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Abstract. Time series forecasting plays a critical role in numerous practical 

industries, where effectively learning and extracting meaningful representations 

has always been a significant and challenging problem. Although contrastive 

learning methods have shown outstanding ability in learning meaningful repre-

sentations in computer vision and natural language processing domains, their per-

formance in time series forecasting tasks is weaker. This weakness can mainly 

be attributed to their failure to fully consider the characteristics of time series 

data, leading to information loss. Specifically, existing data augmentation strate-

gies primarily operate at the timestamp level, which cannot fully exploit and uti-

lize local semantic information. Moreover, previous research has not taken into 

account the sharing of information between independent channels when dealing 

with inter-channel information. This limitation, to some extent, restricts the in-

tegrity of the learned representations. To address these issues, we propose a new 

method called SimPM, a simple patch masking contrastive learning framework 

for time series forecasting that effectively mitigates information loss. In our ex-

periments on seven benchmark time series forecasting datasets, SimPM demon-

strates competitive performance compared to existing contrastive learning meth-

ods. 
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1 Introduction 

In recent years, significant progress has been made in time series forecasting, with ex-

tensive applications in weather forecasting, finance, and traffic prediction [1-4].It is 

crucial to fully utilize the large volume of time series data to obtain meaningful repre-

sentations. Contrastive learning, an effective unsupervised representation learning 

method, has achieved remarkable success in CV and NLP domains [5-8]. 

By learning representations by contrasting similar and dissimilar data samples, con-

trastive learning can capture the latent structure and relationships in the data [9]. How-

ever, the data augmentation strategies commonly utilized in contrastive learning are 

designed based on inherent characteristics of images and text, such as positional and 

semantic equivariance. As such, these strategies cannot be directly adapted to time 
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series forecasting tasks without appropriate modifications.  Recently, researchers have 

proposed a series of augmentation methods for time series [10-14], but most focus on 

the timestamp-level and have difficulty extracting local semantic information. Moreo-

ver, due to widespread periodicity in time series data, false negative samples often oc-

cur, not addressed in previous methods. 

In the realm of time series forecasting, the role of inter-channel correlation is of 

significant importance. Despite this, Dlinear [15] has managed to achieve notable suc-

cess by introducing the concept of channel independence (CI), which has led to en-

hanced efficiency. However, this approach may inadvertently result in information loss 

and create bottlenecks. An excessive focus on channel correlation could also give rise 

to issues related to computational complexity. Consequently, it is of paramount im-

portance to strike a balance by fully leveraging both the aspects of independence and 

correlation. 

 

Fig. 1. Given a set of time series channels, we combine the channels of the same time series in 

a high-dimensional embedding space to learn deep representations. We present different chan-

nels of the same time series from the ETTh1 dataset. 

 

In order to address these challenges, we propose SimPM, a Simple Patch Masking 

contrastive learning framework for time series forecasting. The main contributions of 

this paper are summarized as follows: 

• We propose a multi-channel contrastive learning framework to capture shared 

representations across channels while maintaining compactness by discarding 

channel interference factors. 错误!未找到引用源。 shows our strategy regard-

ing the channel. To avoid false negative samples, we incorporate a self-supervised 

framework without negative samples. 

• We propose a new data augmentation strategy that aggregates time steps into uni-

variate subsequence patches and applies random masking to enhance locality and 

capture comprehensive semantic not obtainable at the timestamp level. 

• We evaluate on 7 datasets, in which the mean squared error (MSE) is 17.4% lower 

than the baseline model. We conduct extensive ablation studies to demonstrate 
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the generalizability of each proposed module and the robustness of SimPM to 

different encoder architectures.  

2 RELATED WORK 

2.1 Contrastive Learning for Time Series Forecasting 

In recent years, end-to-end models have achieved better performance in time series pre-

diction tasks compared to traditional models. Additionally, two-stage methods have be-

gun to show potential due to their ability to learn better representations for downstream 

tasks. Among these, contrastive learning optimizes self-discrimination tasks to learn 

meaningful time series representations by contrasting augmented positive samples 

against negative samples. In recent years, researchers have explored data augmentation 

strategies to obtain reliable positive and negative samples. Specifically, TNC [11] uses 

time-invariance by defining local windows as positive samples and distal signals as 

negative samples, mitigating sampling bias through Positive-Unlabeled (PU) learning. 

