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Abstract. Malware poses a pervasive threat to computer systems and data secu-

rity.  Previous work has demonstrated that deep learning approaches are effective 

solutions to this issue.  Many scholars have adopted a method of transforming 

the binary codes of executable malware files into images, using neural networks 

for classification.  However, neural networks typically require inputs of fixed 

dimensions, while the sizes of malware files can vary significantly.  Traditional 

methods of standardizing image sizes can lead to loss and redundancy of infor-

mation.  This paper proposes a malware classification model using a Bidirec-

tional Dynamic Convolutional Long Short-Term Memory (BiD-ConvLSTM) en-

coder, which encodes images generated from binary codes of varying-sized mal-

ware, producing fixed-size feature images for neural network training.  Images 

output by the encoder are trained using ResNet-50.  This model achieved a max-

imum accuracy of 98.44% on the dataset from the Kaggle Microsoft Malware 

Classification Challenge (BIG 2015). 

Keywords: Malware Detection, Malware Classification, Deep Learning, Neural 

Networks, BiD-ConvLSTM. 

1 Introduction 

With the exponential growth of the Internet, the prevalence of malware has escalated 

dramatically, establishing it as a formidable threat to cybersecurity. The spectrum of 

malware encompasses Trojans, worms, viruses, botnets, ransomware, adware, and spy-

ware, all of which exploit vulnerabilities in personal computers and network systems 

[1]. Initially, malware was composed of simplistic code structures, which were rela-

tively easy to detect. However, as malware developers have progressively increased the 

sophistication of their coding techniques, it has become increasingly difficult for even 

advanced detection methods to identify these threats. Malware creators often reuse seg-

ments of code to generate variants that exhibit similar characteristics, which are typi-

cally categorized under the same malware family. Identifying these malware families 

is critical, as it enhances the effectiveness of malware prevention strategies [2]. 
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Malware detection can be broadly categorized into two methods: static and dynamic.  

In the early days, the industry commonly employed signature-based matching to iden-

tify malware. Although this method was fast, it could not identify unknown malware. 

Modern static detection methods have shifted towards analyzing statistical features, 

such as API function calls, to improve detection rates [3]. Conversely, dynamic detec-

tion involves analyzing the behavior of malware within controlled virtual environments 

[4]. Although more effective at identifying anomalous behavior, dynamic analysis is 

time-intensive and less suited for real-time detection tasks. With the rapid development 

of deep learning in the field of image recognition and classification, prompting re-

searchers to apply these techniques to malware classification. This approach involves 

transforming malicious code into standardized image formats for deep learning classi-

fication, achieving substantial accuracy improvements. Notably, the Microsoft malware 

dataset featured in the 2015 Kaggle competition illustrates the potential of these meth-

odologies [5]. However, since malware does not have a fixed size, converting malware 

into images of fixed sizes inevitably requires cropping or expanding the original data, 

leading to information loss and redundancy. 

In response to these limitations, this paper proposes a malware classification model 

that incorporates a Bidirectional Dynamic Convolutional Long Short-Term Memory 

(BiD-ConvLSTM) encoder. This novel encoder adapts to varying sizes of malware, 

converting binary codes into uniformly sized images that preserve crucial information 

for neural network training. By merging convolutional and BiLSTM layers [6], the en-

coder effectively harnesses the contextual semantic features inherent in binary files, 

thereby enhancing the classification accuracy while mitigating the issues associated 

with traditional feature extraction techniques. 

2 Related work 

Visualizing malware provides a more intuitive way to observe its texture, which can 

reduce the impact of obfuscation techniques. Nataraj et al. [7] proposed converting mal-

ware binary files into grayscale images and then classifying them using machine learn-

ing methods. They first converted each 8 bits of a malware binary file into a decimal, 

corresponding to pixel values ranging from 0 to 255, and then fixed the image size 

based on the file size to generate grayscale images that reflect the characteristics of the 

malware in image features. Inspired by Nataraj et al. [7], Han et al. [8] proposed a novel 

method to convert malware binary files into RGB image matrices. In their approach, 

they first disassembled the malware binary files, then extracted and stored the opcode 

sequences in blocks, and each block was processed by two hash functions (Simhash 

and djb2) to generate the coordinates and RGB pixel information for the image matrix. 

