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Abstract. This research presents a method called CoGSD (Consistent Gaussian 
Splatting Dreamer) for rapid construction of 3D models with multi-view con-
sistency through 3D Gaussian Splatting. However, the traditional approach of 3D 
Gaussian Splatting encounters challenges in effectively constructing 3D assets 
due to the absence of stable ground truth. Furthermore, the inherent expansion 
characteristics of 3D Gaussian Splatting result in abnormal expansion of satu-
rated Gaussian points and inconsistencies across multiple views. Additionally, 
the lack of reliable ground truth exacerbates these multi-view inconsistency is-
sues. To solve this problem, we use a pre-trained consistent diffusion model to 
generate consistent viewpoints. In our framework, instead of generating diffusion 
with a single a priori perspective, the 2D image generation method of SDS uses 
a controlnet-tuned pre-trained model to generate 2D images with coherent view-
points, resulting in high-quality 3D model generation. The method in this paper 
provides an effective solution for 3D modeling and is expected to be widely used 
in the field of 3D modeling and visual effects. 

Keywords: 3D Model Generation, Multi-view Consistent Image Generation, 
3D Gaussian Splatting, Score Distillation Sampling, Diffusion Model 
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Fig. 1. Our CoGSD framework achieves high fidelity and excellent consistency across multiple 
viewpoints without showing high saturation of colors and shapes. 

1 Introduction 

The realm of 3D digital content creation is undergoing a rapid and significant transfor-
mation, expanding its influence across various sectors like digital gaming, advertising, 
film production, and the metaverse. This evolution is driven by advanced technologies 
such as image-to-3D and text-to-3D conversions, which are revolutionizing how pro-
fessionals and amateurs alike create and interact with 3D assets. The impact of these 
technologies is far-reaching, significantly enhancing user engagement and immersion 
in digital experiences, especially in the film and gaming industries. However, the pro-
cess of converting 2D content into 3D models presents significant challenges, primarily 
due to the limitations in existing methods. 

The current method has two main paths: text is converted into a 3D model through 
2D images [1-4] and an end-to-end method that directly generates a 3D model based 
on text description [5,6].  

The existing text to 3D technology routes are not all end-to-end methods[2,3,7,8] , 
most of them first convert text input into images [9-11] , and then proceed to convert 
these images into 3D models. 

Methods for image generating 3D usually use the input individual images as base 
view for multi-view image generation[12-17] , and then 3D reconstruction using mul-
tiple images with different viewpoints [18,19] Despite these advancements, current 
methods still struggle to meet the demands for high-quality 3D reconstruction, particu-
larly in terms of maintaining image consistency during multi-view image generation. 
The reliance on intermediate steps often hampers the fidelity and consistency of the 
final 3D model. Consequently, this results in the emergence of two key issues: the 
multi-view inconsistency problem, which pertains to maintaining consistency in object 
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shapes across different perspectives, and the Janus problem, wherein AI-generated 3D 
objects may exhibit multiple heads or faces [2,20].  

The reason is that the 2D diffusion model does not have all the three-dimensional 
spatial information, so multi-view information cannot be integrated more effectively. 
A lot of work has been devoted to solving this problem in recent years. Zero123 [12] 
uses synthetic datasets to learn relative camera viewpoint control, which allows the 
generation of new images of the same object under specified camera transformations. 
Some models based on zero123, such as One-2-3-45 [14], SyncDreamer [16], and Con-
sistent 123 [21] are also based on one-time perfect image group generation model. 
However, this will result in the consistent diffusion model being unable to be iteratively 
optimized to maximize its performance. 

To tackle these challenges, we introduce a new method called CoGSD (Consistent 
Gaussian Splatting Dreamer). Our approach aims to maintain consistency throughout 
the iterative optimization process, ensuring that the final 3D renderings closely match 
the intended viewpoints.The key concept behind CoGSD is to utilize pre-trained mod-
els to generate images with consistent viewing angles. These images are then used to 
create coherent 3D contours and produce high-fidelity 3D models. 

CoGSD uses the Shap-E prior to construct the underlying point cloud structure, and 
introduces a pre-trained consistency diffusion model during the iteration process, by 
which the consistency of the same viewpoint before and after the iteration is maintained 
while forming the consistency of multiple views. 