TS-TCC [10] and CA-TCC [16] perform cross-view prediction with strong and weak 

augmentations to improve the forecasting results. CoST [12] transforms different aug-

mented views into representations of amplitude and phase through Fast Fourier Trans-

form, enhancing the interpretability of the representations. LaST [17] uses variational 

inference to disentangle and learn the seasonal-trend representations in the latent space 

of time series data. However, these timestamp-level methods have difficulty capturing 

local semantic information. Moreover, negative sample selection is not well-consid-

ered, which may result in false exclusions [18]. 

2.2 Channel independence and Channel dependence 

Channel-dependent (CD) methods make future data predictions by considering the his-

torical data across all channels. Conversely, channel-independent (CI) methods treat 

multivariate time series as individual univariate time series and use univariate predic-

tion functions to create multivariate predictors. With this approach, the prediction for a 

specific channel depends only on its own historical values, ignoring other channels' 

data. Dlinear [15] surpasses well-designed transformer-based models by training a sim-

ple linear model using a channel-independent training strategy. Further studies, such as 

PatchTST [19], have also proven that channel independence can boost performance, 

while mixed-channel models are more likely to overfit. CrossFormer [20] attempts to 

enhance the mixed-channel aspect of transformers but still faces challenges with high 

channel noise interaction and the inability to separate at the output layer. 

2.3 Patching Strategies 

Patching has been applied to tasks in various data modalities, reducing noise interfer-

ence in models and helping capture local semantic information. In NLP, large pre-

trained models like BERT [21] and GPT-3 [22] adopt subword-level segmentation 
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methods, improving semantic understanding capabilities. In CV, transformer-based 

models like ViT [23], Swin Transformer [24], and CvT [25] employ image segmenta-

tion strategies. In the contrastive learning of time series, TS2Vec [13] divides multiple 

time series into several patches and defines hierarchical losses at the instance and patch 

levels. However, it focuses more on classification tasks and pays less attention to pre-

dictive features. 

3 Method 

3.1 Problem Definition 

A time series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} is a sequence of time step observations over a time 

range 𝑇 , where each 𝑥𝑡 ∈ ℝ𝑀 . We represent the 𝑖𝑡ℎ  univariate subsequence 𝑥1:𝑇
(𝑖)

=

(𝑥1
(𝑖)

, … , 𝑥𝑇
(𝑖)

), where 𝑖 = 1, … , 𝑀. The input (𝑥1, … , 𝑥𝑇) is divided into 𝑀 univariate 

sequences �̂�(𝑖) ∈ ℝ1×𝑇. We aim to predict the 𝐿 future values 𝑋𝑇+1, … , 𝑋𝑇+𝐿 . 

 

Fig. 2. Illustration of our proposed SimPM. 

3.2 Overall Architecture 

The sequence �̂�(𝑖)  is divided into non-overlapping patches. We represent the patch 

length as 𝑃 and the non-overlapping region between two adjacent patches as stride 𝑆. 

The concatenation process generates the patch sequence �̂�𝑝
(𝑖)

∈ ℝ𝑃×𝑁, where 𝑁 is the 

number of patches, 𝑁 = ⌊
(𝑇−𝑃)

𝑆
⌋ + 2. Here, we pad the end of the original sequence with 

𝑆 repeated instances of the last value 𝑥𝑇
(𝑖)

∈ ℝ before concatenation. 
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�̂�𝑝
(𝑖)

= {(�̂�1
(𝑖)

, … , �̂�𝑃
(𝑖)

), (�̂�𝑆+1
(𝑖)

, … , �̂�𝑆+𝑃
(𝑖)

), … } (1) 

