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Abstract. Open-world object detection (OWOD) aims to improve model perfor-

mance in practical settings by enabling the detection of previously unseen objects 

while continuously learning new known classes. This is done in an environment 

where the set of labeled classes is constantly expanding. Current models often 

exhibit suboptimal performance when employing objectness scores for pseudo-

labeling unknown objects, primarily due to inherent biases toward the known 

class set. To address this limitation, our study employs a cross-modal learning 

framework to integrate high-level semantic information from text into the gener-

ation of pseudo-labels for objects currently unseen. We introduce a straightfor-

ward yet efficient method called Text-guided Unknown Pseudo-Labeling 

(TUPL) for open-world object detection. A module named SRS is proposed to 

direct the model in learning the detection of previously unseen objects. To en-

hance the model's ability to distinguish foreground elements, we introduce an 

ROI Feature Refinement module that improves the model's learning of all dis-

tinctive foreground characteristics. Experimental evaluations on the PASCAL 

VOC and MS-COCO benchmarks demonstrate TUPL's exceptional open-world 

detection capability. Under the OWOD SPLIT setting, TUPL achieves a UR (Un-

known Recall) value of 23.1, which is at least double the performance of existing 

pseudo-labeling methods based on objectness scores. 

Keywords: Open world object detection, Cross-modal learning, Pseudo-label-

ing. 

1 Introduction 

Deep learning has made significant advancements in the field of object detection. How-

ever, conventional approaches to object detection rely on a strict closed-set assumption, 

where all target classes encountered during testing must have been previously seen in 

the training phase. Real-world scenarios are characterized by a wide range of diverse 

objects and the constant emergence of new categories. This leads to considerable com-

plexity in object detection tasks. While traditional methods excel under the closed-set 

assumption, they often struggle to adapt to the open-world scenario. In recent years, 

researchers have made substantial progress in developing methods capable of detecting 

object classes that have not been encountered before. 
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The first OWOD method ORE, proposed by Joseph [1], addresses the crucial task of 

enabling the model to recognize object categories that haven't been encountered before 

as the "unknown class" while still detecting known categories. Numerous recent studies 

have made notable advancements in this field, categorizable into two main approaches. 

One approach focuses on learning the feature-level distribution of both known and un-

known object categories during training [2 - 5]. The other approach involves generating 

pseudo-labels for unknown-class objects during the training phase and treating the un-

known class as a distinct "known class" for joint learning [1, 6 - 12]. The former typi-

cally requires researchers to carefully set a threshold for classifying predictions as the 

"unknown class". The latter employs pseudo-labeling for unknown-class objects to aid 

the model's learning during training, often relying on limited statistics from known clas-

ses, such as objectness scores, which can introduce bias towards these known classes.  

Our main goal is to address the issue of bias towards known classes in current 

pseudo-labeling methods. Leveraging the advancements in cross-modal tasks, we can 

seamlessly integrate information from various modalities, such as images, text, audio, 

and more. Our proposition is that while images offer rich visual details through shapes, 

textures, and colors, language conveys a higher level of abstract semantic content that 

can provide more comprehensive guidance. 

Building upon the Featurized Query R-CNN (FQR-CNN) framework [13], we have 

developed a straightforward yet effective unknown pseudo-labeling strategy for 

OWOD, which we named TUPL (Text-guided Unknown Pseudo-Labeling for Open 

World Object Detection). During training, we employ a unique strategy called Sim-

Random-Sim (SRS) to label certain candidate boxes as unknown if they do not match 

any ground truth. Moreover, we utilize a one-to-many matching tactic during training, 

combined with Non-Maximum Suppression in the inference stage, as an alternative to 

the initial one-to-one algorithm in FQR-CNN. This approach helps alleviate the prob-

lem of insufficient supervision [14, 15]. High-quality feature representation of fore-

ground objects is essential for training object locators and classifiers. To enhance the 

model's ability to recognize objects from different categories, we propose the ROI Fea-

ture Refinement Module (RRM). 

Our main contributions are summarized as follows: 

• We introduce TUPL, an open-world object detector based on the Featurized Query 

R-CNN. TUPL combines the strengths of existing OWOD detectors, specifically 

Faster R-CNN-style and DETR-style models, resulting in a streamlined and efficient 

integration. 

• We propose SRS, a valid unknown pseudo-labeling strategy. By leveraging cross-

modality text data and incorporating random debiasing techniques, we effectively 

mitigate bias issues towards known classes in current methods. 

• We introduce RRM, a strategy aimed at enhancing the ROI features that contain 

foreground objects. By implementing a modified self-attention mechanism on the 

Region of Interest (ROI) features, we improve the model's accuracy and reliability. 

• Our evaluation results on popular OWOD benchmarks, including PASCAL VOC 

[16] and MS-COCO [17], demonstrate the effectiveness of TUPL in adapting to the 
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open environment. TUPL maintains high detection performance on known classes 

while also showcasing strong capabilities in detecting unknown objects. 

