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Abstract. Production and transportation are two essential activities in supply 

chain management, decision-makers strive to enhance the operational efficiency 

of these two stages to maximize business interests. In this paper, we consider the 

integrated distributed permutation flow shop problem (IDFSP) and multiple com-

partments vehicle routing problem with simultaneous deterministic delivery and 

fuzzy pickup (IDFSP_MCVRPSDDFP). The IDFSP_MCVRPSDDFP aims to 

simultaneously minimize cost and carbon emissions caused by both production 

and transporation. To address the IDFSP_MCVRPSDDFP, we propose a hyper-

heuristic ant colony optimization algorithm (HH_ACO). The HH_ACO is com-

posed of two main components: a hyper-heuristic algorithm (HHA) and an ant 

colony optimization algorithm (ACO). To enhance the efficiency of local search, 

we design six heuristic operations within the low-level heuristics (LLHs). Mean-

while, the ACO is utilized to enhance the performance of the high-level heuristics 

(HLS) within the HHA. Experimental simulations and data analysis have vali-

dated that HH_ACO can effectively solve IDFSP_MCVRPSDDFP. 

Keywords: distributed permutation flow shop; multi-objective optimization; 

hyper heuristic algorithm. 

1 Introduction 

Production and transportation play crucial roles in the supply chain system. Studies 

have shown that by effectively addressing the integrated production and transportation 

scheduling problem (IPTSP), enterprises can reduce operational costs by 3% to 20%. 

Therefore, for enterprises to maximize overall benefits, it is necessary to optimize the 

IPTSP. 

Currently, scholars have conducted relevant research on the IPTSP. The investiga-

tion can be classified into two groups. The first type is the integrated scheduling prob-

lem of single-factory production and transportation. Moons et al. [1] conducted a liter-

ature review on integrated scheduling problems. From this article, it can be seen that 

there have been many studies on the integration problem of single factory production 

and transportation in existing literature. For example, Karaoglan et al. [2] proposed a 

branch-and-price algorithm to solve the integrated scheduling problem of single-factory 
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production and transportation, with the objective of minimizing the makespan.Guo et 

al. [3] addressed the integrated scheduling problem with the objective of minimizing 

the total cost. They designed a hybrid two-layer algorithm that combines the memetic 

algorithm to solve this problem. The proposed algorithm's effectiveness was validated 

through experimental simulations. Zou et al. [4] utilized an improved genetic algorithm 

to address the integrated scheduling problem of single-machine production and trans-

portation, aiming to minimize order delivery time. The second type is the integrated 

scheduling problem of distributed production and transportation.Yang et al. [5] used 

VND algorithm and iterative greedy algorithm based on product destruction to solve 

the integrated scheduling problem of distributed flexible assembly lines and transpor-

tation, with the optimization goal of minimizing the total cost of distribution and delay. 

Although scholars have conducted relevant research on the IPTSP, existing literature 

has not taken into account other situations that exist in real vehicle transportation; For 

example, vehicles need to complete simultaneous pick-up and delivery tasks at the cus-

tomer's location, where customer demands are diverse and demand is fuzzy. In sum-

mary, this article extends the traditional integrated distributed permutation flow-shop 

problem and transportation problem. During the production phase, the study addresses 

distributed production in factories, concentrating on the allocation of jobs to factories 

and the determination of the processing sequence for each job within the respective 

factory. In the transportation phase, simultaneous pick-up and delivery of customer de-

mands are considered, introducing fuzzy requirements for pick-up tasks. Additionally, 

this study takes into account the characteristic of customers having diverse demands. 

Therefore the integrated distributed permutation flow shop problem (DFSP) and multi-

ple compartments vehicle routing problem with simultaneous deterministic delivery 

and fuzzy pickup (IDFSP_MCVRPSDDFP) studied in this article has profound theo-

retical value and practical significance. 

In terms of solving, IDFSP_MCVRPSDDFP as a complex combinatorial optimiza-

tion problem is NP-hard, because it can be reduced to an NP-hard problem DFSP [6]. 

