language without complicated feature engineering or extensive manual 

intervention. 

In Chinese event detection, Zeng et al. [1] used a bidirectional RNN to extract sen-

tence features and an RNN to extract lexical features. This approach helps mitigate the 

impact of Chinese word segmentation errors and greatly improves the performance of 

Chinese event detection. Wu et al. [2] proposed a neural network model based on the 

attention mechanism and semantic features. The model generated word vectors by com-

bining word vector information and the attention mechanism. 

In English event detection, Chen et al. [3] proposed a Dynamic Multi-Pooling Con-

volutional Neural Network (DMCNN), which can retain more valuable in- formation 

by retaining the maximum pooling value. Nguyen et al. [4] performed joint event ex-

traction using RNNs. The emergence of pre-trained language models, their ability to 

express semantic information has attracted the attention of researchers in the field of 

event extraction. Yang et al [5] proposed Pre-trained Language Models for Event Ex-

traction (PLMEE), which applied pre-trained language models to directly capture word 

features directly and achieved a large performance gain. 

2.2 Multimodal Event Detection 

Relying solely on text-based information for event detection will result in the loss of 

valuable visual information contained in images, which is crucial for event detection. 

Images may contain relevant information that is not mentioned in the text. 

However, the lack of multimodal event datasets hinders the development of multi-

modal event detection. Wang et al. introduced a new dataset for multimodal event de-

tection (MEED) [6] to address the existing gaps. The dataset defines event types and 

parameter roles for multimodal data and utilizes controlled text generation to produce 

text modalities based on visual event extraction datasets. Tong et al. [7] formed a mul-

timodal dataset using the ACE dataset, searching for images with high similarity to 

each news item in the ACE dataset on various news websites to form the corresponding 

picture dataset for each sentence in ACE. Li et al. [8] proposed a weakly aligned struc-

tured representation method WASE based on the text dataset ACE and image dataset 

imSitu. This method enables the information of the two modalities to be represented in 
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the same multimodal semantic space by converting the given sentences and pictures 

into a graph structure. 

Considering that most of the trigger words are verbs or nouns, which have relatively 

similar radicals in Chinese, we propose a method to convert each sentence in the ACE 

Chinese corpus into a text picture. Therefore, a multimodal dataset with a strict corre-

spondence between text and pictures can be easily formed. In current research on mul-

timodal event extraction, most researchers use separate models to process text and im-

ages to obtain feature representations before fusion, which ignores the alignment and 

fusion between different modalities, resulting in losing a lot of key information. In this 

paper, we use an efficient vision-language pre-trained model to obtain information fu-

sion between text and images for event detection. 

2.3 Multimodal Event Detection 

Following the taxonomy proposed by ViLT [9], most Vision-Language models are 

TWO-TOWER architecture. They feed last-layer representations of pre- trained uni-

modal encoders into the top cross-modal encoder and can be differentiated by the depth 

of the textual, visual, and cross-modal encoders. CLIP [10] and ALIGN [11] are repre-

sentative models that directly perform a shallow fusion (e.g., dot product) of last-layer 

representations of equally expressive pre-trained unimodal encoders in the cross-modal 

encoder. The remaining models perform deep fusion in the multi-layer transformer-

based cross-modal encoder but choose pre-trained unimodal encoders with varying lev-

els of expressiveness. Numerous works like VisualBert [12] and VL-BERT [13] adopt 

various types of deep vision models (e.g., Faster R-CNN [14], ResNet [15] or ViT) as 

their visual encoder to obtain region, grid, or patch features, and concatenate them with 

word embedding to feed into their top cross-modal encoder. Unlike the previous model, 

some researchers have proposed BRIDGETOWER[16] which build multiple bridge 

layers to connect the top layers of unimodal encoders for cross-modal fusion. This does 

not affect the interaction in the unimodal encoders and enables different semantic levels 

of visual and textual representations to interact thoroughly and mildly at cross-modal 

encoder. This allows for effective information fusion between text and images during 

the encoding process. 