2 Related work 

2.1 Open world object detection 

Joseph pioneered the open-world object detection task, which entails the model's ability 

to not only recognize unknown objects but also progressively acquire the capability to 

detect new known objects. They proposed ORE [1] as a solution for this challenging 

task, building upon the Faster R-CNN [18]. A crucial challenge lies in accurately iden-

tifying unknown class objects by the model, primarily due to the absence of labels. The 

use of pseudo-labels has gained significant attention and has become a frequently em-

ployed technique [1, 6 - 12]. Several works, including ORE [1], OW-DETR [7], Rand-

Box [9], UC-OWOD [10], and SA [11], utilize objectness scores of candidate proposals 

to generate pseudo-labels for unknown instances. Moreover, other works such as Open 

World DETR [6], CAT [8], and RE-OWOD [12] employ fusion of supplementary pro-

posal generation techniques (e.g., selective search [19], etc.) to facilitate the selection 

of potential candidates for unknown class. The meticulously crafted pseudo-label meth-

ods for unknowns have demonstrated significant effectiveness in real-world applica-

tions. 

In contrast, other methods like OW-RCNN [2], identify both known and unknown 

classes by establishing multiple thresholds meticulously. 2B-OCD [3] trains an object-

centric calibrator, while OCPL [4] utilizes prototype learning to reduce the overlap be-

tween the distributions of known and unknown classes within the feature space. PROB 

[5] employs a category-independent Gaussian distribution to represent object features 

and calculates the classification outcome of a query by multiplying its probability of 

being a foreground object with the probability of the foreground object belonging to a 

specific class. Ann [20] employs a label transfer learning paradigm to distinguish be-

tween the features of known and unknown objects. Our primary focus is on OWOD 

algorithms based on pseudo-labeling, aiming to develop a simple yet robust approach 

for annotating pseudo-labels. 

2.2 Class-Agnostic Object Detection 

In open object detection tasks, it is essential for models to learn how to detect "un-

known" objects. The task, class-agnostic object detection, focuses on improving the 

capability of object detection models to detect objects without considering their specific 

class. The class-agnostic object detection paradigm relies on a finite set of known class 

training datasets to develop an object detector capable of identifying all foreground 

objects within an image, irrespective of their class distinctions. WACV [21] emphasizes 

that in certain real-world situations, accurately determining the presence and exact lo-

cation of objects is more important than identifying specific categories. It introduces 

the challenge of class-agnostic object detection. Some methods, such as OLN [22], 

SIBGRAPI [23], LDET [24], and GOOD [25], enhance the model's detection capabili-

ties for foreground objects at the image level. MAVL [26] observed that previous 
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methods lack supervision from easily understandable semantic signals. Addressing this 

issue, a novel approach is introduced by utilizing a multi-modality visual transformer 

trained on aligned image-text data to achieve superior performance in detecting un-

known objects. Inspired by this advancement, we propose utilizing semantic infor-

mation as a guiding signal to help the model detect objects belonging to unknown class 

during the training process. 

2.3 Pre-trained Visual-Language Models 

In recent years, pre-trained vision-language models have attracted significant attention 

in the fields of computer vision and natural language processing. By training on exten-

sive text and image data, these models acquire comprehensive semantic and visual rep-

resentations. Consequently, they function as robust feature extractors for a wide range 

of downstream tasks. Typical work, such as CLIP [27], employs contrastive learning 

on a dataset of 400 million image-text pairs collected from the internet. By aligning the 

features of images and corresponding text in the feature space, it yields highly robust 

image and text encoders and showcases remarkable proficiency across diverse down-

stream tasks, including semantic segmentation [28], object detection [29], image edit-

ing [30], image generation [31], and video comprehension [32], among others. Con-

temporary computer vision research predominantly utilizes CLIP-based methodolo-

gies, which rely on text features from the CLIP text encoder as substitutes for classifi-

ers. In contrast, we employ CLIP to align corresponding visual and text features in the 

feature space. This utilization of CLIP harnesses the embedded text information as 

high-level semantic guidance, enabling the model to be directed in an unbiased manner. 

As a result, it facilitates exceptional detection capabilities for all objects in an image, 

encompassing both known and unknown classes. 

3 Proposed methods 

3.1 Preliminary 

Formulation for OWOD. OWOD consists of a series of subtasks, represented as 𝑇 =
{𝑇1, 𝑇2, . . . }. The corresponding training data can be divided into 𝐷 = {𝐷1, 𝐷2, . . . }, 

where the set of categories for all annotated objects in 𝐷 is 𝐶 = {𝐶1, 𝐶2, . . . }, and it sat-

isfies 𝐶𝑖⋂𝐶𝑗 = 𝜙, 𝑖 ≠ 𝑗. As the training data is sequentially fed, the model learns each 

subtask step by step. During the 𝑇𝑖  phase, the categories of objects included in the train-

ing data 𝐷𝑖  are denoted as 𝐶𝑖. The categories in 𝐶𝑖 are referred to as the currently known 

classes. The set 𝐶 = {𝐶1, . . . , 𝐶𝑖−1} is referred to as the previously known classes, while 

the set 𝐶 = {𝐶𝑖+1, . . . } is referred to as the currently unknown class, which will be grad-

ually learned in the subsequent incremental learning process. Following the completion 

of the learning phase for each subtask 𝑇𝑖 , we will assess the performance of the current 

model 𝑀𝑜𝑑𝑒𝑙𝑖  on a test dataset encompassing all categories, including both known and 

unknown ones. 
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3.2 Overall architecture 

Due to the trade-off advantages of FQR-CNN [13] in terms of accuracy and speed by 

incorporating the query mechanism from DETR into the R-CNN-like detector, TUPL 

was implemented based on the FQR-CNN framework in this paper. The overall training 

process aligns with the prevailing paradigm of existing OWOD methods. After com-

pleting each subtask, the model will undergo fine-tuning on a small dataset comprising 

a few samples of previously known classes. 