Employing intelligent algorithms allows obtaining satisfactory solutions within a rela-

tively short time, thereby providing decision-makers with viable options. The hyper-

heuristic algorithm (HHA) is a novel type of intelligent optimization algorithm charac-

terized by a two-layer structure. It comprises a high-level strategy (HLS) that manipu-

lates or manages low-level heuristics (LLHs). During the iterative process of HHA, the 

HLS dynamically controls LLHs to continuously combine into new heuristic se-

quences. This enables exploration of different regions within the problem solution 

space. The Ant Colony Optimization (ACO) algorithm was initially introduced by the 

Italian scholar Marco Dorigo in the 1990s [7], primarily for solving the Traveling Sales-

man Problem (TSP). Through a positive feedback mechanism, the algorithm can 

achieve satisfactory results in a short time.Based on the superior performance of HHA 

and ACO algorithms, this paper proposes a hyper-heuristic ant colony optimization 

(HH_ACO) algorithm to solve IDFSP_MCVRPSDDFP. 

The remainder of this study is as bellow: The problem description and mathematical 

modeling are described in Section 2. The proposed algorithm is introduced in Section 

3. Next, the experimental results are discussed in Section 4. In the end, Section 5 gives 

the conclusions of this study. 
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2 Problem Description and Mathematical Model 

2.1 Problem Description 

The IDFSP_MCVRPSDDFP problem studied in this paper can be described as follows: 

allocating N jobs to F factories with identical configurations but located in different 

positions for processing. After the completion of job processing, they are transported 

to customers by the vehicles of each factory. The entire process is divided into produc-

tion and transportation stages. In the production stage, each factory has the same con-

figuration, including M machines and multiple vehicles. All jobs can be assigned for 

processing in any factory, but once a job is assigned to a specific factory, it cannot be 

assigned to any other factory. Jobs need to be processed on each machine in the same 

order. At the same time, each machine can process only one job, and different jobs are 

independent of each other. In the transportation stage: after all products have been pro-

cessed, the vehicles from each factory transport the products to customers. Each vehicle 

has multiple compartments to store different types of products. While serving custom-

ers, each customer not only has delivery tasks but also needs to complete pickup tasks 

at their location. After completing all the delivery and pickup tasks for customers, the 

vehicle returns to the factory from which it originally departed, awaiting the next trans-

portation task. 

In real-life situations, the delivery demand of customers is known before the vehicles 

arrive, but the pickup demand is typically uncertain. Customers often provide an ap-

proximate range for their pickup demand based on experience. For example, a custom-

er's pickup demand may be in the range of 2kg to 4kg, with the most likely value being 

3kg. The actual pickup demand can only be determined when the vehicle arrives at the 

customer's location.Therefore, this paper introduces a fuzzy variable 

( )1, 2, 3,, ,ip ip ip ipq q q q= to represent the fuzzy pickup demand for the p  product of cus-

tomer i , where 1, 2, 3,, ,ip ip ipq q q  denotes the lower bound, most likely value, and upper 

bound of a triangular fuzzy number, respectively. 

Due to the operation of machines in the production stage and the travel of vehicles 

in the transportation stage, corresponding costs and carbon emissions are generated. 

Therefore, the total cost should be equal to the sum of the costs generated in the pro-

duction and transportation phases. Similarly, the total carbon emissions should be equal 

to the sum of the carbon emissions generated by factory machines and vehicle travel. 

Thus, this paper aims to provide decision-makers with a set of solutions that balance 

both costs and carbon emissions. 

At the same time, this paper satisfies the following assumptions: 

(1) Each job can only be assigned to one factory. 

(2) Each factory is assigned at least one job. 

(3) Each machine can process only one job at the same time. 

(4) The machines operate continuously without interruptions. 

(5) The vehicles satisfy fuzzy chance constraints during the process of serving 

customers. 
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2.2 Mathematical Model 

The mathematics involved in this paper is shown in Table 1 . 

Table 1.  Symbol definition and description of the IDFSP_MCVRPSDDFP 

Indexes Description 

,i j  Index of job (or customer),  , 1,2, ,i j N  
m  Index of machine,  1,2, ,m M  

f  Index of factory,  1,2, ,f F  

k  Index of vehicle,  1,2, ,k K  
p  

 
Index of job category (or vehicle compartment),  1,2, ,p P  

Parameters Description 

,i mp  The processing time of job i on machine m. 

