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Abstract. In the realm of human skeleton-based action recognition, the graph 

convolutional networks have proven to be successful. However, directly storing 

coordinate features into the graph structure presents challenges in achieving shift, 

scale, and rotation invariance, which is crucial for actions with significant dis-

placements. Such as figure skating, due to the significant displacements of ath-

letes relative to the camera and the inherent perspective effects, leading to varia-

tions in scale, position, and rotation-related features. Significant displacements 

and perspective effects in actions video result in variations in scale, position, and 

rotation-related features. To address this, drawing inspiration from leveraging 

high-order information, we propose a novel cosine stream. This stream utilizes 

the bending angle of human joints for action recognition based on human skele-

ton. Furthermore, we introduce a new keyframe downsampling algorithm that 

significantly improves model performance. Notably, our approach does not ne-

cessitate any modifications to the backbone. Through extensive experiments on 

three datasets—FSD-10, FineGYM, and NTU RGB+D, our approach demon-

strates improved recognition of actions with significant displacement compared 

to current mainstream methods.  
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1 Introduction 

Action recognition has become an active research area in recent years, as it plays a 

significant role in video understanding. Prior investigations have explored various mo-

dalities for feature representation, such as RGB frames, optical flows, audio waves, and 

human skeletons. Among these modalities, skeleton-based action recognition has gar-

nered heightened interest in recent years due to its action-focusing nature and robust-

ness against complicated background. Among the various techniques for skeleton-base 

action recognition, Graph Convolutional Networks (GCN) have been one of the most 

popular approaches. Yan [10] were pioneers in applying GCN along with temporal con-

volution to recognize human skeleton-based action. To bolster the capabilities of GCN, 

recent approaches [8], [11], [12], [13] have aimed to acquire more fitting topologies. 

However, these GCN based approaches fall short in addressing the challenge of achiev-

ing shift, scale, and rotation invariance. When it comes to recognizing actions such as 
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those of motor vehicle drivers and figure skaters, the execution of actions by drivers 

and skaters may introduce velocities that are not directly correlated with the actions 

themselves. These velocities can result in translational shifts and scale changes of the 

performers in the video frames, as illustrated in Fig. 1, resulting in variations in the 

coordinate features of human key points. When the model lacks shift, scale, and rotation 

invariance, these coordinate changes can interfere with the model's recognition. In this 

work, our primary focus is on recognizing figure skating actions. Inspired by domain 

knowledge in figure skating, we leverage novel high-order information extracted from 

skeleton data to quantify the joint range of motion between two bones. The joint range 

of motion, typically measured in degrees, provides a valuable metric for assessing joint 

flexibility and mobility. Inherently linked to posture and movement, it emerges as an 

inherently discriminative feature for action recognition tasks. We represent the joint 

range of motion through cosine similarities between pairs of bone vectors, forming the 

foundation of our cosine stream. By feeding these cosine similarities into a graph con-

volutional network, we make predictions for action labels. Simultaneously, the cosine 

stream integrates with the joint-bone two-stream network, giving rise to the develop-

ment of a comprehensive three-stream network. 
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Fig. 1. The left side depicts the human body's skeleton at the 35th frame, and the right side 

shows the skeleton at the 220th frame of the same sample. The original data, normalized with-

out further processing, presents both frames on the same canvas. The smaller appearance of the 

left skeleton suggests a greater distance from the camera, while the larger right skeleton exhib-

its noticeable changes in body joint position and rotation. This emphasizes the presence of shift, 

rotation, and scale variations in the sequence data. 

 

In data processing, contemporary methods encompass two primary steps for prepro-

cessing the provided skeleton sequence for model input. Firstly, in the spatial dimen-

sion, the initial frame is designated as the reference, with the skeleton's center point set 

as the origin, thereby aligning the skeleton's spine with the z-axis. Secondly, addressing 

the temporal dimension involves implementing diverse solutions to manage incon-

sistent sequence lengths within the dataset. A recent work by Duan [20] introduces a 

uniform sampling technique, evenly dividing sequences into N non-overlapping seg-

ments with an equal number of frames. One frame is then randomly selected from each 

segment and aggregated to form a new sub-sequence. While effective, this method 

overlooks considerations for keyframes. Building upon ideas from Liu [12] and TSN 

[9], we enhance the approach by simplifying the keyframe selection strategy and inte-

grating it with the original uniform sampling. Various combination strategies have been 

explored, resulting in particularly significant improvements in the joint stream and bone 

stream. 

Our contributions are summarized as follows: 

─ We propose a cosine stream, which quantifies the joint range of motion between two 

bones in degrees, to assist in action recognition with significant displacement. 