 

Fig. 1. The architecture of the TUPL framework. TUPL consists of four main steps: (1) extraction 

of image/text features and generation of queries; (2) interaction between queries and enhanced 

ROI features; (3) label assignment; and (4) annotation of pseudo-queries for unknown class ob-

jects. 

For the current subtask learning, Fig. 1 provides an overview of TUPL. Given an 

input image 𝐼 ∈ ℝ𝐻×𝑊×3  and its corresponding caption 𝐶𝑎𝑝, through the backbone, 

QGN [13] and ROIAlign [33] modules, we can obtain queries 𝑄 = {𝑞𝑖}1
𝑁 and ROI fea-

tures 𝑅 = {𝑟𝑖}1
𝑁, where 𝑁 denotes the total number of queries (or ROI features). The 

ROI features will be enhanced through the RRM module, allowing us to achieve more 

expressive ROIs 𝑅𝑎𝑢𝑔. The dynamic interaction between the query features 𝑄 and 𝑅𝑎𝑢𝑔 

results in the query features denoted as 𝑄𝑖𝑚𝑔 . During the label matching process, a one-

to-many label assignment method following OTA [36] is used to provide sufficient su-

pervision information for queries. In this process, queries that match any target are re-

ferred to as 𝑄𝑖𝑚𝑔𝑚
= {𝑞𝑖}1

𝑀 , while the others are referred to as 𝑄𝑖𝑚𝑔𝑢
= {𝑞𝑖}1

𝑈 , 

where M + U = N. Moreover, we extract nouns from the caption 𝐶𝑎𝑝 of 𝐼, and use the 

"a photo of {noun}" template for completion. The templated text is then input into the 

frozen CLIP text encoder to obtain the corresponding text embedding feature, denoted 

as E. During this process, the known class embedding features are used to guide the 

learning of query features with assigned known target labels. The other text embedding 

features enable the model to identify potential unknown class pseudo-candidates from 

the remaining set of queries. During the inference stage, the model identifies unknown 

objects in the same manner as known objects, without requiring any decision threshold 

boundaries. 
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Pseudo-labeling for Unknown. Initially, the query features 𝑄𝑖𝑚𝑔 are mapped onto the 

CLIP text feature space. This mapping aligns the dimensions of the queries with the 

textual features encoded by CLIP, utilizing the projection operator 𝑃𝑟𝑜𝑗 as: 

 𝑞𝑡𝑥𝑡𝑖 = 𝑃𝑟𝑜𝑗 (𝑞𝑖𝑚𝑔𝑖
) , 𝑖 ∈ 1,2, … , 𝑁 (1) 

Queries represented in the text feature space is denoted as 𝑄𝑡𝑥𝑡 . The 𝑃𝑟𝑜𝑗 consists of a 

compact network made up of linear layers combined with an activation layer. As shown 

in Fig. 2, for queries that match the ground truth of known classes, we minimize the 

distance between the projected features in the CLIP feature space 𝑄𝑡𝑥𝑡𝑚
= {𝑞𝑡𝑥𝑡𝑖}1

𝑀, 

and the textual features of their respective class names 𝐸𝑚 = {𝑒𝑖}1
𝑀as: 

 𝐿𝑐𝑙𝑜𝑠𝑒 =
1

𝐷
||𝑞𝑡𝑥𝑡𝑖 − 𝑒𝑖||2 + [1 − 𝑠𝑖𝑚(𝑞𝑡𝑥𝑡𝑖 , 𝑒𝑖)], 𝑖 ∈ 1,2, … ,𝑀 (2) 

D represents the dimension of textual features. 𝐿𝑐𝑙𝑜𝑠𝑒  consists of two parts: the first part 

reduces the spatial distance between the query features and the features of class names 

using the 𝐿2 distance, while the second part, represented by sim(∙), increases the simi-

larity between the query features and the corresponding class-specific textual features 

through cosine similarity distance. 

After removing nouns representing known classes from image captions, the remain-

ing nouns may likely describe unknown objects. We refer to them as novel class texts, 

and their corresponding feature representation is denoted as 𝐸𝑛𝑜𝑣𝑒𝑙 = {𝑒𝑖}1
𝑂, where 𝑂 

represents the number of novel text embeddings. Our central idea revolves around the 

premise that if the features of candidate queries 𝑄𝑡𝑥𝑡𝑢
 exhibit a similarity higher than a 

certain threshold with any feature representing a novel class text, they may constitute 

potential candidate boxes for objects of unknown class. Thus, we compute the similar-

ity matrix between 𝑄𝑡𝑥𝑡𝑢
 and 𝐸𝑛𝑜𝑣𝑒𝑙  to derive 𝑀 ∈ ℝ𝑈×𝑂 . Subsequently, we identify 

the maximum value along the last dimension of 𝑀 to yield 𝑆𝑖𝑚 ∈ ℝ𝑈. The method for 

labeling candidate queries as unknown is determined based on a threshold 𝛿1: 

 𝑙𝑞𝑖 = {
"𝑢𝑛𝑘𝑛𝑜𝑤𝑛", 𝑆𝑖𝑚[𝑖] > 𝛿1
"𝑏𝑔",                𝑆𝑖𝑚[𝑖] ≤ 𝛿1

, 𝑖 ∈ 1,2, … , 𝑈 (3) 

and 𝑙𝑞𝑖  represents the label for 𝑞𝑖. 