Due to the significant advantages demonstrated by deep convolutional neural net-

works such as VGGNet, ResNet, and DenseNet in large-scale image classification tasks 

[9], the classification of malware images has increasingly been conducted using deep 

learning. ResNet and VGG16 networks proposed by Rezende et al. [10,11] have been 

applied to malicious code detection and classification, improving accuracy. Yuan et al. 

[12] proposed a byte-level malware classification method based on Markov images and 
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deep learning. The main steps involve converting malware binary files into Markov 

images based on byte transition probability matrices, and then using deep convolutional 

neural networks for Markov image classification. Shen et al. [2] introduced a feature 

fusion-based malicious code detection method that includes dual attention mechanisms 

and Bidirectional Long Short-Term Memory (BiLSTM). 

Since training deep neural networks requires consistent data sizes, most of the learn-

ing-based approaches mentioned above convert binary files into fixed-size images. 

However, existing methods often overlook the loss of some byte information during the 

conversion process. Additionally, there is a significant amount of redundant infor-

mation in the conversion process. 

3 Proposed Method 

The malware classification model proposed in this paper is structured into two main 

parts: an encoder based on Bidirectional Dynamic Convolutional Long Short-Term 

Memory (BiD-ConvLSTM) and a classifier composed of the ResNet network [13,14]. 

  

3.1  Encoder 

To effectively tackle the challenge of encoding variable-sized malware files into con-

sistent, fixed-size image representations suitable for deep learning analysis, this paper 

introduces an innovative encoder design: the Bidirectional Dynamic Convolutional 

Long Short-Term Memory (BiD-ConvLSTM) encoder. As depicted in Figure \ref{fig-

ure1}, this encoder is adept at handling the dynamic and diverse nature of malware 

binaries.  The process begins by transforming binary files of malware into a sequence 

of images, each images maintaining fixed dimensions and serving as a time step input 

to the BiD-ConvLSTM encoder. This transformation is crucial as it ensures that each 

segment of the binary data is uniformly represented, facilitating more reliable pro-

cessing.    

Within the BiD-ConvLSTM, feature extraction techniques and attention mecha-

nisms are employed. These methods are critical for adjusting the scale and dimension-

ality of the data, ensuring that each output feature image adheres to a predefined size, 

regardless of the original input dimensions. This standardization is pivotal, as it guar-

antees that the output from the encoder is a set of feature-rich, fixed-size images, per-

fectly suited for further classification tasks. Consequently, the encoder's output can 

seamlessly integrate with various types of classifiers, including deep neural networks 

like ResNet or VGG, which require consistent input sizes for optimal performance. By 

providing standardized, high-quality feature images, the BiD-ConvLSTM encoder 

plays a crucial role in enhancing the overall effectiveness and accuracy of malware 

classification systems. This approach not only simplifies subsequent processing stages 

but also maximizes the potential for accurate malware detection and classification 

across diverse datasets. 
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Fig. 1. BiD-ConvLSTM encoder 

ConvLSTM.  The ConvLSTMCell, as proposed by Shi [6], replaces the fully con-

nected layers in the FC-LSTM cell with convolution operations, thus substituting ma-

trix multiplication with convolutions. LSTM, being a specialized type of RNN, has 

been proven to be stable and effective in modeling long-range dependencies across var-

ious studies [15,16]. FC-LSTM can be regarded as a multivariate version of LSTM, 

where the inputs, outputs, and states are all 1D vectors. The essential operations of FC-