On this basis, CoGSD uses the 3D a priori knowledge as existing knowledge to gen-
erate 3D high-fidelity images, using a 2D diffusion model to deeply optimize the Gauss-
ian parameters of the 3D model. Score Distillation Sampling (SDS) method is used as 
a loss function for fine-tuning the parameters to ensure that the generated novel views 
are consistent with the base viewpoints while maintaining high quality and fidelity. 

Our experiments, conducted on RTX 3090 GPUs with stable-diffusion-2-1-base [22] 
and Shap-e [23] models, demonstrate the efficacy of our approach.  

We used advanced image quality assessment metrics such as PSNR, SSIM, LPIPS, 
and FID for a comprehensive evaluation.  

Controlled by a priori constraints, the final results demonstrate the validity of our 
method.The CLIP metric illustrates the degree of fit between the 3D model and the 
cues. Also, we show perspective images of the model to demonstrate the results of this 
study in generating consistent models. 

The results show that CoGSD significantly outperforms existing methods, establish-
ing new benchmarks in the field of 3D content creation. 

The contributions of this study are as follows: 

• We implemented a new framework that recycles consistent diffusion models (such 
as zero123) during the iterative generation process and uses ControlNet [24] to main-
tain stable front and rear control during each iteration step. This can maximize the 
potential for consistent generation. 

• The reconstruction method of Gaussian Splatting is highly sensitive to ground truth 
and can quickly generate, delete, rotate angles, and split changes of points.  



4  Z.Sun,  X. Li and S. Chang 

• This work also focuses on exploring the initial point density information required 
for Gaussian Splatting to generate 3D assets, which will have a reference impact on 
subsequent work. 

2 Related Works 

2.1 3D Reconstruction 

Since the introduction of Neural Radiation Field (NeRF) [25], it has been widely ap-
plied in the fields of novel view synthesis, light field estimation, and three-dimensional 
reconstruction with impressive performance. DreamFusion [2] utilizes pre-trained im-
age diffusion a priori with a specialized image space loss function to optimize a 3D 
model represented by a neural radiation field (NeRF). However, 2D image generation 
models lack 3D spatial information. To alleviate this problem, studies such as Score 
Jacobian Chaining [26] use view cues and additional regularization strategies. How-
ever,  3D generation based SDS [2] needs to run at unusually high bootstrap scales, and 
ProlificDreamer [3] solves these challenges with variational distillation (a  general form 
of SDS.). Recently, 3D Gaussian Splatting [27] has been proposed as an alternative 3D 
representation of NeRF, which has shown impressive quality and speed in 3D recon-
struction [28]. 
2.2 3D Generative Models 

Some projects leverage a few existing large 3D datasets for end-to-end generation, as 
seen in [29-31]. However, the challenge lies in the absence of a standardized represen-
tation of the 3D data. DreamFusion [2] achieves groundbreaking text-to-3D generation 
using pre-trained image diffusion priors. Nonetheless, this method of reconstructing 
nerf is notably slow. To address this issue, [4] devised a two-stage optimization frame-
work, acquiring a rough model before conducting specific generative reconstruction 
efforts.Moreover, the straightforward approach of guiding them through potential frac-
tion distillation necessitates encoding the potential space at each guidance step. Latent-
NeRF [32] proposes incorporating NeRF into the potential space to yield Latent-NeRF. 
With the introduction and remarkable application of 3D Gaussian Splatting, Gaussian-
Dreamer [8] uses 3D Gaussian Splatting [27] and takes the step of densifying the point 
cloud to obtain a 3D model.  DreamGaussian～\cite[33] and GaussianDreamer have 
the same basic reconstruction method, but the kernel of the mechanism is completely 
different, through Generative Gaussian Splatting [27], Efficient Mesh Extraction [34], 
and UV-space Texture Refinement [35] in three steps. Our work also uses 3D Gaussian 
Splatting for reconstruction. 