SRS: Sim-Rand-Sim. Experimental results (as shown in Fig. 5) demonstrate the effec-

tiveness of our ordinary text-guided annotation method for generating pseudo-candi-

date boxes for unknown class. To reduce the model's bias towards known class features, 

we propose integrating a random selection approach. This approach aims to decrease 

the likelihood of mistakenly labeling candidate queries as unknown during the pseudo-

annotation process. It specifically targets cases where candidate queries partially con-

tain known class objects. Following the random selection of candidate queries, an ad-

ditional filtering step is employed. This step applies a higher threshold to enhance the 

quality of pseudo labels. In summary, the pseudo-labeling procedure combines text 

guidance with random selection as follows: (1) Utilizing a small threshold 𝛿1 to filter 
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out most of the background queries, resulting in 𝑠1 candidate queries likely to contain 

foreground objects; (2) Randomly selecting 𝑟 candidates from the 𝑠1 queries; (3) Ap-

plying a higher threshold 𝛿2 to further filter low-quality candidates, resulting in 𝑠2 un-

known pseudo-queries for annotation. 

 

Fig. 2. Pipeline of SRS. 

RRM: ROI Refinement by Attention Mechanism. To better capture information per-

tinent to foreground objects, we introduce the ROI feature refinement module (RRM). 

Our premise is that the utility of individual ROI features is inherently limited. By com-

prehensively considering relevant information and enhancing their expressiveness, ROI 

features can be improved. Therefore, we propose an attention-based approach to en-

hance ROI features, including those corresponding to foreground objects, by exploiting 

the similarity between different ROI features. Given the computational expense of di-

rectly computing attention maps for ROI features in their original dimension, we em-

ploy dimension reduction pooling operations for all ROI features. 

 

Fig. 3. Structure of ROI Refinement module RRM. 

As shown in Fig. 3, for ROI features 𝑅 ∈ ℝ𝑁×𝑑𝑖𝑚×ℎ×𝑤, we obtain 𝑅 ∈ ℝ𝑁×𝑑𝑖𝑚×
ℎ

2
×
𝑤

2  

through max pooling as ROI queries, denoted as 𝑄, and 𝑅 ∈ ℝ𝑁×𝑑𝑖𝑚×
ℎ

2
×
𝑤

2  through av-

erage pooling as ROI keys and ROI values, denoted as 𝐾 and 𝑉 respectively. Due to 

the inevitable introduction of noise when absorbing information from other ROIs, we 
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were inspired by the approach taken by [34], which utilizes the Weights Normalized 

Convolutional kernel to reduce noise and enhance the attention map. Before applying 

the softmax operation to the attention map, we utilize average pooling to selectively 

retain crucial information, effectively filtering out noise. After the modified attention 

operation, the resulting output will be restored to the original dimension and then com-

bined with the original ROI features using residual connections. The augmented ROIs 

𝑅𝑎𝑢𝑔 will then be input into the R-CNN Head along with queries for interaction. 

4 Experiments 

4.1 Datasets and Metrics 

Evaluation experiments were conducted on the widely used OWOD datasets, Pascal  

VOC [16] and MS-COCO [17]. It was observed that images in the Pascal VOC dataset 

lack descriptive information, posing a challenge for utilizing text information. To ad-

dress this limitation, the existing excellent approach, BLIP [35], was employed to au-

tomatically generate a caption for each image in Pascal VOC. A comparative analysis 

between TUPL and existing state-of-the-art methods was conducted using two com-

monly employed data partitioning criteria. The first criterion, OWOD SPLIT, follows 

the principles of ORE [1], combining the MS-COCO and Pascal VOC datasets. Within 

this criterion, all objects belonging to categories in Pascal VOC are considered known 

classes for Task 1. The sixty additional categories in MS-COCO are divided into three 

groups, each comprising twenty categories. These groups are assigned as known classes 

for Task 2, Task 3, and Task 4. The second criterion, proposed by Gupta et al. in Ow-

DETR [7], MS-COCO SPLIT, aims to address potential issues of superclass infor-

mation leakage inherent in the former partitioning pattern. This criterion relies solely 

on data from the MS-COCO dataset and generates the known class data for each task 

based on the division of super-classes. 

The evaluation criteria align with the mainstream assessment methods employed by 

existing approaches. The primary metric, mean average precision (mAP), assesses the 

model's detection performance on known classes, including previously known classes 

(pre mAP), the known classes specific to the current task (cur mAP), and the cumulative 

known classes up to the current task (both mAP). To evaluate the model's ability to 

detect unknown class, the recall rate of unknown class objects (UR) is primarily used. 