3 Methodology 

3.1 Task Definition 

The task definition of event detection in this paper is following that of the ACE event 
extraction task. Formally, let the multimodal dataset represent as 𝐷 = {𝑆1, 𝑆2, … , 𝑆𝑛}, 

where 𝑛 is the number of event samples，𝑆𝑖 is the i-th sample. Let 𝑆𝑖 = {𝑡𝑒𝑥𝑡, 𝑖𝑚𝑔}, 

where 𝑡𝑒𝑥𝑡 represents the text and 𝑖𝑚𝑔 represents the image. We need to learn a model 
𝑓: 𝑆𝑖 → 𝑌(𝑆𝑖 ∈ 𝐷)  to classify each sample into the predefined categories 𝑌 = {0,1}, 
which is the ground-truth label of the sample 𝑆𝑖 (0 denotes non-trigger and 1 denotes 
trigger). 
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3.2 Bridge Module 

We use bert-base-chinese as text encoder, Vision Transformer as visual encoder and a 

cross encoder to fuse the two modalities. Hendricks et al. [19] examined various atten-

tion mechanisms used in current Transformers-based cross-modal encoders and found 

that the co-attention mechanism performed exceptionally well. This mechanism utilizes 

distinct parameters for each modality. As an example, in the textual component of the 

cross-modal encoder, the queries for each MSA block originate from the textual mo-

dality, while the keys and values stem from the visual modality. Consequently, the 

model adheres to this co-attention approach. We categorize the layer 𝑙𝑡ℎ cross-modal 

encoder as encompassing both a visual and textual section. Each section consists of an 

MSA block, a Multi-head Cross-Attention (MCA) module, and an FFN module. The 

model defines the interaction between layers as follows. 

𝑍𝑙
𝑇̃ = 𝑍𝑙−1

𝑇 (3) 

𝑍𝑙
𝑉̃ = 𝑍𝑙−1

𝑉 (4) 

𝑍𝑙
𝑉 , 𝑍𝑙

𝑇 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑙
𝑍(𝑍𝑙

𝑉̃ , 𝑍𝑙
𝑉̃), 𝑙 = 1, … 𝐿𝑍 (5) 

 The 𝑙𝑡ℎ layer of the cross-modal encoder produces output representations for both 

the visual and textual components, denoted as 𝑍𝑙
𝑉 and 𝑍𝑙

𝑇 , Meanwhile, the input to each 

 
Fig. 2. Structure of the VLGMM model. 
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part is represented by 𝑍𝑙
𝑉̃ , 𝑍𝑙

𝑇̃ . The cross-modal encoder comprises 𝐿𝑍  layers. In this 

study, we introduce multiple bridge layers to establish connections between the topmost 

layers of unimodal encoders and each layer of the cross-modal encoder. 

Zl
Ṽ = BridgeLayerl

V(Zl−1
V , VkWV + Vtype) (6) 

Zl
T̃ = BridgeLayerl

T(Zl−1
T , TkWT + Ttype) (7) 

where k is the index of layer representations of unimodal encoders. In this paper, 𝐿𝑉 =
𝐿𝑇 = 12, 𝐿𝑍 = 6. We incorporate the representations from the top 6 layers of unimodal 

encoders, specifically for k ranging from 7 to 12. The definition of bridge layer adopts 

the most straightforward approach. 

𝐵𝑟𝑖𝑑𝑔𝑒𝐿𝑎𝑦𝑒𝑟(𝑥, 𝑦) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑦) (8) 

 For each text and image pair, after being processed by the bridge module, we denote 

the text features output by the text encoder as 𝑓𝑡𝑒𝑥𝑡, the image features output by the 

visual encoder as 𝑓𝑖𝑚𝑎𝑔𝑒 , and the output of the cross-modal encoder as 𝐹𝑐 . ftext and 

𝑓𝑖𝑚𝑎𝑔𝑒  will be used to obtain external interaction features based on the attention mech-

anism in the Interaction Module. 

3.3 Text Module 

The process of extracting text features is represented by the dotted box in the upper-

left part of  Fig. 2. We use BERT to encode the representation of the input sentence. 

We denote the sentence as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑛), where 𝑥𝑖(1 ≤ 𝑖 ≤ 𝑛) represents 

the word vector representation of the 𝑖𝑡ℎ token in the sentence, and 𝑥𝑡 represents the 

word vector representation of the token that needs to be judged as the trigger word. 

Here, 𝑋 ∈ 𝑅𝑛∗ℎ, ℎ = 768. Then the words of the sentence are arranged based on the 

position of the current candidate trigger word in the sentence. 