3D consistency generation methods have also been studied in recent years, and con-
sistency generation methods not only include the above mentioned Shap-e and so on 
through the end-to-end approach to the generation of methods, recently especially hot 
is  [12] proposed Zero-123, which uses a synthetic dataset to learn the control of the 
relative camera point of view, which allows for the generation of a new image of the 
same object under the specified camera transformations. Whereas Magic123 [1] uses a 
single prior, text inversion, and monocular depth regularization method to accomplish 
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a two-stage strategy to complete a coherent generative model with good results; One-
2-3-45 [14] employs diffusion pre-training of Zero-123 [12] to generate multiview im-
ages for the input view, and then boosts them into 3D space, accomplishing a relatively 
good coherent model construction at a small cost; Recently SyncDreamer [16] likewise 
uses Zero-123 [12] model weights, and they propose a simultaneous multiview diffu-
sion model that models a joint probability distribution of multiview images such that 
multiview-consistent images are generated in a single inverse process that addresses 
the geometric and color consistency of the generated images. 

3 Preliminaries 

In this section, we will briefly review the representation and rendering process of 3D-
GS [27] in 3.1 and elaborate on the diffusion model in 3.2.  
3.1 3D Gaussian Splatting 

3D Gaussian Splatting [27] introduces an explicit three-dimensional scene representa-
tion using a point cloud format, employing Gaussian functions for scene modeling. 
Each gaussian particle is characterized by a covariance matrix Σ and a central point 𝑋𝑋,, 
the latter being the Gaussian's mean. The covariance matrix Σ can be decomposed into 
a scale matrix 𝑆𝑆 and a rotation matrix 𝑅𝑅 for differential optimizations: 

Σ = 𝑅𝑅𝑆𝑆𝑆𝑆𝑇𝑇𝑅𝑅𝑇𝑇 �1� 

Furthermore, the Gaussian representation is defined as: 

𝐺𝐺(𝑋𝑋) = 𝑒𝑒−
1
2𝑥𝑥

𝑇𝑇𝛴𝛴−1𝑥𝑥 �2� 
For rendering novel views, Gaussians on the camera plane utilize splatting tech-

niques [36]. The transformed covariance matrix 𝛴𝛴′ in camera coordinates, calculated 
using the Jacobian affine view transform 𝑊𝑊 and the projection transform 𝐽𝐽, is given by: 

Σ′ = 𝐽𝐽𝑊𝑊Σ𝑊𝑊𝑇𝑇𝐽𝐽𝑇𝑇 �3� 
Each Gaussian particle has the following attributes: position 𝑋𝑋 ∈ 𝑅𝑅3, color defined 

by the spherical harmonic coefficient 𝐶𝐶 ∈ 𝑅𝑅𝑘𝑘 (where 𝑘𝑘 represents degrees of freedom), 
opacity 𝛼𝛼 ∈ 𝑅𝑅 , rotation factor 𝑟𝑟 ∈ 𝑅𝑅4 , and scale factor 𝑠𝑠 ∈ 𝑅𝑅3 . For each pixel, all 
Gaussian colors and opacities are computed using Equation 2. The blending formula 
for N-ordered points overlapping pixels is as follows:  

𝐶𝐶 = �𝑐𝑐𝑖𝑖α𝑖𝑖�(1 − α𝑖𝑖)
𝑖𝑖−1

𝑗𝑗=1𝑖𝑖∈𝑁𝑁

�4� 

 
Here, 𝑐𝑐𝑖𝑖 and 𝛼𝛼𝑖𝑖 denote the density and color of the point, calculated by multiplying 

the Gaussian with covariance 𝛴𝛴 by the opacity of each point and the SH color coeffi-
cient, which can be optimized. 
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3.2 Score Distillation Sampling 

DreamFusion [2], one of the most representative approaches to upgrading 2D diffusion 
models to 3D, proposes to optimize the 3D representation by using a pre-trained 2D 
diffusion model 𝜙𝜙 using the Score Distillation Sampling (SDS) method. Specifically, 
the 3D representation MipNeRF [37] is used as the parameter 𝜃𝜃 to be optimized, and 
the rendering method is used as the parameter g to obtain the rendered image 𝐱𝐱 = 𝑔𝑔(𝜃𝜃). 
In order to make the rendered image 𝐱𝐱 similar to the samples obtained from the diffu-
sion model 𝜙𝜙, Dreamfusion uses a score estimation function: 𝜖𝜖�̂�𝜙(𝐳𝐳𝑡𝑡; 𝑦𝑦, 𝑡𝑡), which is used 
to estimate the score of the rendered image 𝐱𝐱, the text embedding $y$, and the noise 
embedded in the rendering method, given a noisy image z𝑡𝑡 , the text embedding 𝑦𝑦, and 
the noise 𝜖𝜖 embedded in the rendered image 𝐼𝐼𝑅𝑅,𝑇𝑇 the text embedding 𝑦𝑦 and the noise 
level 𝑡𝑡 predicts the sampling noise 𝜖𝜖�̂�𝜙. The score estimation function provides the di-
rection used to update the parameter 𝜃𝜃. The formula for computing the gradient is as 
follows. 