We apply two independent masks to the patch sequence �̂�𝑝
(𝑖)

 to generate two new 

contextual views. Specifically, let us assume we have a random variable 𝑀𝑝 ∼

Bernoulli(𝑝), representing the mask values sampled from a Bernoulli distribution. The 

mask function can be expressed as: 

mask(�̂�𝑝
(𝑖)

, 𝑝) = �̂�𝑝
(𝑖)

⊙ 𝑀𝑝 (2) 

where ⊙ denotes element-wise multiplication. Now, we can use the mask function 

to generate two new contextual views for the patch sequence, �̂�𝑝,1
(𝑖)

 and �̂�𝑝,2
(𝑖)

. 

错误!未找到引用源。 shows the overall architecture of SimPM. We input two ran-

domly augmented views, �̂�𝑝,1
(𝑖)

 and �̂�𝑝,2
(𝑖)

, into the network, which we will denote as 𝑥1 

and 𝑥2 for simplicity. These two views are processed by the encoder network 𝑓. The 

encoder consists of two components: an input projection layer and a Transformer En-

coder/MLP module. The encoder 𝑓 shares weights between the two views. For each 

input 𝑤, the input projection layer is a fully connected layer that maps the input 𝑤 to a 

high-dimensional latent variable 𝑧. A Transformer Encoder/MLP module is then ap-

plied to extract the contextual representation of each patch, 𝑧1 and 𝑧2. 

Afterward, 𝑧1 is transformed into 𝑞1 by a MLP predictor. The MLP predictor oper-

ates on the global context information and is designed to produce a high-level repre-

sentation. It is also designed to predict the mathematical expectation over the data aug-

mentation distribution and correct the errors introduced by the randomness of data aug-

mentation. This process is formalized as follows: 

𝑧1, 𝑧2 = Enc(Proj(𝑥1),Proj(𝑥2))
𝑞1 = Pred(𝑧1)

(3) 

We aim to maximize the mutual information 𝐼(𝑞1; 𝑧2) between the high-level repre-

sentation 𝑞1 and the contextual representation 𝑧2, which can be expressed as: 

𝐼(𝑞1; 𝑧2) = 𝐻(𝑞1) − 𝐻(𝑞1|𝑧2) (4) 

Here, 𝐻(⋅) represents entropy, and 𝐻(⋅ | ⋅) represents conditional entropy. In prac-

tice, as computing and maximizing the mutual information directly is challenging, we 

approximate this by minimizing the negative cosine similarity between 𝑞1 and 𝑧2: 

𝒟(𝑝1 , 𝑧2) = −
𝑝1

∥∥𝑝1∥∥2

⋅
𝑧2

∥∥𝑧2∥∥2

(5) 



6  Jinjun Zhang et al. 

∥⋅∥2 is ℓ2-norm. To prevent model collapse, we perform a Stop-grad operation [7] 

on 𝑧2. We define a symmetrized loss as: 

ℒ =
1

2
𝒟(𝑝1, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑(𝑧2)) +

1

2
𝒟(𝑝2, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑(𝑧1)) (6) 

We collect the loss of each channel and take the average to get the overall objective 

loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 =
1

𝑀
∑  

𝑀

𝑖=1

 ℒ𝑖 (7) 

 

Fig. 3. Context Feature Extraction Module. 

3.3 Model Variants 

Two alternative variants of our model are available: SimPM/T, which is based on the 

transformer architecture, and SimPM/MLP, which utilizes a multilayer perceptron de-

sign. 错误!未找到引用源。 shows their encoders. The core mechanism of the trans-

former is the multi-head attention mechanism, which effectively captures long-range 

dependencies within sequences. However, due to the high computational complexity of 

the multi-head attention mechanism, the model's training and inference time costs are 

increased. Inspired by Dlinear [15], this paper offers the option of using lightweight 

and fast MLP layers. The MLP layers encode the input sequences through a series of 

fully connected layers and nonlinear activation functions, thereby extracting features 

from the sequences. By completely eliminating the computationally intensive multi-

head attention, the MLP layers can achieve similar or even better performance 
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compared to the transformer. A comprehensive description of the MLP block architec-

ture is provided in Appendix 6.1. 