LSTM, as outlined in the work of Graves [17], are detailed in equation (1), where 𝜎 is 

the sigmoid function, 𝑖, 𝑓, 𝑜, and 𝑐 denote the input gate, forget gate, output gate, and 

memory cell, respectively, and ∘ indicates the Hadamard product. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖°𝑐𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓°𝑐𝑡−1 + 𝑏𝑓)

𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡° 𝑡𝑎𝑛ℎ( 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜°𝑐𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡° 𝑡𝑎𝑛ℎ( 𝑐𝑡)

(1) 

The primary limitation of FC-LSTM in handling spatiotemporal data is its reliance on 

fully connected layers for the transitions from input-to-state and state-to-state, which 

fail to encode spatial information. This means FC-LSTM cannot adequately account 

for the significance of the same opcode appearing at different positions within malware. 

To address this issue, we employ the ConvLSTM configuration proposed by Shi [6]. 

The fundamental operations of the ConvLSTMCell are displayed in equation (2), with 

∗ denoting the convolution operation. This modification transforms the input from a 1D 
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sequence to a 2D matrix, while other parameters remain consistent with those of the 

FC-LSTM. 

 
𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓)

𝑐𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜 ∘ 𝐶𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡)

(2) 

Feature extraction.  Due to the varying sizes of malware, ConvLSTM encounters dif-

ferent lengths of time steps when processing input data.  To harness the power of deep 

learning techniques and better utilize the inherent characteristics of malware for effec-

tive family classification, this paper employs feature extraction and attention mecha-

nisms.  These methodologies are critical for standardizing the dimensions of the output 

data, ensuring that the neural network can interpret and process the information con-

sistently, regardless of the input size variability. 

In our approach, we focus on capturing the essential statistical features from each 

time step of the ConvLSTM output.  Specifically, we extract the maximum and mean 

values across each time step  𝐻𝑡 .  These values are crucial as they represent the peak 

and average activations within the time step, providing a snapshot of the most and gen-

erally active features respectively.  The maximum value highlights areas with the high-

est activation, suggesting features of significant importance, while the mean value of-

fers a sense of the overall activity level, helping to understand the background behavior 

of the data. The extraction and retention of these values are formalized in equation (3), 

where we compute and output the maximum and mean values for each time step: 

 

𝐻𝑀𝑎𝑥[𝑖,𝑗]& = max(𝐻𝑡[𝑖,𝑗], 𝐻𝑀𝑎𝑥[𝑖,𝑗])

𝐻𝑎𝑣𝑔 =
∑𝐻𝑡

𝑡

(3) 

The outputs 𝐻𝑛 along with the outputs from the feature extraction module, 𝐻𝑀𝑎𝑥  and 

𝐻𝑎𝑣𝑔, are concatenated to form the output of the unidirectional dynamic ConvLSTM 

encoder.   Executing the process in the reverse direction yields the backward encoder 

output, and concatenating these outputs allows the BiD-ConvLSTM to encode the var-

iable-length matrix sequence. 

This paper also replaces the above feature extraction module with an attention mech-

anism, as shown in Figure 2, directly concatenating the bidirectional 𝐻𝑛 as the encoder 

output. The Spatial Attention Module (SAM) [21] used here primarily focuses on in-

troducing attention to the spatial positions of input data within deep learning mod-

els.The core idea of SAM is to dynamically allocate attention across different regions 

of the input, selectively emphasizing relevant features and suppressing less useful ones. 