The vector indicates that 𝑋 is divided into two parts, 𝑋1:𝑡−1 and 𝑋𝑡:𝑛,  and then pro-

cessed by the maximum pooling mechanism to obtain the two components 𝑓1:𝑡−1 and 

𝑓𝑡:𝑛 of the text feature as follows. 

𝑓1:𝑡−1 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑋1:𝑡−1) (9) 

𝑓𝑡:𝑛 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑋𝑡:𝑛) (10) 

 The above two parts are directly concatenated to obtain the text feature representa-

tion 𝐹𝑡 as follows, where.f1:t−1 ∈ Rh, Ft ∈ R2∗h, h = 768 

 

𝐹𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝑓1:𝑡−1, 𝑓𝑡:𝑛]) (11) 

3.4 Interaction Module 

The purpose of this module is to extract the interaction features and 𝐹𝑡2𝑣 and 𝐹𝑣2𝑡. The 

steps are as follows: For each text-and-image pair, the textual content is typically rep-

resented in the picture. The shared information of the graphic-text is more prominent, 
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and this information usually constitutes the core content of the event, requiring our 

focused attention. We extract this information using the attention mechanism. 𝑓𝑡𝑒𝑥𝑡 ob-

tained by the bridge module is denoted as (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑀−1, 𝑥𝑀 , 𝑥𝑀+1). The first and 

last parts of the vector representation (𝐶𝐿𝑆 and 𝑆𝐸𝑃) to obtain the text sequence vector 

representation 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑀−1, 𝑥𝑀), where x0  represents the textual semantics. 

The obtained 𝑓𝑖𝑚𝑎𝑔𝑒  representation is denoted as (𝑚0, 𝑚1, 𝑚2, … , 𝑚𝑁−1, 𝑚𝑁), remove 

the identifier [𝑐𝑙𝑎𝑠𝑠]  to get the image sequence vector representation 𝑀 =
(𝑚1, 𝑚2, … , 𝑚𝑁−1, 𝑚𝑁), m0 represents the text semantics. The text semantic vector x0 

is utilized as the query vector, while the vector representation Mof the picture sequence 

serves as the key vector and the value vector. The text-guided image feature 𝐹𝑡2𝑣 is 

obtained through the multi-head attention mechanism. Similarly, the image vector rep-

resentation 𝑚0 is used as the query vector, and the vector representation 𝑋 of the text 

sequence is used as the key vector and the value vector to obtain the image-guided text 

feature Fv2t through the multi-head attention mechanism. The formula is as follows. 

𝐹𝑡2𝑣 = 𝑀𝐻𝐴𝑇𝑇(𝑥0, 𝑀, 𝑀) (12) 

𝐹𝑣2𝑡 = 𝑀𝐻𝐴𝑇𝑇(𝑚0, 𝑋, 𝑋) (13) 

where 𝑀𝐻𝐴𝑇𝑇  represents multi-head attention mechanism, 𝑥0, 𝑚0 ∈ 𝑅ℎ, 𝑋 ∈
𝑅𝑀∗ℎ , 𝑋 ∈ 𝑅𝑁∗ℎ, 𝐹𝑣2𝑡 , 𝐹𝑣2𝑡 ∈ 𝑅ℎ, ℎ = 768. 

3.5 Classifier Module 

The text feature 𝐹𝑡, the interaction features 𝐹𝑣2𝑡 and 𝐹𝑡2𝑣 and the multimodal feature 𝐹𝑐 

are concatenated into a new multimodal feature 𝐹𝑚 as follows. 

𝐹𝑚 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝐹𝑡 , 𝐹𝑣2𝑡 , 𝐹𝑡2𝑣, 𝐹𝑐]) (14) 

To calculate the confidence level of each candidate trigger word, the resulting mul-

timodal feature vector is classified by Softmax as follows. 

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠𝐹𝑚 + 𝑏𝑠) (15) 

where Ws is the learnable parameter and bs is bias unit, in order to prevent the occur-

rence of over-fitting, we use the dropout operation before the fully connected layer, in 

addition, we use the cross-entropy loss function as the loss function. where yî is the true 

value of the class of the sample 𝑖, yi is the forecast value. 