Additionally, two additional metrics are included: the absolute number of unknown 

class objects mistakenly detected as known class objects (AOSE), and Wilderness Im-

pact (WI), a metric that measures the impact of the model's ability to detect unknown 

class objects on its detection performance of known class objects. Collectively, these 

metrics provide a comprehensive assessment of the model's ability to detect both known 

and unknown class objects in an open environment. 

4.2 Implementation details 

ResNet50 [37] was employed as the backbone network, initialized with pre-trained 

weights from ImageNet. Feature Pyramid Network (FPN) was used as the neck, and 
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the cascaded optimization of FQR-CNN for dynamic interaction was employed in the 

decoding structure. The number of queries N was set to 100 with a dimension of 256. 

During training, r=5 pseudo candidate boxes for unknown class were randomly se-

lected. The values of 𝛿1 and 𝛿2 were empirically set as 0.5 and 0.8, respectively. In the 

inference stage, the default NMS threshold is set to 0.6. 

4.3 Main Results 

A comparative analysis was conducted between TUPL and existing open-world ob-

ject detection algorithms using two different data splitting modes: OWOD SPLIT and 

MS-COCO SPLIT. To ensure fairness, we exclude the energy-based uncertainty esti-

mation component from ORE (denoted as ORE-EBUI) to eliminate any potential influ-

ence of data leakage. 

Table 1. Comprehensive evaluation of open-world object detection using OWOD SPLIT dataset. 

TaskIDs Task1 Task2 Task3 Task4 

 WI AOSE    (↑) UR WI AOSE    (↑) UR WI AOSE    (↑) UR    (↑) 

 (↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both 

ORE-EBUI [1] 0.0621 10,459 56.00 4.9 0.0282 10,445 52.70 26.00 39.40 2.9 0.0211 7,990 38.20 12.70 29.70 3.9 29.60 12.40 25.30 

OW-DETR [7] 0.0571 10,240 59.2 7.5 0.0278 8,441 53.60 33.50 42.90 6.2 0.0156 6,803 38.30 15.80 30.80 5.7 31.40 17.10 27.80 

RandBox [9] 0.0240 4,498 61.80 10.6 0.0078 1,880 - - 45.30 6.3 0.0054 1,452 - - 39.40 7.8 - - 35.40 

UC-OWOD 

[10] 

0.0136 9,294 50.66 2.4 0.0117 5,602 33.13 30.54 31.84 3.4 0.0073 3,801 28.80 16.34 24.65 8.7 25.57 15.88 23.14 

SA [11] 0.0417 4,889 56.20 - 0.0213 2,546 53.39 26.49 39.94 - 0.0146 2,120 38.04 12.81 29.63 - 30.11 13.31 25.91 

CAT [8] 0.0581 7,070 59.90 21.8 0.0263 5,902 54.00 33.60 43.80 18.6 0.0177 5,189 42.10 19.80 34.70 23.9 35.10 17.10 30.60 

RE-OWOD 

[12] 

0.0449 - 59.70 9.1 0.0331 - 54.11 37.26 45.64 9.9 0.0241 - 43.06 24.64 37.59 11.4 37.99 28.66 35.66 

2B-OCD [3] 0.0481 - 56.37 12.1 0.0160 - 51.57 25.34 38.46 9.4 0.0137 - 37.24 13.23 29.24 11.7 30.06 13.28 25.82 

OCPL [4] 0.0423 5,670 56.64 8.3 0.0220 5,690 50.65 27.54 39.10 7.7 0.0162 5,166 38.63 14.74 30.67 11.9 30.75 14.42 26.67 

PROB [5] 0.0569 5,195 59.50 19.4 0.0344 6,452 55.70 32.20 44.00 17.4 0.0151 2,641 43.00 22.20 36.00 19.6 35.70 18.90 31.50 

Ann-RCNN 

[20] 

0.0604 8,332 56.67 12.8 0.0269 9,454 51.96 29.13 40.55 5.0 0.0157 6,635 40.82 14.56 32.07 9.8 31.68 13.09 27.03 

Ann-DETR 

[20] 

0.0564 46,589 59.34 13.6 0.0274 24,709 53.18 37.98 45.58 10.0 0.0194 14,952 43.62 26.66 37.97 14.3 33.54 21.76 30.60 

TUPL 0.0620 4,995 60.31 23.1 0.0253 2,598 51.92 34.31 43.12 18.7 0.0157 1,978 41.06 23.10 35.07 22.1 35.06 19.02 31.05 

Table 1 compares TUPL with existing OWOD methods using the OWOD SPLIT 

dataset. The existing methods are classified into three categories based on their use of 

pseudo-labeling. The first category, methods that annotate unknown class candidates 

based on the objectness scores, is listed at the top of the table. The second category, 

methods that annotate unknown class candidates by employing additional techniques, 

such as the selective search algorithm, is listed in the middle of the table. The third 

category, methods that do not use pseudo-labeling, is listed at the bottom of the table. 