4 Experiments 

In this section, we conducted detailed experimental tests on SimPM and reported its 

comparison results with various time series representation learning methods. We also 

compared it with some of the most advanced end-to-end time series forecasting meth-

ods. 

4.1 Experimental Setup 

Datasets In our research, we utilized 7 of the most popular multivariate time series 

datasets for comparative representation learning. Weather1 dataset collects 21 meteor-

ological indicators such as humidity and temperature from Germany. Traffic [26] da-

taset records the road occupancy rate of different sensors on the San Francisco highway. 

Electricity [27] is a dataset describing the hourly electricity usage of 321 customers. 

ETT [28] is a crucial indicator for long-term power deployment. This dataset is com-

posed of two years of data from two different counties.  

ETTh1 and ETTh2 represent an hourly sampling frequency, while ETTm1 and ETTm2 

labels represent a 15-minute sampling frequency. We emphasize that the Electricity, 

Traffic, and Weather datasets have a larger number of feature dimensions, which leads 

to more stable experimental results on these datasets. Detailed statistics of the datasets 

can be found in Table 1. 

Table 1. Statistics of popular datasets for benchmark. 

Datasets Features timestamps ADF Test Statistic 

ETTh1 7 17420 -5.909 

ETTh2 7 17420 -4.136 

ETTm1 7 69680 -14.985 

ETTm2 7 69680 -6.225 

Weather 21 52696 -26.661 

Traffic 862 17544 -15.046 

Electricity 321 26306 -8.483 

 

Baselines To demonstrate the effectiveness of SimPM, we compared our method with 

the most recent and advanced representation learning methods and end-to-end learning 

methods. In our experiments, we compared our method with the following benchmarks: 

• LaST [17] based on variational inference, is designed to separate the seasonal-

trend representations in the latent space. It supervises and disentangles represen-

tations from their own perspectives and input reconstruction, and introduces a 

series of auxiliary objectives. 

 
1  https://www.bgc-jena.mpg.de/wetter/ 
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• TF-C [14] embeds a time-based neighborhood of a sample close to its frequency-

based neighborhood. The objective of this approach is to ensure that the time-

based and frequency-based representations of the same sample are proximate in 

the time-frequency space, thereby providing superior consistency during the pre-

training phase. 

• CoST [12] is a time series representation learning framework for long sequence 

time series forecasting, which comprises both time domain and frequency domain 

contrastive losses to learn discriminative trend and seasonal representations, re-

spectively. 

• TS2Vec [13] enhances the robustness of contextual representations for individual 

timestamps through its implementation of augmented hierarchical context views. 

• Autoformer [27] is the first to apply seasonal trend decomposition after each neu-

ral block. This is a standard method in time series analysis that makes the raw 

data more predictive. 

• Informer [28] analyzed the attention mechanism in time series forecasting, pro-

posing a sparse attention mechanism to save computational and time costs. By 

combining feature distillation and one-step time series forecasting, it achieved 

improvements in both efficiency and forecasting accuracy compared to Trans-

former. 

Evaluation Setup We perform more challenging multivariate time series forecasting, 

rather than univariate forecasting on different datasets. Multivariate forecasting re-

quires considering all feature dimensions of the dataset. Following the setup in the 

PatchTST, we divided the datasets into training/validation/test sets, and used MSE and 

MAE as evaluation metrics. All models follow the same experimental setup, with time 

series inputs undergoing zero-mean normalization. The input sequence length 𝑇 =
336, but when testing the crop data augmentation method, we used a sequence input 

length 𝑇 = 500. The forecast sequence length 𝐿 ∈ {96,192,336,720} for all dataset 

evaluations. 