This is achieved by processing the input feature maps through average pooling and max 

pooling operations along the channel axis. The average pooling captures the average  
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Fig. 2. Use SAM's BiD-ConvLSTM encoder 

presence of features, providing a global context, while max pooling highlights the most 

dominant features at specific locations. These pooled features are concatenated to form 

a comprehensive feature descriptor. To compute spatial attention, average pooling and 

max pooling operations are first applied along the channel axis and then concatenated 

to create an effective feature descriptor. Subsequently, a convolutional layer is applied 

to this concatenated descriptor to generate a spatial attention map 𝑀𝑠(𝐹) ∈ ℝ𝐻×𝑊, as 

calculated in equation (4): 

  

𝑀𝑠(𝐹) =  𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))

= 𝜎(𝑓7×7([𝐹𝑎𝑣𝑔
𝑠 , 𝐹𝑚𝑎𝑥

𝑠 ]))
(4) 

where 𝜎 represents the sigmoid function, and 𝑓7× 7 indicates a convolution operation 

with a 7 ×  7 filter.  The map indicates which spatial locations the model should focus 

on or suppress.  Finally, this spatial attention map is multiplied by the original feature 

map to produce a weighted feature map, which allows the model to focus more on re-

gions containing significant information in subsequent processing. 

3.2 Classifier 

In this study, we utilize the Deep Residual Network (ResNet), originally proposed by 

He et al. [8], along with its subsequent improvements detailed in [9], to serve as the 

classifier. ResNet has established itself as a series of extremely deep architectures that 

exhibit compelling accuracy and robust convergence behavior. The cornerstone of Res-

Net is the introduction of the concept of residual learning. Each residual block within 

ResNet does not output direct feature mappings. Instead, these blocks output the resid-

ual of their inputs—essentially the difference or discrepancy between the input and the 

output. This architectural design requires the network to learn this residual mapping to 

an identity function, rather than learning a straightforward non-linear mapping. 

This innovative approach makes it significantly easier for the network to learn iden-

tity mappings, particularly beneficial when the network depth increases. By learning 

these residuals, the network can enhance its ability to propagate gradients throughout 

its depth, effectively avoiding the performance degradation typically associated with 

increased depth in traditional architectures. 
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For our classification tasks, we employ the ResNet50 model, a specific variant of 

ResNet. The detailed architecture of ResNet50 is outlined in Table 1. This model con- 

Table 1. Architectures for ResNet50. 

layer name conv1 conv2 conv3 conv4 conv5 output 

output size 
 

W

2
×

H

2
 

 
W

4
×

H

4
 

 
W

8
×

H

8
 

 
W

16
×

H

16
 

 
W

32
×

H

32
 

 

1 ×  1 

\ 
7 ×  7, 64, stride 2 

3 ×  3, max pool, stride 2 

 

[
1 × 1,64
3 × 3,64

1 × 1,256
] × 3 

 

[
1 × 1,128
3 × 3,128
1 × 1,512

] × 4 

 

[
1 × 1,256
3 × 3,256

1 × 1,1024
] × 6 

 

[
1 × 1,512
3 × 3,512

1 × 1,2048
] × 3 

average pool 

classes number-d fc 

softmax 

figuration is particularly chosen for its balance between depth and complexity, making 

it highly effective for tasks requiring detailed feature extraction without excessive com-

putational demands. For images inputted as 𝑁 ×  𝑊 ×  𝐶, where 𝑁 represents the batch 

size, 𝑊 the width and height, assuming a square format, and 𝐶 the number of color 

channels, the initial layer, known as conv1, consists of a 7 ×  7 convolutional layer with 

a stride of 2. This configuration efficiently captures preliminary feature maps, generat-

ing 64 distinct feature maps. This large kernel size combined with a stride reduces the 

spatial dimensions early, allowing the network to focus on higher-level features by cov-

ering more area per filter. 

Following this, the network applies a 3 × 3 max pooling layer with a stride of 2. This 

step further downsamples the feature maps, reducing their dimensions to make the net-

work computationally efficient and enhance the robustness of the feature detection by 

providing spatial invariance—features can be recognized irrespective of slight shifts 

and distortions. 