─ We have enhanced the existing downsampling algorithm by integrating the keyframe 

concept. This enhancement yields substantial improvements in both the joint and 

bone streams. 

─ The experimental results indicate that our method can enhance the accuracy perfor-

mance of the model without necessitating modifications to the network structure it-

self. 

2 Related Work 

GCN [1], [2], [3], [4], [5], [6] is widely adopted in skeleton-based action recognition. 

It models human skeleton sequences as spatiotemporal graphs. Yan introduced ST-

GCN [10], a widely recognized baseline for GCN-based approaches, which integrates 

spatial graph convolutions and temporal convolutions to model spatiotemporal data.  

Shi [11] bring in adaptive topology of the graph and propose bone stream integrated 

with joint stream in a two-stream network. Additionally, they proposed extracting mo-

tion information using the coordinate differences of the joints and the bones between 

two consecutive frames, and then combining them into a multi-stream network [8].  

Liu [12] have proposed a disentangled multi-scale aggregation scheme aimed at remov-

ing redundant dependencies between vertex features from various neighborhoods.  
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They also introduced a three-dimensional graph convolution operator that facilitates 

direct information flow across space and time. Chen [13] have proposed a channel-wise 

topology refinement graph convolution, which dynamically models channel-wise to-

pologies in a refinement approach, leading to flexible and effective correlation model-

ing. 

3 Method 

3.1 Cosine stream 

 

Fig. 2. The takeoff phase involves two jumping techniques in figure skating: the flip and the 

lutz. In the depiction of the flip jump on the left, the skater positions the left foot on the inner 

edge of the skate blade, shifting the overall body weight to the inside of the blade, with the left 

arm naturally extended. On the right, showcasing the lutz jump, the only difference is the skater 

placing the left foot on the outer edge of the skate blade. This results in a relatively outward 

shift of the body weight. For stability and enhanced takeoff power, skaters typically choose to 

naturally curve the left hand towards the right side. 

 

In figure skating, athletes often maintain a consistent skating speed during the execution 

of actions, leading to significant displacement and variations in position features. The 

angle of the ice skate blade relative to the ice surface, distinguishing between the inside 

and outside edges, is a crucial factor in action classification (see Fig. 2). To preserve 

blade clarity, slight differences in body joint angles occur, which tend to remain rela-

tively stable during displacement compared to coordinates. Joint angle changes are typ-

ically induced by specific actions, making them more discriminative. We aim to input 

human body joint angles as raw features into the network in the form of cosine similar-

ities. The cosine similarity cos𝑣𝑖 is calculated using Eq. (1) is the neighborhood of  𝑣𝑖, 
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𝐴|𝑁(𝑣𝑖)|
2 is the number of permutations, and 𝑒𝑖𝑗⃗⃗ ⃗⃗  is the vector from 𝑣𝑖 to 𝑣𝑗. Values for 

vertices in the cosine stream graph are generated, and an empty cosine similarity with 

a value of 0 is added to the outermost vertices, ensuring consistency in the design of 

the graph and network of cosine with that of joints and bones. 

 𝑐𝑜𝑠𝑣𝑖 =
1

𝐴
|𝑁(𝑣𝑖)|
2 ∑ ∑

𝑒𝑖𝑗⃗⃗ ⃗⃗  ⃗

‖𝑒𝑖𝑗⃗⃗ ⃗⃗  ⃗‖

𝑒𝑖𝑘⃗⃗ ⃗⃗ ⃗⃗ 

‖𝑒𝑖𝑘⃗⃗ ⃗⃗ ⃗⃗ ‖𝑘∈𝑁(𝑣𝑖)−𝑗𝑗∈𝑁(𝑣𝑖)
 (1) 

3.2 Keyframe downsampling algorithm 

 

Fig. 3. Applying the method introduced in Section 3.2, we obtained downsampled indicators 

for each frame, along with the skeleton diagrams for frames 11, 36, and 93, corresponding to 

the minimum values of the indicators. Observing the images, it becomes evident that this 

downsampling method efficiently highlights frames where the human skeleton is more ex-

tended, aiding the model in making accurate assessments of movements. 