Implementation Details We conducted 50 epochs of pre-training on the encoder using 

the framework shown in Fig. 1. During the pre-training process, patches were set to be 

non-overlapping, the input length was chosen as 336, and the patch size was set to 12, 

generating 28 patches. We used a conventional 15% masking ratio, and the results of 

different masking ratios were analyzed in Section 4.3. We adopted the line probing 

strategy from PatchTST for testing, combining the pre-trained encoder with a linear 

prediction head, freezing the encoder parameters, and training only the linear head for 

10 epochs. A comprehensive description of the prediction head can be found in Appen-

dix 6.1. All our training and testing processes were conducted on a single NVIDIA 

RTX 4090 GPU. 

4.2 Main Results 

错误!未找到引用源。 presents a comprehensive comparative analysis of the perfor-

mance of our SimPM/MLP and SimPM/T models relative to well-established bench-

marks in the field of representational learning across a range of time-series forecasting 
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tasks. Notably, SimPM models outperform these benchmarks, achieving a 17.4% re-

duction in Mean Squared Error (MSE) and a 12.5% reduction in Mean Absolute Error 

(MAE) compared to the most competitive baseline model, LaST. This superior perfor-

mance of SimPM is particularly evident within the ETTh1 and Traffic datasets, where 

both SimPM/MLP and SimPM/T demonstrate substantial improvements in average 

MSE and MAE metrics, surpassing traditional representational learning approaches 

such as TF-C, TNC, and TS2Vec, and even the contemporary end-to-end learning 

method Autoformer. For example, in the case of the Traffic dataset, SimPM/T achieves 

an average MAE of 0.305, which is significantly lower than the 0.384 MAE of Auto-

former and the 0.399 MAE of LaST, indicating a notable enhancement in forecasting 

accuracy. Although LaST and Autoformer exhibit commendable performance in cer-

tain forecasting scenarios, the SimPM approach consistently delivers superior results 

across all examined datasets. This indicates the high universality and robustness of the 

SimPM models, capable of delivering consistent and superior predictive performance 

across diverse time spans, particularly within the highly variable Traffic dataset. 

Methods 
Contrastive Representation Learning End-to-End Learning 

SimPM/MLP SimPM/T LaST TF-C TNC TS2Vec CoST Autoformer Informer 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 

96 0.383 0.413 0.382 0.418 0.409 0.412 0.685 0.668 0.775 0.636 0.639 0.569 0.515 0.512 0.435 0.446 0.941 0.769 

192 0.435 0.453 0.438 0.449 0.489 0.469 0.649 0.673 0.877 0.694 0.733 0.619 0.661 0.591 0.456 0.457 1.007 0.786 

336 0.473 0.478 0.472 0.478 0.572 0.518 0.596 0.651 1.010 0.762 0.931 0.728 0.812 0.679 0.486 0.487 1.038 0.784 

720 0.526 0.528 0.526 0.532 0.771 0.668 0.611 0.671 1.152 0.834 1.063 0.799 0.970 0.771 0.515 0.517 1.144 0.857 

avg 0.454 0.468 0.455 0.469 0.560 0.517 0.635 0.666 0.954 0.732 0.842 0.679 0.740 0.638 0.473 0.477 1.033 0.799 

ETTh2 

96 0.373 0.403 0.372 0.383 0.391 0.430 1.631 0.985 1.022 0.778 0.979 0.780 1.062 0.801 0.332 0.368 1.549 0.952 

192 0.452 0.468 0.421 0.436 0.741 0.685 3.524 1.571 1.887 1.063 2.065 1.124 1.669 1.008 0.426 0.434 3.792 1.542 

336 0.493 0.502 0.473 0.497 0.410 0.518 3.310 1.386 2.512 1.227 2.194 1.197 1.846 1.075 0.477 0.497 4.215 1.642 

720 0.587 0.585 0.579 0.581 0.512 0.695 3.005 1.336 2.320 1.206 2.636 1.370 2.070 1.110 0.453 0.490 3.646 1.619 

avg 0.476 0.490 0.461 0.474 0.514 0.582 2.867 1.319 1.935 1.069 1.969 1.118 1.662 0.999 0.422 0.447 3.301 1.439 