The core of ResNet50 comprises four residual blocks, each containing multiple residual 

units as illustrated in Figure 3. These units are designed to perform complex transfor-

mations while maintaining the integrity of the input data through the block. Each resid-

ual unit features a combination of 3 ×  3 and two 1 ×  1 convolutional layers. The ini-

tial 1 ×  1 convolution acts as a bottleneck, reducing dimensionality and thus compu-

tational complexity, while the final 1 ×  1 convolution restores the dimensions, prepar-

ing the output to be added back to the input. 

Each unit's output is added to its input, utilizing skip connections that allow gradients 

to flow through the network directly, mitigating the vanishing gradient problem com-

mon in deep networks. This addition of the input (or skip connection) to the output 

facilitates the learning of residuals—modifications to the identity mapping of the input 

rather than a complete transformation, enhancing training effectiveness and perfor-

mance sustainability. 

In the first unit of each residual block, downsampling is performed to progressively 

decrease the size of the feature maps, focusing on more abstract feature representations 

at higher layers. Following the final residual block, ResNet50 employs a global average 

pooling layer, which converts the spatial feature maps into a single vector per feature 

map, effectively summarizing the prominent features in each channel. 
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Fig. 3. ResNet50 Residual Unit 

The output of the global average pooling layer feeds into a fully connected layer, which 

is tailored to the specific number of classes in the classification task. This layer trans-

forms the global feature descriptors into class-specific scores. Finally, a softmax func-

tion is applied to these scores, converting them into probabilities for each class. The 

softmax output provides the likelihood of the image belonging to each class, facilitating 

effective classification based on the learned features throughout the network. 

4 Experiments 

The experimental environment of this paper is as follows:Operating System: Ubuntu 

22.04;Programming Language Environment: Python 3.10.13 and PyTorch 2.0.1 with 

ROCm 5.7.1;CPU: Intel(R) Core(TM) i5-12600KF;32GB Memory;GPU: Radeon RX 

7900 XTX. 

4.1 Data Set 

To evaluate the performance of the malware classification model proposed in this study, 

we utilized the dataset from the Microsoft Malware Classification Challenge (BIG 

2015) hosted by Kaggle [5]. This dataset comprises malicious software samples from 

nine different families, totaling 10,868 samples. Each malware file in the dataset is 

uniquely identified by a 20-character hash value, ensuring that each sample is distinct. 

The dataset includes two types of files for each malware sample. The first type, a 

bytes file, contains the hexadecimal representation of the malware's binary content, ex-

cluding any file headers to ensure that the data remains non-executable and harmless. 

The second type, an asm file, serves as a metadata manifest. It is essentially a log that 

contains various metadata information extracted from the binary files using the IDA 

disassembler tool. This metadata includes detailed information such as function calls 

and strings found within the binary files, providing a comprehensive overview of each 

sample's structure and behavior. 
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For the purposes of this research, the dataset was split into a training set and a vali-

dation set in a 9:1 ratio, ensuring that a significant portion of the data was used for 

training the model while still reserving enough samples for an effective evaluation of 

the model's performance. The specific details of this split are provided in Table 2. This 

Table 2. The number of each malware family in the training set and validation set in the da-

taset. 

Family name Train Samples Validation Samples 

Ramnit 1385 155 

Lollipop 2230 248 

Kelihos_ver3 2647 295 

Vundo 427 48 

Simda 37 5 

Tracur 675 76 

Kelihos_ver1 358 40 

Obfuscator.ACY 1105 123 

Gatak 911 102 

structured approach to testing allows us to thoroughly assess the efficacy of the pro-

posed model across a diverse set of malware samples, enabling robust validation of the 

model’s ability to generalize across different types of malware and effectively classify 

them into their respective families. 

The model proposed in this paper solely utilizes data from malware binary files and 

does not employ datasets that include IDA file format data. 

4.2 Training 

To commence the evaluation of the proposed malware classification model, the binary 

data of the malware samples from the dataset is initially processed. Each binary file is 

converted into multiple grayscale images of dimensions 𝑊 ×  𝐻, where 𝑊 =  𝐻 =
 256. The method for this conversion is detailed in Algorithm 1. This transformation is 

designed to visually represent the binary data in a format that can be effectively pro-

cessed by convolutional neural networks. 