∇𝜃𝜃ℒSDS�𝜙𝜙, 𝐱𝐱 = 𝑔𝑔(𝜃𝜃)�𝐸𝐸𝑡𝑡,𝜖𝜖 �𝑤𝑤(𝑡𝑡)�𝜖𝜖�̂�𝜙(𝐳𝐳𝑡𝑡; 𝑦𝑦, 𝑡𝑡) − 𝜖𝜖�
∂𝐱𝐱
∂𝜃𝜃
� �5� 

where 𝜖𝜖 represents Gaussian noise, and 𝑤𝑤(𝑡𝑡) is the weighting function. 

 

 Fig. 2. Our framework. 

4 Method 

In this section, we introduce CoGSD (Consistent Gaussian Splatting Dreamer) in detail, 
as shown in the Fig. 2. The basic viewpoint is derived from the prompt, with ControlNet 
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and Zero123 aiming to align the remaining viewpoint distribution as closely as possible 
to this basic viewpoint. Meanwhile, the initial point cloud of the 3D model is obtained 
for subsequent processing. An image from a specific viewpoint, denoted as 𝐼𝐼𝑅𝑅,𝑇𝑇, is then 
rendered from this point cloud to guide Zero123 in diffusing the generation of a novel 
view. 
4.1 Novel View Generation 

When addressing the issue of high variability in 3D Gaussian Splatting, we encounter 
the challenge of producing highly saturated Gaussian particles. To tackle this problem, 
we've implemented an innovative strategy that incorporates a shape prior. This prior 
ensures that the model possesses a fundamental point cloud structure at the initial stage, 
thereby laying a solid foundation for subsequent generative reconstruction. 

Further, in order to generate a novel view image that is consistent with the base 
viewpoint, we adopt an approach that combines the target camera information with the 
base viewpoint data. Specifically, we first introduce an a priori model rendering image 
𝐼𝐼𝑅𝑅,𝑇𝑇 of the target viewpoint into a ControlNet  𝐹𝐹𝜓𝜓. The ControlNet is a zero123-oriented 
diffusion model, which replicates the weights of that model such that  𝐹𝐹𝜓𝜓 obtains train-
able weights based on 𝐼𝐼𝑅𝑅,𝑇𝑇. 

Next, we introduce the base view 𝑧𝑧𝑏𝑏 and cue 𝑦𝑦 into this framework to generate novel 
view images. The generation strategy for the novel view can be described by the fol-
lowing equation: 𝐹𝐹𝛼𝛼 ⊕ 𝐹𝐹𝜓𝜓, where  ⊕ denotes processing using the Zero-1-to-3 model 
adjusted by ControlNet. This approach not only retains the core features of the under-
lying perspective but also allows us to finely control the generation of image details by 
adjusting model weights. 

By combining the Shap-E prior, the target viewpoint prior, and the ControlNet-based 
weight adjustment strategy, we achieve effective control of highly saturated Gaussian 
particles , as well as the ability to generate a novel view image that is highly consistent 
with the original base view. 

𝑧𝑧𝑅𝑅,𝑇𝑇
(𝑡𝑡+1) = 𝐹𝐹𝛽𝛽 ⊕ 𝐹𝐹𝜓𝜓�𝐼𝐼𝑅𝑅,𝑇𝑇 , 𝑧𝑧𝑅𝑅,𝑇𝑇

(𝑡𝑡) , 𝑧𝑧𝑏𝑏 ,𝑦𝑦� �6� 
4.2 Optimization 

In order to significantly improve the detail richness and overall quality of 3D assets, we 
adopt the point cloud prior to the 3D diffusion model (Shape-E [23]) when initializing 
the 3D Gaussian parameter θ. After this step was completed, we further used a two-
dimensional diffusion model to optimize these Gaussian parameters deeply. We use 
Score Distillation Sampling (SDS) as the loss function to fine-tune the three-dimen-
sional Gaussian parameters. 