ETTm1 

96 0.306 0.363 0.338 0.389 0.321 0.358 0.681 0.595 0.660 0.551 0.581 0.528 0.382 0.425 0.510 0.492 0.626 0.560 

192 0.342 0.381 0.382 0.413 0.357 0.378 0.697 0.668 0.713 0.589 0.618 0.553 0.431 0.459 0.514 0.495 0.725 0.619 

336 0.379 0.403 0.432 0.446 0.411 0.426 0.782 0.625 0.756 0.624 0.693 0.597 0.497 0.504 0.510 0.492 1.005 0.741 

720 0.441 0.442 0.487 0.485 0.501 0.474 0.878 0.701 0.814 0.676 0.782 0.653 0.639 0.585 0.527 0.493 1.113 0.845 

avg 0.367 0.397 0.410 0.433 0.398 0.409 0.759 0.647 0.736 0.610 0.669 0.583 0.487 0.493 0.515 0.493 0.867 0.691 

ETTm2 

96 0.206 0.311 0.361 0.420 0.184 0.273 0.361 0.426 0.369 0.432 0.341 0.418 0.315 0.403 0.205 0.293 0.355 0.462 

192 0.245 0.331 0.427 0.459 0.250 0.324 0.791 0.703 0.533 0.542 0.497 0.518 0.523 0.531 0.278 0.339 0.595 0.586 

336 0.345 0.403 0.538 0.518 0.352 0.396 1.225 0.895 0.892 0.718 0.795 0.672 0.801 0.687 0.343 0.379 1.270 0.871 

720 0.447 0.458 0.599 0.594 0.458 0.492 4.592 1.738 1.922 1.102 1.926 1.054 1.161 0.979 0.414 0.419 3.001 1.267 

avg 0.311 0.376 0.481 0.498 0.311 0.371 1.742 0.940 0.929 0.699 0.890 0.666 0.450 0.650 0.310 0.358 1.305 0.797 

Weather 

96 0.175 0.239 0.169 0.232 0.171 0.210 0.237 0.294 0.397 0.464 0.392 0.423 0.417 0.453 0.249 0.329 0.354 0.405 

192 0.217 0.282 0.209 0.267 0.209 0.251 0.199 0.424 0.482 0.505 0.506 0.512 0.474 0.495 0.325 0.370 0.419 0.434 

336 0.261 0.314 0.263 0.318 0.260 0.288 0.337 0.387 0.505 0.514 0.525 0.530 0.497 0.517 0.351 0.391 0.583 0.543 

720 0.321 0.356 0.329 0.367 0.316 0.331 0.377 0.375 0.543 0.547 0.556 0.552 0.533 0.542 0.415 0.426 0.916 0.705 

avg 0.244 0.298 0.243 0.296 0.239 0.270 0.287 0.370 0.482 0.508 0.495 0.504 0.480 0.502 0.335 0.379 0.568 0.522 

Eletricity 

96 0.165 0.268 0.152 0.241 0.158 0.246 0.395 0.431 0.434 0.477 0.354 0.419 0.177 0.279 0.196 0.313 0.304 0.393 

192 0.179 0.279 0.164 0.251 0.168 0.259 0.339 0.575 0.431 0.479 0.357 0.422 0.190 0.290 0.211 0.324 0.327 0.417 

336 0.194 0.294 0.182 0.269 0.185 0.275 0.457 0.478 0.434 0.480 0.373 0.434 0.206 0.306 0.214 0.327 0.333 0.422 

720 0.226 0.322 0.214 0.298 0.223 0.305 0.333 0.435 0.445 0.489 0.402 0.453 0.241 0.336 0.236 0.342 0.351 0.427 

avg 0.191 0.291 0.178 0.265 0.184 0.271 0.381 0.480 0.436 0.481 0.372 0.432 0.204 0.303 0.214 0.327 0.329 0.415 

Traffic 

96 0.427 0.302 0.421 0.292 0.722 0.395 0.589 0.293 0.915 0.513 1.039 0.575 0.766 0.447 0.597 0.371 0.733 0.410 