Sampling keyframes is a crucial aspect of video analysis in figure skating, ensuring that 

selected frames encapsulate the most discriminative information within a video. In the 

figure skating task, the fast-changing motion frames are distinctly important for jump 

action. Through Eq. (1), we transformed the original joint stream into a cosine stream, 

with attribute values stored in the vertices ranging from -1 to 1. This reflects the joint's 

range of motion from 180 degrees to 0 degrees, eliminating the need for normalization. 
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We then sum the angles for all joints in the body to obtain the downsampling indicator, 

representing the extent of limb extension in each frame. A smaller value indicates a 

larger sum of angles for various joints in the entire body, implying greater limb exten-

sion, as illustrated in Fig. 3. Hence, it is immensely beneficial in identifying key frames 

within sequences. For instance, in a jumping sequence, the indicator during the takeoff 

phase is smaller than that during the mid-air spinning phase. This suggests that recog-

nizing the takeoff is more crucial than identifying the posture during mid-air action, 

aligning with the focus on judging actions in figure skating sports. We decided to in-

corporate Uniform sampling, as introduced by [14], [15], [20], into our proposed 

keyframe-based downsampling approach, resulting in various fusion strategies: 

1. Sort video frames based on the keyframe selection indicator. Choose frames with the 

smallest indicator to create a new subsequence of M frames, appending it to the N-

frame subsequence from uniform sampling. 

2. Divide the sequence into M non-overlapping substrings. Select the frame with the 

smallest indicator from each substring to form a new M-frame subsequence. Connect 

it to the N-frame subsequence from uniform sampling. 

3. Building upon 1, rearrange the generated N+M frames chronologically to create a 

new downsampling sequence. 

4. Building upon 2, rearrange the generated N+M frames chronologically to create a 

new downsampling sequence. 

4 Experiments 

4.1 Datasets 

Our work mainly focuses on figure skating actions, corresponding to the FSD-10 da-

taset. Nevertheless, we conducted experiments on two additional widely used datasets, 

FineGYM and NTU RGB+D, to evaluate the method's generalization capacity. 

FSD-10. The Figure Skating Dataset (FSD-10) [7] is a challenging dataset in com-

petitive sports, featuring 1484 figure skating videos labeled with 10 actions. It includes 

989 training and 495 testing videos, segmented from around 80 hours of global figure 

skating championships (2017-2018). 

FineGYM. FineGYM [16] is a high-quality action recognition dataset with 29k vid-

eos and 99 fine-grained gymnastic action classes. Human poses are extracted using GT 

bounding boxes (provided by [14]). 

NTU RGB+D. The NTU RGB+D dataset [17] is a human action recognition dataset 

with 56,880 skeleton sequences from 40 volunteers, categorized into 60 classes. It sug-

gests two evaluation setups: (1) Cross-subject (X-sub), with training from 20 subjects 

and testing from the remaining 20; (2) Cross-view (X-view), training from views 2 and 

3, and testing exclusively from view 1. In our experiments, 2D human poses are esti-

mated using HRNet [18] (provided by [15]). 
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4.2 Implementation Details 

All experiments are conducted on one RTX 3090 GPU with PYSKL [15] and MMac-

tion2[19]. Except for downsampling configurations, we used the default hyperparame-

ter settings provided by PYSKL. We employed UniformSampling to sample 100 frames 

in the FSD-10 dataset and 50 frames in the GYM dataset. Additionally, 

Keyframesampling was used to sample 25 frames in both datasets. 

4.3 Ablation study 

In this section, we analyze the proposed cosine stream and keyframe sampling algo-

rithm on the FSD-10 dataset. For the cosine stream, we selected three latest and widely 

recognized skeleton-based action recognition models—AGCN [11], MSG3D [12], and 

CTRGCN [13]—as baselines. No modifications are required to the network structure 

for the cosine stream.  

For the keyframe downsampling algorithm, we chose the current state-of-the-art model 

CTRGCN [13] as the baseline and demonstrated its effectiveness on the joint, bone, 

and cosine streams. As publicly available results for these methods on the FSD-10 da-

taset were not found, we conducted our experiments on this dataset using networks 

successfully reproduced from the PYSKL [15] toolbox. The experiments were con-

ducted with the same hyperparameter settings to ensure fairness and consistency in the 

evaluation. 

Table 1. Improvement of the Cosine Stream Across Different Models on FSD-10 Dataset, 

where 'j' and 'b' represent the 'joint stream' and 'bone stream', respectively, 'c' signifies the co-

sine stream. 