Our method either outperforms existing state-of-the-art algorithms or achieves 
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comparable performance across all evaluation metrics. Despite some OWOD methods 

[5, 7, 8, 20] utilizing advanced and robust object detection frameworks like DDETR 

[38], TUPL outperforms them in both mAP for known classes and UR for unknown 

class. 

Notably, TUPL achieves a recall rate approximately 2 to 9 times higher than that of 

existing objectness score-based methods, as shown at the top of the table. Typical meth-

ods, such as ORE-EBUI [1] and OW-DETR [7], exhibit a clear bias problem towards 

known classes, with low unknown recall rates of 4.9 and 7.5, and high AOSE scores. 

This suggests frequent misclassification of unknown class objects as known class ob-

jects. We attribute this issue to the fact that objectness scores' learning exclusively relies 

on a few labeled known class objects. Consequently, they frequently misclassify boxes 

containing partial known class objects as unknown. This limitation hampers the ability 

to differentiate between the two. In contrast, we use high-level textual information as a 

unbiased guiding factor in learning unknown class objects. Additionally, we incorpo-

rate random selection to reduce the chances of mislabeling pseudo-labeled candidate 

boxes belong to unknown class. These techniques effectively address the known class 

bias issue observed in existing methods. 

Table 2. Comprehensive evaluation of open-world object detection using MS-COCO SPLIT da-

taset. 

TaskIDs Task1 Task2 Task3 Task4 

 WI AOSE    (↑) UR WI AOSE    (↑) UR WI AOSE    (↑) UR    (↑) 

 (↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both 

ORE-EBUI [1] - - 61.40 1.5 - - 56.50 26.10 40.60 3.9 - - 38.70 23.70 33.70 3.6 33.60 26.30 31.80 

PROB [5] 0.0196 1,915 73.85 17.3 0.0307 3,400 66.15 36.19 50.42 22.1 0.017 1,552 47.72 30.27 41.91 24.5 42.80 31.72 40.03 

OW-DETR [7] 0.0458 19,815 71.50 5.7 0.0499 19,749 62.80 27.50 43.80 6.2 0.0248 9,233 45.20 24.90 38.50 6.9 38.20 28.10 33.10 

CAT [8] 0.0234 2,126 70.65 24.5 0.0330 4,441 65.83 35.54 50.68 22.2 0.0208 3,545 51.09 32.82 45.00 25.0 45.48 34.90 42.84 

TUPL 0.0443 2,490 63.81 29.4 0.0244 1,367 54.23 48.87 51.55 29.0 0.0174 1,405 49.96 43.00 47.64 35.1 47.46 45.02 46.85 

Table 2 compares TUPL with existing OWOD algorithms using the MS-COCO 

SPLIT dataset. The MS-COCO SPLIT aims to address category superclass leakage be-

tween different tasks, making model learning more challenging. TUPL achieved sig-

nificantly greater improvements when faced with the more challenging MS-COCO 

SPLIT compared to the OWOD SPLIT. TUPL outperformed existing state-of-the-art 

(SOTA) methods in detecting unknown class, achieving UR rates of 29.4, 29.0, and 

35.1 in Tasks 1, 2, and 3, respectively. Evaluation results of Task 1 reveal a significant 

improvement in the detection accuracy of known classes compared to ORE-EBUI [1]. 

However, a noticeable disparity in mAP remains in Task 1 compared to the OWOD 

detectors using DDETR [38]. This disparity is attributed to the underlying framework 

of object detection. Our approach demonstrated significant improvement as the tasks 

progressed, reaching optimal levels of accuracy in detecting known classes and recall 

rates for unknown class in Tasks 2, 3, and 4. Furthermore, it effectively mitigated sub-

stantial performance gaps in detecting both previously known and currently known 
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classes, which were common in previous approaches. This further evidences the robust 

adaptability of TUPL. 

4.4 Ablation study 

Component of TUPL. To demonstrate the effectiveness of each module in TUPL, ab-

lation experiments are conducted, and the results are presented in Table 3. The baseline 

in the first row is FQR-CNN without any modifications, indicating that our basic de-

tection model, FQR-CNN, lacks the capability to detect unknown class objects. 

Table 3. Ablation experiments of TUPL components. 

LineID baseline Obj1 Obj5 SRS OTA RRM WI(↓) AO E(↓) mAP(↑) U (↑) 

1 √      0.0718  79,516  57.06  0.0 

2 √ √     0.0761  77,927  56.42  10.0  

3 √  √    0.0755  72,358  55.87  13.7  

4 √   √   0.0756  15,169  56.33  22.8  

5 √   √ √  0.0637  5,143  59.96  22.8  

6 √   √ √ √ 0.0620  4,995  60.31  23.1 

 

Fig. 4. mAP and UR under different configurations of TUPL components. 