192 0.445 0.311 0.437 0.302 0.717 0.391 0.588 0.495 0.904 0.507 1.082 0.604 0.765 0.440 0.607 0.382 0.777 0.435 

336 0.463 0.323 0.453 0.304 0.728 0.393 0.750 0.490 0.907 0.511 1.110 0.611 0.774 0.441 0.623 0.387 0.776 0.434 

720 0.498 0.336 0.486 0.321 0.756 0.417 0.864 0.518 0.937 0.518 1.135 0.624 0.793 0.450 0.639 0.395 0.827 0.466 

avg 0.458 0.318 0.449 0.305 0.731 0.399 0.698 0.449 0.916 0.512 1.092 0.604 0.775 0.445 0.617 0.384 0.778 0.436 
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Table 2. Ablation study of various mask ratios on ETT and Weather datasets. 

Mask ratio 0.1 0.2 0.3 0.4 0.5 Variance 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 0.462 0.474 0.453 0.467 0.453 0.467 0.451 0.466 0.453 0.468 1.504×10-5 8.239×10-6 

Weather 0.236 0.284 0.254 0.31 0.259 0.319 0.257 0.316 0.258 0.322 7.336×10-5 1.870×10-6 

 

4.3 Ablation Study 

Mask Ratio To investigate the learning ability of the model under different masking 

ratios, we present in Table 2 the forecasting results of SimPM under different masking 

ratios on the ETTh1 and Weather datasets, and calculate the variance under different 

masking ratios. We find that the fluctuations in the time series forecasting results of 

SimPM under different masking ratios are minimal. This indicates that SimPM can ac-

curately reconstruct the original time series, demonstrating strong representation learn-

ing capabilities. Full results are in Appendix 6.2. 

Data Augmentation Methods The use of data augmentation methods in contrastive 

learning is crucial, but due to the differences between modal data such as images and 

text and time series data, these methods can hardly be applied to time series data. Ex-

isting data augmentation methods are mostly used in the field of time series classifica-

tion, and these methods often disrupt the sequential characteristics of time series in 

order to extract significant classification features. According to researches [29, 30], we 

conducted detailed ablation experiments on Crop, Jitter, Timewarp, timestamp Mask 

and Patch Mask methods on 5 datasets, further demonstrating the superiority of using 

the Patch Masking method. Table 3 shows the average performance of different data 

augmentation methods. 错误!未找到引用源。 visualizes the different time series aug-

mentation methods we selected. 

Table 3. Ablation study of various data augments on all datasets. 

Models Patch Mask Crop Jitter Timewarp timestamp Mask 

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 0.454 0.468 0.459 0.473 0.457 0.517 0.455 0.469 0.459 0.473 

ETTh2 0.476 0.490 0.534 0.546 0.495 0.526 0.538 0.552 0.500 0.529 

ETTm1 0.367 0.397 0.375 0.403 0.364 0.394 0.368 0.397 0.669 0.583 

ETTm2 0.311 0.376 0.311 0.377 0.306 0.373 0.309 0.375 0.323 0.546 

Weather 0.244 0.298 0.240 0.290 0.236 0.282 0.240 0.294 0.241 0.291 

Electricity 0.191 0.291 0.212 0.326 0.324 0.429 0.192 0.299 0.262 0.374 

Traffic 0.458 0.318 0.472 0.323 0.513 0.339 0.549 0.367 0.514 0.347 

Avg 0.357 0.377 0.372 0.391 0.385 0.409 0.379 0.393 0.424 0.449 
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Fig. 4. Various data augmentations that are used in the experiments: jittering, time-warping, 

cropping, timestamp-masking, patch-masking methods. 

Channel Independence In SimPM, we performed channel-independent operations on 

the data before feeding it into the encoder. In order to evaluate the overall impact of 

this operation on the model's performance, and to substantiate our explanation of the 

channel-independent method, we conducted an ablation study on the channel-independ-

ent operation. Table 4 presents the results of both experiments, where "w/o CI" indi-

cates that the channel-independent operation was not used. Our experimental results 

show that the application of channel-independent operations significantly enhances the 

learning capability of SimPM. 