,i mC  Makespan of job i on machine m. 

fC  Makespan of factory f. 

ipq  The fuzzy collection quantity for product type 𝑝 of customer i  

ipd  The determined delivery quantity for product type p of customer i  

k

pQ  Maximum load capacity of compartment p for vehicle k 

k

ipQ  
The load capacity of compartment p of vehicle k when leaving cus-

tomer i 

k

ipQ  
The fuzzy remaining loading capacity of compartment p when ve-

hicle k departs from customer i . 

W  Vehicle weight 

iw  Load capacity of the vehicle after leaving customer i 

ijd  Distance from customer i  to customer j  

ijv  The speed of the vehicle from customer i  to customer j  

Set Description 

  Total sequence of jobs ( ) 1,2, ,l l N = =  

f  The sequence of jobs in factory f , ( ) 1,2, ,f f fl l n = =  

k

f  
The sequence of jobs carried by vehicle k  from factory f , 

( ) 1,2, ,k k k

f f fa a n = =  

'k

f  
The sequence of customers served by vehicle 𝑘  from factory 𝑓 , 

( ) ' ' 1,2, ,k k k

f f fb b n = =  

Variables Description 

ijkx  
The variable is 1 when vehicle 𝑘 travels from point 𝑖 to 𝑗, otherwise 

0 

The mathematical model established based on the above description is as follows: the 

completion time of job ( )f l  in the production stage is calculated as follows: 
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( )  (1),11 ,1

, 1,2, ,
ff

C p f F
=    (1) 

 
( ) ( )    ( ),1,1 1 ,1

, 1,2, , , 2,3,
ff f

l fl l
C C p f F l n  −

= +     (2) 

 
( ) ( ) ( )    (1),1 , 1 , 1

, 1,2, , , 2,3,
ff f

mi m
C C p f F m M  −

= +     (3) 

 
( ) ( ) ( ) ( )  ( )

     

, 1 , , 1 ,
max , ,

1,2, , , 2,3, , 2,3,

f f f fl m l m l m l m

f

C C C p

f F m M l n

   − −
= +

   
 (4) 

 
( )( )

 
,

, 1,2,
f f

f n M
C C f F


=    (5) 

Therefore, the production cost TPC  and the carbon emissions TEC  during produc-

tion phase are calculated as follows: 

    max , 1,2, ,fTPC C f F=     (6) 

  1 ,

1 1

1,2, ,
fnM

f i m

m i

PEC C p f F
= =

=     (7) 

  2 ,

1 1

1,2, ,
fnM

f f i m

m i

SEC C M C p f F
= =

 
=   −    

 
  (8) 

 ( )
1

F

f f

f

TEC PEC SEC
=

= +  (9) 

In the above equations, 
fPEC  and fSEC  represent the energy consumption during 

machine processing and idle state, respectively. 1C  and 2C  denote the carbon emission 

coefficients per unit of processing time and idle time for the machine, respectively. In 

this paper, they are set as 1.1 and 0.7, respectively. 

In the transportation stage, due to the fuzzy nature of customer pickup demands, 

capacity constraints are more complex compared to constraints under deterministic de-

mands. Therefore, this paper constructs a fuzzy chance-constrained programming 

model based on fuzzy credibility theory to address the fuzzy pickup demands of cus-

tomers. Therefore, the models for vehicle load constraints and fuzzy chance constraints 

during the transportation stage are as follows. 