"Obj1" represents selecting pseudo-unknown candidates based on the top-1 object-

ness score, aligning with the approach used in ORE-EBUI. Results in the second row 

show that "obj1" enables the model to detect unknown class to some extent. However, 

it falls short in effectively distinguishing between known and unknown classes, as evi-

denced by the relatively high AOSE score. "Obj5" refers to selecting pseudo-unknown 

boxes based on the top-5 objectness scores, consistent with the pseudo-labeling ap-

proach used in OW-DETR. The increased number of pseudo-labeling candidates en-

hances the model's capability to recognize unknown class objects to some extent, 

achieving UR rates from 10.0 to 13.7. However, it also compromises the accuracy of 

known classes significantly, resulting in a significant decrease in mAP from 0.64 to 

1.19. 
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"SRS" stands for our Text-driven Pseudo-labeling module, which includes random 

selection. This method significantly improves the recall rate of unknown class objects, 

surpassing "obj1" by a factor of 2.28. Furthermore, "SRS" not only leads to a moderate 

decrease in the WI value but also effectively addresses the issue of the model mistak-

enly identifying unknown class objects as known class objects, resulting in an impres-

sive 80.53% reduction from "obj1" in A-OSE. "OTA" refers to replacing the Hungarian 

matching algorithm with the OTA matching algorithm. Assigning multiple candidate 

boxes to each ground-truth during the training process enhances the supervision signal 

in the model learning process and improves performance in detecting both known and 

unknown classes. Additionally, integrating the "RRM" module enhances the distinctive 

features of foreground objects in the images, as illustrated in Line 6, thereby further 

improving the model's capability to detect all foreground objects. The various compo-

nents of TUPL are outlined in Line 6. Fig. 4 provides a visual representation of how 

the model's performance varies with different combinations of these components. 

The Versatility of SRS. We conducted comparative experiments to validate the effec-

tiveness of sub-structures in our pseudo-label method, SRS. As depicted in Fig. 5, our 

method demonstrates exceptional detection performance by selecting pseudo candi-

dates for the unknown class from the top 5 candidates based on similarities, achieving 

a notable 19.4 unknown recall rate. This performance surpasses the results obtained by 

existing methods that depend on objectness scores. The inclusion of random selection 

in our method further enhances UR by an additional 3.5, indicating the random selec-

tion further reduces bias towards known classes in our model. Lastly, by applying a 

higher similarity threshold for secondary filtering, we can obtain higher-quality pseudo 

labels that are specifically tailored for unknown class. Thus, the model's detection ca-

pability is improved for both known and unknown classes simultaneously. 

Furthermore, we directly integrate the SRS module into ORE-EBUI, an OWOD  

method based on the Faster R-CNN framework, to assess its framework-agnostic va-

lidity. In the training process, specifically for candidate boxes that do not match any 

ground truth, we first exclude those with low scores and retain fifty background candi-

dates with the highest objectness score. The primary goal of this step is to reduce noise 

during the pseudo-labeling process. Subsequently, we apply our SRS without making 

any modifications. The comparative results for Task 1 are presented in Table 4, where 

"ORE-EBUI+SRS" denotes our enhancement of ORE through SRS. "ORE-

EBUI+obj5" means changing obj1 in the original ORE to obj5. The data reveal that 

merely augmenting the number of pseudo-labels for unknown class can adversely affect 

the performance on known classes. The SRS-enhanced model, ORE-EBUI+SRS, 

achieved a higher unknown class recall rate of 7.6 for unknown class, compared to the 

original rate of 4.9, without compromising the detection of known classes. Furthermore, 

the WI metric, which evaluates the model's susceptibility to wild environments, has 

shown significant improvement. These findings suggest that SRS improves the model's 

understanding of both known and unknown class objects. 
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Different ways for ROI Refinement. To assess the effectiveness of our RRM module, 

we conducted a comparative analysis with "RoIAttn" module proposed by [39], along 

with two other commonly used feature enhancement methods. The results are summa-

rized in Table 5, where "TUPL-RRM" denotes our model without any ROI enhance 

ment. LSTM is frequently employed to learn correlations between objects. In this study, 

we treat all ROI features as a continuous sequence. Subsequently, we average values 

from the bidirectional LSTM's encoded sequence to obtain the enhanced ROI features, 

as indicated in the "BiLstm" row. Furthermore, we employ a Graph Convolutional Neu-

ral Network (GCN) as another comparative method for our RRM module. In this ap-

proach, we consider ROI features as nodes in a graph and establish edges between them 

based on similarities. To address concerns regarding computational complexity, we uti-

lize the enhanced features obtained after a single update of the graph convolution, as 

presented in the "GCN" row. 

 

Fig. 5. Ablation of substructures in SRS. 'A': 𝛿1 = 0.5; 'B': 𝛿1 = 0.5, 𝑟 = 5; 'C': 𝛿1 = 0.5, 𝑟 =
5, 𝛿2 = 0.8. 

Table 4. Framework-agnostic validation of SRS on ORE-EBUI. 