Each of these grayscale images is then treated as a separate time step and fed into 

the BiD-ConvLSTM encoder. This encoder is specifically designed to handle sequen-

tial data, making it well-suited for analyzing the series of images as it can maintain 

contextual continuity across the frames. The output from the BiD-ConvLSTM encoder 

is a set of feature images that encapsulate the essential characteristics extracted from 

the binary data. 

These feature images are subsequently used as inputs for the ResNet50 classifier. 

ResNet50, known for its deep network capabilities and resilience to vanishing gradi-

ents, processes these images to predict the probability of each malware class. The 
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predictions are made using a softmax function, which outputs the likelihood of each 

class, providing a probabilistic classification of the input malware image. 

 

Algorithm 1: Algorithm for converting binary files to images 

 input : Binary files of malware. output: A set of malware images. 

1 𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎 =  𝐹𝑖𝑙𝑒. 𝑟𝑒𝑎𝑑();  

2 𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎 =  [𝑖𝑛𝑡(ℎ𝑒𝑥𝑉 𝑎𝑙𝑢𝑒, 16) 𝑓𝑜𝑟 ℎ𝑒𝑥𝑉 𝑎𝑙𝑢𝑒 𝑖𝑛 𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎];  

3 𝑊 =  𝐻 =  256;  

4  𝑙 =  𝑙𝑒𝑛(𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎);  

5 𝐢𝐟  𝑙 <  𝑊 ×  𝐻 𝐭𝐡𝐞𝐧  

6  𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎. 𝑎𝑑𝑑([0]  ∗  (𝑊 ∗  𝐻 −  𝑙)); 
𝑙 =  𝑊 ×  𝐻;  7 

8 𝑆𝑒𝑞𝐿𝑒𝑛 =
𝑙

𝑊×𝐻
;  

9 𝑖𝑛𝑑𝑒𝑥 =  0;  

10    𝐟𝐨𝐫  𝑖 ← 0 𝐭𝐨 𝑆𝑒𝑞𝐿𝑒𝑛 𝐝𝐨  
 𝐟𝐨𝐫  𝑗 ← 0 𝐭𝐨 𝐻 𝐝𝐨  

 𝐟𝐨𝐫  𝑖 ← 0 𝐭𝐨 𝑊 𝐝𝐨  
  𝐢𝐟 𝑖𝑛𝑑𝑒𝑥 <  𝑙 𝐭𝐡𝐞𝐧  

    𝑖𝑚𝑎𝑔𝑒𝑠[𝑖, 𝑗, 𝑘]  =  𝐹𝑖𝑙𝑒𝐷𝑎𝑡𝑎[𝑖𝑛𝑑𝑒𝑥];  
   𝑖𝑛𝑑𝑒𝑥 + +;  

11 

12 

13 

14 

15 

16 Generate 𝑖𝑚𝑎𝑔𝑒𝑠;  

The model's performance is refined through the use of Focal Loss [19], a specialized 

loss function designed to address class imbalance by focusing more on hard-to-classify 

examples. This is particularly useful in datasets where certain malware families are 

underrepresented. 

Training the model involves backpropagation and the use of the Adam optimization 

algorithm, known for its efficiency in handling sparse gradients and adaptive learning 

rate capabilities.  The initial learning rate is set at 0.01, and a cosine annealing strategy 

with warm restarts is employed to adjust the learning rate dynamically during training.  

This approach helps in fine-tuning the learning process, allowing for faster convergence 

and potentially better generalization on unseen data. 

Overall, this methodology not only systematically transforms and processes the mal-

ware data but also optimizes the learning process to enhance model accuracy and reli-

ability in classifying diverse malware types. 