In terms of specific implementation strategy, we first generate the rendered image 
x =  𝑔𝑔(𝜃𝜃) through the 3D Gaussian Splatting method 𝑔𝑔. Here 𝑔𝑔 refers to the photo-
metric rendering technique we elaborated on in 3.1, which allows us to generate high-
quality rendered images from three-dimensional Gaussian parameters. Next, in order to 
achieve parameter optimization, we calculate the SDS loss, which is specially designed 
to guide the two-dimensional diffusion model 𝐹𝐹𝛼𝛼 ⊕ 𝐹𝐹𝜓𝜓  to update the Gaussian param-
eter 𝜃𝜃 gradient. The continuous iterative process aims to maximize the distribution of 
newly generated perspectives while maintaining consistency and aligning as closely as 
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possible with the distribution of basic perspectives, thereby producing higher-quality 
new perspective images. SDS leverages the direct correlation between Gaussian param-
eters and the target image, and also includes comprehensive improvements to the gen-
erated images. 

Table 1. Comparison with Zero123, Syncdreamer, Shap-e, Gaussiandreamer baseline models 

 Zero123 SyncDream Shape-E Gaussian-
Dreamer 

CoGSD(ours) 

PSNR↑ 17.57 19.83   12.66 20.23 25.68 
SSIM↑ 0.868 0.883    0.701 0.891 0.904 
LPIPS↓ 0.093 0.085    0.152 0.084 0.079 
FID↓ 0.029 0.026  0.054 0.028 0.024 

 

∇𝜃𝜃ℒSDS�𝜙𝜙, 𝐱𝐱 = 𝑔𝑔(𝜃𝜃)�𝐸𝐸𝑡𝑡,𝜖𝜖 �𝑤𝑤(𝑡𝑡)�𝜖𝜖�̂�𝜙(𝐳𝐳𝑡𝑡; 𝑦𝑦, 𝑡𝑡) − 𝜖𝜖�
∂𝐱𝐱
∂𝜃𝜃
� �7� 

 
Among them, 𝜖𝜖�̂�𝜙(𝐳𝐳𝑡𝑡; 𝑦𝑦, 𝑡𝑡) is the image generated by diffusion model with noise. Its 

definition is as follows. We are The consistency perspective is introduced here: 
𝜖𝜖�̂�𝜙(𝐳𝐳𝑡𝑡;𝑦𝑦, 𝑡𝑡) = 𝐼𝐼𝑅𝑅,𝑇𝑇 + 𝜖𝜖 + 𝑧𝑧𝑅𝑅,𝑇𝑇

(𝑡𝑡) �8� 

After a series of short optimization cycles using the 2D diffusion model 𝐹𝐹𝛼𝛼 ⊕ 𝐹𝐹𝜓𝜓, 
the resulting 3D instance not only maintains the 3D value provided by the 3D diffusion 
model 𝐹𝐹3𝐷𝐷 consistency, and also achieves higher quality and fidelity. 

5 Experiment 

5.1 Compare with Baseline 

In order to validate the multi-view consistency of our model, we performed evaluations 
at Google Scan Objects (GSO), which is a dataset containing a large number of 3D 
scanned objects. These objects were acquired through advanced scanning techniques 
that ensure high-quality and high-resolution 3D images. We verified the image similar-
ity between a particular viewpoint (camera parameters randomized) of the generated 
3D assets and the corresponding viewpoint ground truth of the GSO by acquiring one 
of the viewpoints (camera parameters randomized). 

We conducted experiments on RTX 3090 GPUs, setting the number of training iter-
ation steps to 1200. For the 2D diffusion model, we used stable-diffusion-2-1-base [22] 
with a guidance scale of 7.5, and for the 3D diffusion model Shap-E [23], with a guid-
ance scale of 7.5, and learning rates of initial opacity and position of 10−2 and 10−5 
respectively. 