Assuming a certain vehicle k  has already determined the sequence of customers to 

be served as  , ,s t u , the decision variable ujkx  influences whether the vehicle can pro-

ceed to the next customer point j  after serving the customers in the sequence u . When 

1ujkx = , the vehicle k  proceeds to serve customer j after serving customer u , other-

wise, it returns to the factory. The specific equation is as follows : 
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( )1,

0, ( )

k

r jp up

ujk
k

r jp up

C q Q
x

C q Q





   
= 

  

 (10) 

In Equation (10), ( )r jp upkC q Q   represents a feasibility measure jp upkq Q   of a 

triangular fuzzy number, and its calculation method refers to the literature [8] where 

 0,1rC  , and a larger rC  indicates a greater chance for the vehicle to serve the next 

customer j . To design the capacity constraint under fuzzy demand, we introduce the 

decision-maker's preference value  . If ( )k

r j upC q Q    , the vehicle continues to 

serve the next customer point j  and continues to assess the remaining unserved cus-

tomers. Otherwise, the vehicle returns to the factory, and another vehicle is dispatched 

to assess the unserved customers. The preference value α reflects the decision-maker's 

risk attitude. A smaller α indicates that the decision-maker is more inclined to take the 

risk of potential failures to fully utilize the remaining space of the vehicle. Conversely, 

a larger   indicates that the decision-maker would rather dispatch an additional vehi-

cle to continue serving the remaining customers than take the risk of failure. 

At the same time, to more accurately reflect the relationship between the fuzzy 

pickup demand of the next customer point j  and the remaining space in the compart-

ment, the preference value α in Equation (10) is set to an adaptive value as specifically 

shown in Equation (11). To determine the change in compartment capacity during ve-

hicle transportation, the expected value ( )E  of fuzzy numbers is introduced, calcu-

lated as shown in equation (12). 

 
( )k

up jp

j k

p

E Q d

Q


−
=  (11) 

 ( ) 1, 2, 3,2

4

i i i

i

q q q
E q

+ +
=  (12) 

Therefore, the transportation cost TTC and the carbon emissions of vehicles during 

transportation TFU in the transportation stage are calculated as follows: 

 3

1 1 1 1

f f fn n KF

f ij ijk

f i j k

TTC C K d x
= = = =

 
=  +  

 
   (13) 

 2/ ( ) .iij ij ij ij ij ijFU hMV d v d W w d v  = + + +  (14) 

 
1 1 1 1

f f fn n KF

ijk ij

f i j k

TFU x FU
= = = =

=  (15) 
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In Equation (13), 3C  represents the fixed dispatch cost of the vehicle. The value 

adopted in this paper is 180 yuan/vehicle. In Equation (14), ijFU  represents the carbon 

emissions of a vehicle when traveling from point i  to point j , and its parameter values 

are referenced from literature [9]. In the IDFSP_VRPSPDFD problem addressed in this 

study, the optimization objectives are to minimize the total cost ( )TC  and minimize 

the total carbon emissions ( )TE , calculated as follows: 

     = Min TC TPC TTC+  (16) 

   Min TE TFU TEC= +  (17) 

3 HH_ACO for IDFSP_MCVRPSDDFP 

HH_ACO is a hybrid algorithm that combines ACO and HHA. In this study, the HHA 

algorithm is employed to explore the solution space of the IDFSP_MCVRPSDDFP 

problem, while the ACO algorithm is utilized to enhance the performance of the HHA 

algorithm. In HHA_ACO, the combination sequence of six neighborhood operations is 

optimized using the ACO algorithm to obtain a high-level population. The individuals 

in the high-level population serve as independent heuristic algorithms to control the 

low-level individuals for local search, thereby achieving exploration of the solution 

space.The structure diagram of HH_ACO is shown in Fig. 1. 

ACO:optimize the 

search sequence

HHA

Solution space of 

IDFSP_MCVRPSDDFP

HH_ACO

HLS:a search sequence formed 

with heuristics operations

LLHs:a set of heuristics 

operations

 

Fig. 1. Structure diagram of HH_ACO 

3.1 Encoding and Decoding 

In HH_ACO, each individual in the lower-level population represents a feasible solu-

tion to the original problem. How the solution is represented is a critical aspect of the 

optimization algorithm. 

In this study, a random encoding approach is utilized to generate the total job se-

quence  , which is subsequently evenly allocated among all factories.Using a two-
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dimensional array, the components required for processing at each factory are stored. 

This array consists of F  rows, with each row containing a portion of the job sequence. 

The sequence of jobs represents the processing order at the factory. Simultaneously 

calculating the cost and carbon emissions of the products in the manufacturing and 

transportation phases provides the fitness of the low-level individual. 