4.3 Result 

The paper employs four commonly used evaluation metrics: Accuracy, Precision, Re-

call, and F1-Score. Given the class imbalance present in the BIG2015 dataset, these 

metrics are calculated using a Macro-average approach. This method involves calculat-

ing the metrics individually for each class and then averaging the results. Macro-
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averaging treats all classes equally, which is particularly important in datasets where 

some classes are underrepresented. This approach significantly highlights the impact of 

rare classes and provides a more accurate reflection of the model’s performance under 

sample imbalance conditions. 

To assess the impact of various components on the model's performance, the paper 

conducts comparative experiments. These experiments are designed to evaluate the ef-

fect of using a dynamic ConvLSTM instead of a BiD-ConvLSTM, and the inclusion of 

Feature Extraction (FE) and Spatial Attention Module (SAM) on the overall effective-

ness of the model. The results of these comparative tests are detailed in Table 3. This 

methodical examination allows for a comprehensive understanding of how each com-

ponent influences the accuracy and robustness of the malware classification model, en-

suring that the final model configuration is optimized for the best performance on the 

challenging and diverse dataset. 

Table 3. Results of the impact of various modules on model performance in the BIG 2015 da-

taset. 

Method Accuracy F1-score Precision Recall 

Dynamic ConvLSTM 95.70% 90.62% 89.55% 92.18% 

BiD-ConvLSTM 97.16% 93.50% 94.46% 92.78% 

BiD-ConvLSTM + FE 98.44% 97.05% 98.33% 96.05% 

BiD-ConvLSTM + SAM 98.08% 96.56% 97.75% 95.68% 

The experiments demonstrate that using only the dynamic ConvLSTM method, 

which extracts features in a single direction, fails to effectively combine global infor-

mation and lacks a feature extraction mechanism to capture more rich and critical in-

formation.  As a result, this configuration yielded the lowest accuracy. 

In contrast, employing the BiD-ConvLSTM approach not only enhances the extrac-

tion of local features but also captures sequential information across both directions.  

This bidirectional approach significantly improves the model's ability to adapt to the 

task of malware classification, leading to a notable increase in accuracy. 

The addition of the Feature Extraction (FE) module further enhances the model's 

performance.  By enabling the model to better utilize the information present in the 

input data and extract more distinctive features, the FE module significantly increases 

the accuracy of classifying different malware families, achieving the highest accuracy 

observed in the experiments. 

    The integration of the Spatial Attention Mechanism (SAM) module allows the 

model to focus more intently on the parts of the data that are most relevant to the clas-

sification task.  This targeted attention helps to improve the model’s overall perfor-

mance, with accuracy levels slightly below those achieved with the FE module but still 

significantly higher than the models without these enhancements. 

Overall, these results underscore the importance of incorporating both bidirectional 

learning and advanced feature processing techniques such as feature extraction and at-

tention mechanisms in improving the performance of machine learning models, espe-

cially in complex classification tasks like malware identification. 
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(a) BiD-ConvLSTM + FE  

 

(b) BiD-ConvLSTM + SAM 

 

(c) BiD-ConvLSTM 

 

(d)  Dynamic ConvLSTM 

Fig. 4. accuracy graph 

Figure 4 illustrates the trends in model accuracy as training progresses across various 

epochs. The graph indicates that the accuracy displays a periodic pattern, primarily due 

to the implementation of a cosine annealing strategy for adjusting the learning rate. This 

method periodically resets the learning rate to a higher value and then gradually de-

creases it, helping to prevent the model from settling into local minima too early during 

training. The encoder with the Feature Extraction (FE) module, which collects the most 

information, shows the most pronounced fluctuations in accuracy.  This is because the 

richer feature set provided by the FE module enables more dynamic adjustments in 

learning, leading to significant shifts in model performance as the learning rate changes. 