In order to provide a comprehensive quantitative assessment of the performance of 
the novel view synthesis technique, we employ four state-of-the-art image quality as-
sessment metrics that cover multiple key dimensions of image similarity. Specifically, 
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [38], Learned 
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Perceptual Image Patch Similarity(LPIPS) [39], and Fréchet Inception Distance (FID) 
[40]. Together, these evaluation metrics form a comprehensive evaluation framework 
that not only examines the differences between the benchmark algorithms and the pro-
posed method in this study in terms of traditional pixel-level accuracy, but also provides 
in-depth comparisons and analyses from the perspectives of structural preservation, 
perceptual similarity, and statistical feature distribution. The results are shown in the 
Table 1. Comparison with Zero123, Syncdreamer, Shap-e, Gaussiandreamer baseline 
models. Through this multi-dimensional evaluation approach, we are able to measure 
and present the performance of the novel view generation technique in various aspects 
more accurately, thus providing valuable references for further research and applica-
tions. 

This article compares the effects with Dreamfusion [2], ProlificDreamer [3], zero123 
[12], and SyncDreamer [16]. The results are shown in the Fig. 3. 

 
Fig. 3. Examples for exhibiting. 
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Fig. 4. This is the result of a test in the "A monkey in military uniform saluting" prompt, from a 
quarter of the number of points to 16 times the number of points in the original a priori model. 

 
5.2 Ablation Study 

The impact of the initial prior point cloud number on the results. Since Gaussian 
point clouds have rapid variability, in order to suppress the occurrence of this variabil-
ity, GaussianDreamer introduced a densification method to achieve this purpose. How-
ever, there is no exact explanation of the appropriate point cloud density, which was 
carried out in our study. In order to experimentally explore the appropriate parameters 
for this densification, we performed experiments on intervals of 1 4�  to 16 times the 
number of point clouds. Using the GSO data set as the test object and PSNR as the 
indicator to explore the optimal densification effect, The results are shown in the Fig. 
5. We have found that densification is best produced at around 16x, and that too much 
increase in the number of points can lead to slow computing and memory limitations 
that outweigh the benefits. This greatly reduces the anomalous generation of Gaussian 
point clouds around the subject. 
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Fig. 5. Variation of the quality of the generated 3D model with the number of additions, the 

horizontal axis is the number of additions and the vertical axis is the PSNR metrics. 

Analysis of opacity distribution of initial point cloud. In the 3D Gaussian represen-
tation, an accurate representation of the scene can be achieved by interleaving the opti-
mization of the 3D Gaussian model and carefully adjusting the density parameters, es-
pecially the precise optimization of the anisotropic covariance. It also produces an ef-
fect on OPACITY, when the model finishes generating the 3D resource, the distribution 
of its OPACITY number is shown in Fig. 6. After calculating the numerical quantities, 
the mean is −2.186, the variance is 0.290, the statistic of the Shapiro-Wilk Test is 
0.976, and the pvalue is 0.25. We cannot reject the hypothesis that this is a normal 
distribution. This result is consistent with our expectations for Gaussian Splatting tech-
nology. Due to the characteristics of its normal distribution, we can also perform some 
flexible transformations on the opacity distribution of the point cloud. Migrating it to 
other reconstruction methods may have surprising effects, which requires further work. 

 
Fig. 6. Quantitative distribution of opacity values of point clouds 
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6 Conclusion 

In this study, we propose a consistent 3D asset generation method. Unlike the con-
sistency-based view one-time reconstruction 3D generation method, our method incor-
porates consistency information during the iterative optimization process to ensure that 
the 3D rendering results are close to the consistency information of the novel view. The 
framework not only remains efficient in generating consistent information, but also en-
sures relative control of the current viewpoint. In this paper, we also explore the impact 
of the point cloud prior to the particle opacity distribution, providing a reference metric 
for subsequent research on 3D asset generation using Gaussian particles. The experi-
mental results we employed show that the method performs excellently in generating 
high-quality 3D models, and the evaluation metrics of the generated 3D models are 
substantially ahead of baseline.However, due to the limitations of the Zero-1-to-3 pre-
training framework, there is still room for improvement in our method for generating 
finer 3D models. In the future, the method can be further enhanced and optimized by 
using more advanced diffusion models based on this study. 
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