For the high-level population, each individual is composed of six different LLHs. 

By sequentially applying the LLHs of the high-level population to the individuals of 

the low-level population, the change in individual objective values represents the fit-

ness of that high-level individual. 

3.2 LLHs 

In order to search for higher-quality solutions in the solution space of the 

IDFSP_VRPSPDFD problem, this study designed six LLHs based on the sequence 

( ), , k

f f   . The designed LLHs are as follows: 

LLH1: Randomly select two points from sequence   and swap the data of these 

two points. 

LLH2: Randomly select two points from sequence   and insert the point from the 

rear position before the point in the front position. 

LLH3: Randomly select two points from sequence   and reverse the data between 

these two points. 

LLH4: Randomly select one point from sequence   and place it at the first or last 

position of the sequence. 

LLH5: Randomly select three points from sequence   and move the data of the last 

two points to the position before the first point. 

LLH6: Randomly select two points from sequence   and move the data of these 

two points to the first two positions of the sequence. 

Taking sequence [6,3,2,1,4,5] =  as an example, the six designed operations are 

shown in the following Fig. 2. 

Before

After

6 3 2 1 4 5 6 3 2 1 4 5 6 3 2 1 4 5

6 32 14 5 6 3 2 14 5 6 214 53

LLH1 LLH2 LLH3

Before

After

6 3 2 1 4 5 6 3 2 1 4 5 6 3 2 1 4 5

6 214 53

LLH4 LLH5 LLH6

63 2 1 4 5 6 3 214 5

 

Fig. 2. LLHs on [6,3,2,1,4,5] =  
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3.3 Algorithm Procedure 

Based on the above description, the flow of the HH_ACO algorithm is shown in Fig. 

3. In this paper, the population size is set to popsize . The length of each high-level 

individual consists of n  low-level heuristic operations. If max gen  is set as the termi-

nation condition, then the time complexity of HH_ACO is (max )O gen n popsize  . 

Start

Initialize HH_ACO algorithm parameters. 

Initialize population in the lower-level problem 

domain.

Evaluate the population in the lower-level 

problem domain. Sample to generate the 

population in the higher-level strategy domain.

Generate new solutions based on the low-level 

heuristic operations within the high-level 

individuals.

Does the old solution

 dominate the new solution?

Replace the old solution with the new solution.

Have both populations

 been evaluated?

Update the pheromone matrix in the HH_ACO 

algorithm using the elite individuals from the 

higher-level strategy domain.

Update the Pareto archive.

Is the termination condition met?

Retain the old solution.

Execute all subsequent heuristic operations in 

the current high-level strategy domain 

individuals.

Output the information from the Pareto archive.

End

Y

N

Y

Y

 

Fig. 3. HH_ACO flow chart 
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4 Experiment Analysis 

All algorithms designed in this paper were implemented or reproduced using MATLAB 

R2022b. The computational experiments are executed on a PC with Inter(R) Core (TM) 

i5-12400 CPU @ 2.5 GHz processor and 16G of RAM under Microsoft Windows 10 

OS. At the same time, employ the approach from references [10-12] to generate the 

dataset for this study. The parameter settings for HH_AC0 are as follows: population 

size 40;popsize =  pheromone heuristic factor 0.1; =  pheromone evaporation coef-

ficient 0.9; =  pheromone intensity 1.Q =  

To validate the effectiveness and superiority of the proposed HH_ACO, we selected 

well-established and widely used multi-objective optimization algorithms, namely 

MOEA/D [14], NSGAII [13] and SPEAII [15] for comparison. To ensure fairness in 

the experiments, all algorithms were configured with the termination criterion set as 

0.1N M F s   and each instance was run 20 times independently. 