Acc(%) 
AGCN [11] 

j b c j&b j&b&c 

Mean Class 90.2 91.5 87.7 91.7 92.6↑ 

Top1 88.9 90.4 87.1 90.8 91.5↑ 

Acc(%) 
MSG3D [12] 

j b c j&b j&b&c 

Mean Class 90.1 90.5 89.4 90.9 91.7↑ 

Top1 90.1 89.2 88.5 90.6 90.8↑ 

 

Effectiveness of cosine stream. We evaluated the cosine stream against three widely 

used skeleton-based methods (Table 1). Despite slightly lower performance compared 

to joint and bone streams, the cosine stream employs 1D cosine similarity data, while 

the others use 2D coordinate data. However, the aggregated three-stream model con-

sistently outperforms two-stream methods in Mean Class Accuracy and Top1 Accu-

racy. In particular, due to the prevalent use of motion features in current state-of-the-

art methods, we additionally incorporated experiments involving joint motion, bone 

motion, and our proposed cosine stream extended to include cosine motion in the tem-

poral dimension in our experiments with CTRGCN. As shown in Table 2, we observed 
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that both joint motion and bone motion, as well as cosine motion, performed worse than 

the spatial dimension feature streams. Furthermore, the fusion of joint motion and bone 

motion with the original joint-bone dual-stream model only resulted in a modest in-

crease of 0.7% in Mean Class accuracy and 0.5% in Top1 accuracy, while the inclusion 

of cosine motion brought about negligible improvement. We hypothesize that this may 

be due to the fact that the actions in the dataset generally involve certain speeds during 

execution, which are not significantly correlated with the actions themselves, thereby 

resulting in unsatisfactory performance of the motion features. Therefore, we did not 

utilize motion features in subsequent experiments. 

Table 2. Improvement of the Cosine Stream with CTRGCN on FSD-10 Dataset, where 'j', 'b', 

'jm', and 'bm' represent the 'joint stream', 'bone stream', 'joint motion stream', and 'bone motion 

stream', respectively, while 'c' and 'cm' signify the cosine stream and cosine motion stream. 

Acc(%) 
CTRGCN [13]  

j jm b bm c cm 

Mean Class 90.9 89.5 91.5 89.6 90.1 88.6 

Top1 90.1 88.2 90.8 88.7 90.4 87.3 

Acc(%) 
CTRGCN [13]  

j&b j&b&jm&bm j&b&c j&b&c&jm&bm&cm 

Mean Class 92.5 93.2 93.5↑ 93.6↑ 

Top1 92.0 92.5 93.2↑ 93.2 

 

Effectiveness of Keyframesampling. We explored various keyframe sampling and 

uniform sampling strategies (Section3.2), with results shown in Table 3. Strategy anal-

ysis reveals that merely increasing downsampled frames (Origin and Strategy 0) may 

lead to a slight improvement in model performance. Strategy 1 demonstrates that 

simply adding keyframes can hardly enhance performance. Meanwhile, Strategy 2 in-

troduces segment-wise keyframe selection, leading to enhanced temporal modeling. 

Strategies 3 and 4 combine uniform sampling with keyframe sampling, differing in their 

integration approach. Compared to simple concatenation, inserting keyframes from 

downsampling into the subsequence generated by uniform sampling proves more con-

ducive to modeling, evident in the joint and bone streams. Strategy 4 notably improves 

Mean Class Accuracy by 1.5% and Top1 Accuracy by 1.4% in the joint stream, and by 

2.8% and 2.4% in the bone stream, respectively. If compared to the original uniform 

sampling algorithm of N+M frames, the improvements in the joint stream are 1.0% and 

1.4%, and the improvements in the bone stream are 2.2% and 1.9%. 

Table 3. Results of CTRGCN on FSD-10, showcasing different keyframe sampling strategies 

for each stream. 'Origin' and the number 0 denote no keyframe sampling, while uniform sam-

pling frames are set at N and N+M. Numbers 1-4 correspond to strategies detailed in the section 

3.2, which combine uniform sampling for N frames and keyframe sampling for M frames. 

Acc(%) 
Strategies 

j_origin j0 j1 j2 j3 j4 
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Mean Class 90.9 91.4 89.4 90.7 91.6↑ 92.4↑ 

Top1 90.1 90.1 88.2 90.6↑ 90.4↑ 91.5↑ 

Acc(%) 
Strategies 

b_origin b0 b1 b2 b3 b4 

Mean Class 91.5 92.1 89.8 91.7 92.9↑ 94.3↑ 

Top1 90.8 91.3 89.9 91.1 92.7↑ 93.2↑ 

Acc(%) 
Strategies 

c_origin c0 c1 c2 c3 c4 

Mean Class 90.1 89.4 89.5 90.9↑ 90.1 90.6↑ 

Top1 90.4 88.7 88.7 90.4 88.7 89.4 

Acc(%) 
Strategies 

j0&b0 j4&b4 j4&b4&c4 j4&b4&c_origin 

Mean Class 92.5 94.3↑ 94.3↑ 94.6 

94.4↑ Top1 91.8 93.2↑ 93.2↑ 

 

Analyzing the third sub-table reveals keyframe sampling doesn't improve the cosine 

stream. This is attributed to the indicator using raw data from the cosine stream, causing 

redundancy and a slight performance decrease. This confirms that improvements in the 

first two sub-tables are due to keyframes rather than increased downsampled frames. 