𝐿 = − ∑ 𝑦𝑖̂𝑙𝑜𝑔(𝑦𝑖)

𝑖

(16) 

4 Experimentation and Analysis 

4.1 Datasets and Measure Metrics 

In this paper, we use the ACE2005 Chinese dataset and on this basis, text-based images 

are generated to form the multimodal dataset required for our experiments. In the ACE 
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2005 Chinese corpus, the trigger words are mostly verb or noun. ACE annotates 8 types 

and 33 sub-types (e.g., Attack, Die, and Start-Position) for event mentions that also 

correspond to the types and sub-types of the event triggers. There are 6694 sentences 

in ACE Chinese corpus, in which some sentences contain one or more triggers while 

others have not a trigger word in them. The training set, validation set and test set are 

shown in Table 1. We report the micro-average Precision (P), Recall (R) and F1-score 

(F1), following the standards defined in [18]. A trigger is correctly identified if its po-

sition in the document matches a reference trigger and an event type is correctly deter-

mined if the trigger's event type and position in the document match a reference trigger. 
In this paper, we set the learning rate to 5e-6, the maximum length of sentence is 

128, and the heads of multi-head attention is set to 8. 

4.2 Results and Analysis 

To study the effects of our proposed model on multimodal event detection, we com-

pared it with the following strong baselines. The results of comparison with the exper-

imental results are shown in Table  2. 

• DRMM [7]: The model treats the event detection task as a sequence annotation task. 

using an alternate dual attention mechanism to enable textual and image representa-

tions to complement each other, aggregating features from both modalities. 

• 𝑪𝒐𝒏𝒄𝒂𝒕𝐭𝐞𝐱𝐭−𝐢𝐦𝐚𝐠𝐞: Using ResNet for extracting image features and DMBERT for 

extracting text features, and then fuses them for multimodal event extraction. 

• ViLT [9]: A low parameter count, fast training, transformer-based implementation 

of a visual language pre-training model. 

• CLIP [19]: A visual language pre-training model based on contrastive learning,  

• FLAVA [20]: Using the hidden state of the unimodal encoder, a multimodal encoder 

is designed for modal fusion.  

• VLGMM-interaction: By removing the interaction module to demonstrate the impact 

of information interaction at the highest level of unimodal coding on multimodal 

event detection. 

• VLGMM-bridge: By removing the bridge module, we aim to illustrate the impact of 

information interaction before the unimodal coding at the top layer on multimodal 

event detection. 

• VLGMM-interaction-bridge: This indicates that the model relies solely on textual modal-

ities for event extraction and utilizes the sentence-level feature representation of 

DMBERT [21]. 

 

Event type Example 

Life Be-Born, Marry, Divorce, Injure, Die 

Movement Transport 

Transaction Transfer-Money, Transfer-Ownership 

Business Start-Org, Merge-Org, Declare-Bankruptcy, End-Org 

Conflict Meet, Phone-Write 

Personal Start-Position, End-Position, Nominate, Elect 

Justice Execute, Release-Parole, Arrest-Jail, Fine, Pardon, 

Convict, Acquit, Trial-Hearing, Charge-Indict, Ap-

peal, Sentence, Sue, Extradite 

Table 1. Statistics of the dataset. 

Category Train Dev Test 

Number of sentences 5670 359 665 

Number of events 2776 191 365 

 

Table 1. Statistics of the dataset. 

Category Train Dev Test 

Number of sentences 5670 359 665 

Number of events 2776 191 365 
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Compared to the DMBERT, VLGMM proposed in this chapter improves the preci-

sion, recall, and F1 score by 2.7, 3.2, and 3.0, respectively. This result demonstrates the 

effectiveness of the image modality based on Chinese glyphs. 𝐶𝑜𝑛𝑐𝑎𝑡𝑡𝑒𝑥𝑡−𝑖𝑚𝑎𝑔𝑒  is our 

previous work, which obtained multimodal features for event detection with a simple 

fusion of text features extracted by DMBERT and image features extracted by ResNet. 

Compared with 𝐶𝑜𝑛𝑐𝑎𝑡𝑡𝑒𝑥𝑡−𝑖𝑚𝑎𝑔𝑒 , VLGMM improves the precision, recall, and overall 

F1 score by 0.4, 1.1, and 0.8, respectively. This demonstrates the effectiveness of the 

fusion method proposed in this chapter. 

It is noteworthy that VLGMM achieves the best performance on two classification 

tasks compared to the current state-of-the-art visual language pre-training models. All 

three models ViLT, CLIP and FLAVA, belong to the type of bimodal structure sum-

marized in the previous sections and all utilize the last layer of the output state of a 

unimodal encoder to fuse the information between the two modalities. Among them, 

VLGMM improves the F1 value by 2.2 on the event detection task compared to ViLT. 