On the other hand, models without the FE and SAM (Spatial Attention Mechanism) 

modules exhibit signs of overfitting much earlier in the training process.  This is at-

tributed to the reduced complexity and diversity of features available to the model, 

which limits its ability to generalize from the training data.  The situation is even more 

severe for models that do not utilize a bidirectional approach, leading to the cessation 

of training at around 200 epochs to prevent counterproductive overfitting. 

The incorporation of the SAM helps the encoder focus more intently on the most 

relevant parts of the data for the classification task.  Unlike the FE module, SAM does 

not increase the amount of information processed but rather optimizes the model's at-

tention towards significant features.  This targeted focus results in the most stable 

change in accuracy, avoiding drastic fluctuations and maintaining a steady improve-

ment in performance throughout the training cycles. 
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(e) BiD-ConvLSTM + FE  

 

(f) BiD-ConvLSTM + SAM 

 

(g) BiD-ConvLSTM 

 

(h)  Dynamic ConvLSTM 

 

These observations underscore the effectiveness of the combined use of learning rate 

scheduling and architectural enhancements in managing model training dynamics and 

improving classification accuracy in complex tasks such as malware detection. 

Figure 5 presents the confusion matrix for the malware classification model pro-

posed in this study. The matrix reveals that while the use of Focal Loss has significantly 

alleviated the issues associated with class imbalance within the dataset, the model's 

performance is still notably affected. This imbalance impact is particularly evident in 

the F1-Score, which reflects both the precision and recall of the model. The F1-Score 

is crucial for understanding how well the model identifies and classifies each class, 

especially in datasets where some classes are underrepresented. 

Additionally, the paper compares the proposed method with other approaches that have 

also used the BIG 2015 dataset. The comparative results are summarized in Table 4. 

The data in the table indicates that our method achieves an exceptional accuracy of 

98.44%, outperforming other techniques. This high level of accuracy underscores the 

effectiveness and efficiency of our method in detecting and classifying malware, 

demonstrating that our enhancements—such as the implementation of BiD-Con-

vLSTM, feature extraction modules, and strategic application of the Focal Loss—con-

tribute significantly to superior performance. 

These findings highlight the advanced capability of the proposed model to handle 

the complexities of malware detection, proving its robustness against diverse and chal-

lenging datasets. The integration of sophisticated machine learning techniques ensures 
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that our model not only tackles the inherent issues of imbalance but also excels in ac-

curate classification across various malware families. 

Table 4. Comparison of the detection results on the BIG 2015 dataset. 

Ref. Models Accuracy 

Kim[20] CNN,GRU,DNN 92.6% 

Cho[21] RNN-CNN 96% 

Alaeiyan[22] Multi-label fuzzy clustering 97.56% 

Lin[23] bit-level 1D CNN 96.32% 

Shen[2] BiLSTM+SAM+CAM 97.75% 

This paper Our approach 98.44% 

5 Conclusion 

This paper introduces an encoder that converts malware into images for deep neural 

network learning and utilizes ResNet50 for classification. This encoder effectively ex-

tracts features from malware of any size to generate feature images suitable for neural 

network training, eliminating the need for complex feature engineering and prepro-

cessing. The encoder employs ConvLSTM to encode binary data of malware and cap-

tures dependencies before and after the data by integrating both forward and reverse 

directions. It also focuses on critical parts of the data using feature extraction and at-

tention mechanisms. This encoder effectively resolves the issue of inconsistent sample 

sizes in malware, avoiding information loss due to normalization and significantly im-

proving the classification accuracy and generalization ability for malware variants. The 

effectiveness of this method has been validated on a malware test dataset. 

However, there are still areas where the encoder could be improved. For example, it 

cannot directly encode binary files of malware; it still requires manual conversion of 

binary data into multiple fixed-size images. Additionally, although the introduction of 

Focal Loss helps combat the problem of dataset imbalance, it has not completely re-

solved the issue, as there is still a noticeable decrease in accuracy for classes with fewer 

samples. In future work, we plan to further optimize the model structure and explore 

other feature extraction methods to address these issues. 
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