Strategies WI(↓) AO E(↓) mAP(↑) U (↑) 

ORE-EBUI 0.0621 10,459 56.00 4.9 

ORE-EBUI +obj5 0.0480 17,345 18.31 7.1 

ORE-EBUI +SRS 0.0528 12,120 56.03 7.6 

As presented in Table 5, the utilization of the ROI enhancement module has gener-

ally yielded a positive impact on the model compared to not using any ROI feature 

enhancement module. However, RRM consistently exhibits superior performance over-

all. The BiLstm and GCN approaches result in an increase of 0.26 and 0.1 in mAP, and 

0.1 and 0.2 in UR, respectively. In contrast, our RRM module achieve even higher im-

provements, with a growth of 0.35 and 0.2 in mAP and UR, respectively. It is worth 

            "       "                                           ’                   

detecting known classes. We attribute this to the nature of "RoIAttn," which involves 

clustering operations with two additional memory units. In an open environment, labels 

are unavailable for unknown class, this process is susceptible to a significant amount 

of unlabeled noise. However, RRM enhances the features of foreground objects based 

on the similarity of ROI features, thereby circumventing this negative factor. 
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Hyperparameter Analysis. In our proposed SRS module, there are two critical hy-

perparameters, denoted as 𝛿1 and 𝛿2. We conducted a systematic exploration of these 

parameters, the outcomes are illustrated in Fig. 6. 𝛿1 is employed to filter out the ma-

jority of background queries. Firstly, we conducted an ablation study on 𝛿1 based on 

the top-5 similarity scores to selecting pseudo-candidate boxes set  δ₁ is varied in [0.4, 

0.5, 0.6, 0.7]. To strike a balance between the model's ability to detect known and un-

known class objects, we ultimately settled on 𝛿1 = 0.5. Building upon this finding, an 

ablation analysis on 𝛿2 was further conducted to ascertain its role in the secondary fil-

tering process. Consequently, we determined 𝛿2 = 0.8 as the optimal value. 

Table 5. Comparative experiments of different ROI feature enhancement strategies. 

Strategies WI(↓) AO E(↓) mAP(↑) U (↑) 

TUPL-RRM  0.0637 5,143 59.96 22.8 

BiLstm 0.0637 5,068 60.22 22.9 

GCN 0.0634 5,074 60.06 23.0 

RoIAttn 0.0633 5,161 59.89 23.2 

TUPL 0.0620 4,995 60.31 23.1 

  

Fig. 6. mAP and UR in Task1 with different hyperparameters. 

4.5 Visualization 

To more effectively demonstrate the efficacy of TUPL, we present visualizations of 

some of the test results. As shown in Fig. 7, we present the results of our TUPL com-

parison with ORE-EBUI and OW-DETR after training on task 1. The test results of 

ORE-EBUI, OW-DETR, and TUPL are displayed in rows 1, 2, and 3, respectively. 

Superior Performance. As depicted in Fig. 7, TUPL exhibits superior capability in 

detecting both known and unknown objects in images. Firstly, TUPL shows remarkable 

capability in accurately localizing and predicting the categories of known objects with 

high confidence, even in the presence of severe occlusion. For example, TUPL success-

fully identifies and predicts the correct categories in the top right corner of the images 

in the third column, where only a chair leg is visible, and in the top left corner of the 

images in the fourth column, where a small car is heavily occluded. In contrast, both 
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ORE-EBUI and OW-DETR fail to detect these objects. Secondly, TUPL also demon-

strates superior capability in detecting unknown class. For instance, in the first column, 

ORE-EBUI fails to detect any objects of the unknown class, while OW-DETR incor-

rectly identifies the background as an unknown object with two nearly identical bound-

ing boxes. In contrast, TUPL explicitly detects unknown objects such as a skateboard, 

shoes, and a board in the image. Although OW-DETR detects more objects of unknown 

class in the third column (broccoli, carrot, etc.), it fails to accurately delineate appro-

priate borders for unknown objects and to detect the known class objects in the picture. 

Additionally, it incorrectly identifies two objects that do not belong to the known clas-

ses. In contrast, TUPL accurately locates objects of unknown class in the image (such 

as a cup and rice) and precisely identifies all known class objects (dining table and 

chair). 

 

Fig. 7. Visualization of our TUPL comparison with ORE-EBUI and OW-DETR. "unknown" in 

the figure represents unknown class object in current stage. 

Limitations. While our proposed TUPL method exhibits superior object detection ca-

pabilities across both known and unknown classes compared to existing approaches 

relying on objectness scores (as evident in Fig. 7), it faces a limitation characterized by 

relatively low confidence levels when identifying unknown class objects, typically 

around 20%. This limitation stems from the single pseudo-label mechanism, which as-

signs a single label to all unknown class objects, potentially compromising the purity 

of the pseudo-labels. Future research will concentrate on addressing this issue by ex-

ploring the potential of providing more specific pseudo-tags for individual unknown 

class objects, which we believe will enhance the model's performance in this regard. 
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5 Conclusions 

This paper initially analyzes recent research in open-world object detection 

(OWOD) and identifies a trend wherein models using objectness scores for unknown 

pseudo-labeling show biases toward known classes. In contrast to images, which 

mainly convey superficial information, textual data often carries higher-level semantic 

meaning with practical implications. To overcome this limitation, we integrate text into 

the pseudo-labeling process for unknown class within the OWOD context, employing 

a novel text-driven strategy with random debiasing. This approach effectively reduces 

bias toward known classes and improves the model's performance. Moreover, we im-

prove the model's capability to identify all foreground objects by integrating a one-to-

many label matching technique and an ROI feature enhancement strategy. The results 

of our proposed TUPL, as demonstrated on benchmark datasets, surpass those of exist-

ing methods, significantly advancing detection capabilities for unknown class com-

pared to current pseudo-labeling techniques. We anticipate that our research will sub-

stantially contribute to the field of object detection in open-world environments. 
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