VLGMM enhances the F1 value by 1.8 on the task in this paper compared to the CLIP 

model, which is based on comparative learning and achieves multimodal representation 

by maximizing the cosine similarity of the positive samples. VLGMM boosts the F1 

Table  2. Comparison of experimental results. We used the t-test with a 95% confidence in-

terval for the significance test and all improvements of our model over Concattext−image are 

significant (p <0.01). 

Model P R F1 

CAEE 84.0 68.2 75.3 

DRMM 74.8 80.4 77.4 

ViLT 78.4 77.5 77.9 

CLIP 80.0 76.6 78.3 

FLAVA 82.1 77.4 79.6 

Concattext-image 81.3 77.5 79.3 

VLGMM-interaction 81.5 78.0 79.7 

VLGMM-bridge 82.7 76.8 79.6 

VLGMM-interaction-bridge 79.0 75.3 77.1 

VLGMM 81.7 78.6 80.1 

Table 3. Experimental effect of different font types. 

Fonts P R F1 

Original Song 81.7 78.5 80.1 

Cursive 80.3 76.9 78.6 

Clerical 81.6 76.5 79.0 

Running 79.9 77.3 78.5 
Traditional 82.6 77.1 79.8 
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value by 1.8 on this paper's task compared to the unimodal image and textual represen-

tations using the multimodal Transformer encoder with projection. In comparison to 

the FLAVA model, which employs cross-attention to merge two modalities on the pro-

jected single-model image and text representation using the multimodal Transformer 

encoder, VLGMM enhances the F1 value by 0.5 on the task in this paper. These afore-

mentioned multimodal models all adhere to the two-tower structural model, where the 

fusion of the two modalities occurs solely at the final layer of the single-modal encoder. 

While VLGMM model fuses the features of different coding layers through the cross-

modal encoder before the last layer of the unimodal encoder, which can efficiently align 

and fuse the visual and textual representations of different semantic levels in the cross-

modal encoder. In addition, the VLGMM model is designed with an interaction module 

that enables text-only features and image-only features, output from the unimodal en-

coder, to interact at the last layer. This preserves the original unimodal features without 

noise interference. Comparison results with these state-of-the-art visual language pre-

training models show that the method proposed in this paper captures important infor-

mation in text and images more efficiently, resulting in a superior joint multimodal 

representation. 

In order to demonstrate the effectiveness of the Interaction layer and Bridge layer, 

we conducted a set of ablation experiments, the results of which are shown in the Table  

2 for VLGMM-interaction and VLGMM-bridge If we rely solely on the bridge layer or the 

interaction layer, the performance is not as good as when the two are combined.  

We also separately experimented with five different fonts. The experimental results 

for the different fonts are shown in Table 3, experimental results on various fonts 

demonstrated the effectiveness of glyph information for event detection. 

4.3 Ablation Study 

Since both unimodal encoders possess 12 layers, the number of cross-modal layers can 

vary from 1 to 12.  illustrates the outcomes of employing varying cross-modal layer 

counts in the Bridge Module. Notably, we observed that increasing the number of cross-

modal layers does not uniformly enhance performance, potentially due to: 

 
Fig. 3. Analysis on different layers of cross-model layer 
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• more cross-modal layers are more difficult to train and are more data-hungry. 

• unimodal representations of top layers are beneficial to cross-modal alignment and 

fusion, while unimodal representations of bottom layers may be less useful and even 

detrimental. 

 From the table, it can be seen that the best results were achieved using 6 layers of 

cross-modal connections, and 8 results were better than those without cross-modal con-

nections VLGMM-bridge. It further illustrates that the bridge layers can facilitate effec-

tive alignment and fusion between different semantic levels in the cross-modal encoder, 

integrating unimodal representations. Conclusion 

5 Conclusion 

In this paper, we propose a Chinese event detection model that combines cross- modal 

pre-training with glyph features. The model not only performs guided interaction of 

inter-modal information through an attention mechanism, allowing the model to focus 

on the more salient information shared by the graphic, but also connects the top layer 

of the unimodal encoder through a bridging layer. Experiments on the ACE corpus 

validate the effectiveness of the model proposed in this chapter. Our future work will 

focus on introducing different types of glyphs to represent trigger and boost event ex-

traction 
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