Table 4. Ablation study of channel independence operation on ETT and Weather datasets.  

Method SimPM SimPM w/o CI 

Metrics MSE MAE MSE MAE 

ETTh1 0.454 0.468 0.496 0.548 

ETTh2 0.476 0.490 0.485 0.498 

ETTm1 0.367 0.397 0.464 0.469 

ETTm2 0.311 0.376 0.748 0.630 

Weather 0.244 0.298 0.432 0.473 
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Fig. 5. Visualization of ETTm2 predictions by different models under the L= 336 setting. The 

blue lines stand for the ground truth and the red lines stand for predicted values. 

4.4 Case Study 

错误!未找到引用源。 provides a clear comparison of the results by different models. 

It can be seen that our proposed SimPM method can more accurately capture the 

changes in time. Other methods have effectively learned the seasonal information of 

the time series, but they are unable to accurately adjust for the trend fluctuations in the 

time series. More dataset case study are provided in Appendix 6.3. 

5 Conclusion 

In this paper, we have proposed a new framework called SimPM for time series fore-

casting. This method introduces the concept of channel independence and further pro-

poses a patch-level mask data augmentation method to learn robust time features. Ex-

periments show that our SimPM surpasses existing contrast learning methods and out-

performs the state-of-the-art end-to-end models on some datasets. Ablation experi-

ments have confirmed the effectiveness of the proposed data augmentation method and 

channel independence. In the future, we plan to apply SimPM to other downstream 

tasks (such as classification, anomaly detection, etc.), and further explore how to bal-

ance channel independence and channel relevance. 

 



 SimPM 13 

Acknowledgements. This research was partly supported by the National Key R&D 

Program of China (No.2023YFB3308601), the Talents by Sichuan provincial Party 

Committee Organization Department, and Chengdu - Chinese Academy of Sciences 

Science and Technology Cooperation Fund Project (Major Scientific and Technologi-

cal Innovation Projects). 

6 Supplement 

6.1 Supplementary Figures 

In this section, we supplement the structure of the MLP module in the model architec-

ture diagram. Both the Intra-patch MLP and Inter-patch MLP mentioned in the main 

text adopt the structure shown in Fig. , with the difference being the exchange of the 

order of the partition and feature channels. Fig.  illustrates the prediction head structure 

when testing with line probabilities. 

 

Fig. 6. MLP blocks                Fig. 7. Prediction head 

6.2 Full Results 

Table 6. Full results ablation study of various mask ratios on ETT and Weather datasets.  

Mask ratio 0.1 0.2 0.3 0.4 0.5 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 

96 0.385 0.415 0.382 0.412 0.382 0.412 0.382 0.412 0.383 0.412 

192 0.442 0.459 0.434 0.452 0.434 0.451 0.434 0.452 0.436 0.452 

336 0.480 0.484 0.471 0.477 0.471 0.477 0.472 0.477 0.477 0.481 

720 0.540 0.536 0.524 0.528 0.523 0.528 0.516 0.524 0.514 0.525 

avg 0.462 0.474 0.453 0.467 0.453 0.467 0.451 0.466 0.453 0.468 

Weather 

96 0.164 0.228 0.175 0.248 0.178 0.255 0.177 0.253 0.179 0.261 

192 0.206 0.261 0.222 0.288 0.224 0.294 0.224 0.294 0.224 0.298 

336 0.254 0.301 0.274 0.329 0.278 0.335 0.276 0.334 0.278 0.341 

720 0.321 0.347 0.346 0.377 0.355 0.391 0.352 0.384 0.349 0.387 

avg 0.236 0.284 0.254 0.311 0.259 0.319 0.257 0.316 0.258 0.322 
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6.3 Case Study 

 

Fig. 8. Visualization of Weather predictions by different models under the $L=336$ setting. 

 

Fig. 9. Visualization of Electricity predictions by different models under the $L=336$ setting. 

 

Fig. 10. Visualization of Traffic predictions by different models under the $L=336$ setting. 
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