Simultaneously, Inverted Generational Distance (IGD)[14] and Hypervolume (HV) 

[17] are used to evaluate the effectiveness of the proposed algorithm. IGD and HV are 

metrics used to assess the quality of the non-dominated solution set obtained by algo-

rithms, accounting for both the convergence and the distribution of the achieved non-

dominated solutions. A smaller IGD and a larger HV indicate better distribution and 

diversity of the results obtained by the algorithm. The calculation methods for IGD and 

HV are shown in Equations (18) and (19), respectively: 

 

_

1

_

num PF

ii
d

IGD
num PF

==


 (18) 

 ( )( , ) ,

P

p P

HV P Z volume p Z


 
=   

 
 (19) 

In the equation (18), d  represents the distance from the points on the reference so-

lution set to the solutions obtained by each algorithm, _num PF  represents the number 

of points in the reference solution set. Equation (19) represents the sum of the areas 

formed between the solutions obtained by the algorithm and the reference point. Here, 

P  denotes the solutions obtained by each algorithm, and Z  is the reference point, 

which is set to (1.0, 1.0) in this paper. The obtained results are shown in Table 2. For 

clarity, the best value in each row is highlighted in bold. 

As shown in Table 2, it is clear that the proposed HH_ACO algorithm can achieve 

better results on datasets of different scales. This is because conventional multi-objec-

tive intelligent algorithms use a fixed sequence of local search operations during itera-

tive loops to explore the solution space, without considering the impact of the operation 

sequence on search capability. This limitation affects the algorithm's ability to search 

the solution space effectively. 

In HH_ACO, the ACO component adopts a high-level strategy to learn the heuristic 

operation sequences from high-quality individuals and dynamically mixes various low-
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level heuristic operators to update the population. This approach allows for effective 

exploration of the solution space, enabling the discovery of high-quality solutions in 

different regions of the solution space and enhancing the algorithm's search capability. 

Consequently, the HH_ACO algorithm performs exceptionally well across test cases of 

varying scales. 

Table 2. Comparison of IGD and HV of HH_ACO, NSGA-II, MOEAD, and SPEAII. 

, ,F M N  
SPEAII NSGA-II MOEAD HH_ACO 

IGD HV IGD HV IGD HV IGD HV 

2,10,100 0.106 0.804 0.278 0.442 0.413 0.27 0.106 0.764 

3,20,100 0.224 0.577 0.225 0.539 0.396 0.268 0.102 0.83 

4,10,100 0.13 0.602 0.209 0.502 0.343 0.279 0.103 0.767 

5,10,100 0.112 0.814 0.302 0.493 0.439 0.236 0.089 0.781 

2,5,20 0.177 0.628 0.265 0.488 0.379 0.283 0.072 0.861 

3,5,20 0.167 0.678 0.22 0.574 0.381 0.298 0.138 0.802 

2,5,50 0.142 0.705 0.301 0.44 0.424 0.235 0.069 0.857 

3,5,50 0.183 0.661 0.237 0.589 0.406 0.308 0.122 0.856 

4,5,50 0.208 0.646 0.237 0.549 0.454 0.243 0.107 0.869 

6,10,72 0.091 0.841 0.347 0.461 0.524 0.241 0.101 0.798 

5,10,75 0.186 0.608 0.211 0.559 0.315 0.366 0.095 0.853 

2,10,80 0.192 0.59 0.266 0.475 0.333 0.338 0.092 0.843 

3,10,80 0.094 0.828 0.265 0.538 0.351 0.372 0.094 0.81 

5 Conclusions  

This paper proposes a hyper-heuristic ant colony optimization (HH_ACO) algorithm to 

solve the integrated distributed permutation flow-shop problem and multiple compart-

ments vehicle routing problem with simultaneous deterministic delivery and fuzzy 

pickup (IDFSP_MCVRPSDDFP), with the objectives of minimizing total cost and total 

carbon emissions. Firstly,the mixed integer linear programming model of 

IDFSP_MCVRPSPDFD is proposed. Secondly, the composition of the HH_ACO al-

gorithm is introduced, which applies the ACO algorithm in the high-level strategy do-

main population of the HHA algorithm, leveraging the positive feedback principle of 

ACO. Additionally, six LLHs are designed to achieve in-depth search of the problem 

solution space. Finally, the effectiveness of the proposed HH_ACO is validated through 

examples of different scales. For future research, enhancing the operational speed of 

HH_ACO could be explored through reinforcement learning or machine learning tech-

niques to obtain better solutions in a shorter time. 
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