Fusing the streams with keyframe sampling (fourth sub-table) involves Strategy 4 

for joint and bone streams. Compared to the original joint-bone two-stream model, there 

is a 1.8% improvement in Mean Class Accuracy and 1.2% in Top1 Accuracy. However, 

keyframe sampling does not enhance the performance of the cosine stream. On the other 

hand, when fused with the cosine stream using the original strategy, it results in a 2.1% 

increase in Mean Class Accuracy and 2.4% in Top1 Accuracy. Furthermore, we ob-

served that fusing the joint stream and bone stream under the uniform sampling algo-

rithm of N+M frames resulted in poorer results compared to the joint dual-stream model 

under N frames. This finding suggests that simply adding data does not effectively im-

prove the final result. 

4.4 Cross-dataset Validations 

Table 4. Enhanced CTRGCN model performance on FineGYM dataset with cosine stream and 

keyframe sampling. 

Acc(%) 
CTRGCN [13] 

j b c j&b j&b&c 

Mean Class 88.7 91.4 85.0 92.0 92.5↑ 

Top1 91.9 93.7 89.0 94.5 94.7↑ 

Acc(%) 
CTRGCN [13]& Keyframesampling 

j4 b4 c4 j4&b4 j4&b4&c 

Mean Class 89.5↑ 91.5↑ 84.1 92.6↑ 93.0↑ 
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Top1 92.6↑ 93.9↑ 88.4 94.8↑ 95.1↑ 

 

Table 4 presents the results of introducing the cosine stream on the FineGYM dataset, 

showcasing a 0.5% improvement in Mean Class Accuracy and a 0.2% improvement in 

Top-1 Accuracy for the original joint-bone two-stream model. When employing 

keyframe sampling strategy 4 for both the joint stream and bone stream, the three-

stream model exhibited a 1.0% increase in Mean Class Accuracy and a 0.6% increase 

in Top-1 Accuracy compared to the original joint-bone two-stream model. The ob-

served smaller enhancement is attributed to dataset differences, where the categoriza-

tion of action classes in the FineGYM dataset may have less correlation with the angular 

relationships of joints within the body. 

Table 5. CTRGCN model performance on NTU RGB+D dataset with cosine stream and 

keyframe sampling. ‘*’ indicates results derived from the pth model downloaded from [15]. 

Acc(%) 
CTRGCN [13] on X-sub 

j b c j&b j&b&c 

Top1 90.6* 92.7* 87.8* 93.3 93.6↑ 

Top1 89.3 91.6 89.0 92.3 92.9↑ 

Acc(%) 
CTRGCN [13]& Keyframesampling on X-sub 

j b c j&b j&b&c 

Top1 89.9 91.4 87.3 92.5 92.8 

fanyiAcc(%) 
CTRGCN [13] on X-view 

j b c j&b j&b&c 

Top1 96.9* 97.5* 87.0 98.4 98.4 

Top1 96.2 96.1 87.0 97.3 97.4↑ 

Acc(%) 
CTRGCN [13]& Keyframesampling on X-view 

j4 b4 c4 j4&b4 j4&b4&c 

Top1 95.7 95.7 87.5 97.2 97.2 

 

In Table 5, the results indicate that the enhancements of the model with the cosine 

stream and keyframe sampling on the NTU RGB+D dataset are not as promising. This 

holds true for both our experimental results and the data results cited in other works. 

We attribute this observation to two factors: (1) In terms of the inherent categorization 

of the dataset, NTU RGB+D places less emphasis on human joint angles. (2) The da-

taset is collected in a controlled lab environment where subjects do not exhibit signifi-

cant displacement relative to the camera, leading to a loss of the advantageous shift, 

scale, and rotation invariance of angle features. 
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5 Conclusion 

In this work, we introduce the cosine stream, using joint angles represented by bone 

vectors as cosine similarity for action prediction. The cosine stream significantly en-

hances performance in environments sensitive to joint angles or subject movement rel-

ative to the camera. Additionally, we propose a keyframe-based downsampling algo-

rithm using cosine values across joints to measure body stretching, improving perfor-

mance in such environments. The aggregated multi-stream model also benefits from 

this enhancement. 
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