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Abstract. A constrained theoretical model for Generative Adversarial Networks
(GANs) is proposed. This model introduces a GAN structure and training pro-
cess constrained by Directed Graphical Models (DGM) to mitigate issues such as
overfitting, convergence difficulties, and mode collapse encountered during GAN
training. It addresses the instability and quality concerns of generated samples.
Subsequently, a static constraint method is put forward, utilizing the similarity
of an interpretable measurement scale (EMS) alongside final classification met-
rics of generated data across various classifiers. This approach involves setting
the topology of discriminators (D) and generators (G), where the EMS is used
to measure the constraint strength, thereby mitigating overfitting in the genera-
tion process. Moreover, constraining label sharing features and weight updates
significantly diminishes the likelihood of mode collapse by imposing appropriate
restrictions on the use of label information during generation. This constrained
approach to GANs effectively enhances sample quality and stability.

1 Introduction

Constraints are applied to GANs [1,2] to effectively enhance samples. In terms of con-
straining Generative Adversarial Network(GAN) structures, common methods include
adding regularization terms or limiting the parameter range of networks. Specific net-
work topology structures can also be used to constrain the connections between the gen-
erator and discriminator. In terms of constraining GAN loss functions, several methods
have been proposed. For example, additional loss functions can be introduced to con-
strain the learning process of the generator and discriminator, or specific loss functions
can be used to balance the diversity and authenticity of generated samples [1].
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Fig. 1. Constrained Theory Model of Generative Adversarial Networks

However, there are still many shortcomings in practical training [1,2,3,4]. Training
instability: The training process of GANs is often unstable and prone to mode collapse
or mode collapse problems. One solution to address the challenges of training models
with limited labeled data is few-shot data augmentation techniques [5,6,7]. This study
proposes a constrained theoretical model for GANs to address the challenges in aug-
menting few-shot data, including generalization, overfitting, and transferability issues.

2 Constrained Theory of Generative Adversarial Networks

To address the issues of overfitting and mode collapse in GANs, various strategies such
as constrained training based on structure and process, parameter optimization, the use
of different loss functions, and regularization have been employed to improve the per-
formance and stability of GANs. In this section, we propose a constrained theory model
for GANs (Figure 1 ) which includes the following components: constrained training
based on the DGM-GAN structure and process to address the instability of training
and the quality of generated samples, static and dynamic constraint GANs which mea-
sure the strength of constraints using EMS to suppress overfitting, and the constraint of
sharing label information in features and weight updates which effectively reduces the
probability of mode collapse and solves the constraint convergence problem of GANs.
The specific implementation of these components is described below.
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Table 1. Parameter symbol lookup table

Symbols Meaning Symbols Meaning
G The set of parameters for the

generatorG
θq The q point in the input probability

space represents the node in ΩΘ,q←
D The set of parameters for the

discriminatorD
θj ΩΘ,jin node

EG Gloss function σ Smoothing parameters of the Dirac
function δ

ED Dloss function ΩΘ,q The distribution probability in a re-
gion, which represents the number of
nodes θj ∈Mn

fj The node weights of the neural
networkD

θG Network parameters for the generator

f̃j The node weights of the neural
networkG

θC Network parameters for the classifier

q Minimal normalized index of KMMD
(index of the current iteration)

θD Network parameters of the discrimi-
nator

q∗ Maximum normalized index of
KMMD (currently optimized index in
training)

z Noise vector

λ The strength of the constraint m The magnitude of the noise vector
N Represents the total number of points δ Dirac delta function

2.1 Constrained Training Based on the DGM-GAN Structure and Process

In this section, we design a new neural network architecture and optimization strat-
egy based on the DGM-GAN structure and process to generate adversarial training and
effectively enhance the performance of the discriminator. The parameter symbols are
defined in Table 1, and a directed graph model (DGM) [8] is established to analyze
the structure and process of GANs. Different GAN models correspond to different loss
functions, such as GAN [9] and WGAN [10]. In DGM, a latent variable res is de-
fined, and the relationships between D↔res and G↔res are established by processing
res. Based on the constraint relationships in DGM, formulas for training G and D are
derived. By factorizing these formulas, the formulas for training G and D are further
simplified. Finally, the learning function is obtained by adding constraints during the
learning process. The specific details are elaborated below.

Abstracting GAN components into Hilbert spaces [11] enables computational oper-
ations, enhancing performance through structural constraints. Training involves mutual
constraints between the generator (G) and discriminator (D) within this framework,
aiming to prevent overfitting and improve data generation. The Directed Graph Model
(DGM) integrates these constraints, facilitating a structured GAN process that more ac-
curately mimics real data distributions. This approach is supported by theoretical anal-
ysis, demonstrating the effectiveness of such constraints in GAN training. The dynamic
constraint GAN which constrains the training of GAN by Kernel MMD (KMMD) [12].

In summary, constraints are added during the training process to improve the per-
formance of the generator and discriminator. The specific implementation is as follows:
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First, a regularization termR(θG) is defined in this section to measure the constraint
relationship between the generator G and discriminator D, where: ρjj◦ represents the
correlation coefficient between two network layers. This regularization term can be
calculated using the EMS quantification method as follows:

R(θG) = SR = mean (
∑n
i=0 max ρjj◦) (1)

The above constraint conditions are then integrated into the loss function of GAN. For
the generator G, LG,original is the original generator loss function, and λ is a hyper-
parameter that controls the strength of the constraint. The loss function is defined as
LG = LG,original + λR(θG)

For the discriminator D, LD,original is the original discriminator loss function. The
loss function is defined as LD = LD,original + λR(θD)

During the training process, gradient descent is used to optimize the new loss func-
tions LG and LD. By adding constraint relationships in the loss function, this section
guides the generator and discriminator to learn better parameters, thereby improving
their performance. DGM constraints in GANs modulate G and D training, enhancing
performance and mitigating overfitting, independent of loss function limitations.

2.2 Static and Dynamic Structural Random Constraints

EMS-imposed static and dynamic constraints on GAN mitigate overfitting through R-
SGAN and R-DGAN frameworks, applying theoretical constraints to network struc-
tures [13]. Furthermore, the Dirac delta function limits the accuracy of numerical inte-
gration in the equation. A direct probability integration method is proposed by studying
the distribution of the input probability space and the smoothing method of the Dirac
delta δ function [14].

Generating Representative Points and Probability Allocation To propose a method
for addressing the constraint problem in GANs, this section first considers a point se-
lection method based on the Generalized F-Divergence ( GF-divergence) [15]. This
method partitions the input probability space into a set of non-overlapping representa-
tive regions based on Voronoi cells.

First, assume there is a generative adversarial network (GAN) with the generator G
and discriminator D controlled by parameters θG and θD , respectively. The goal of this
section is to find a method to constrain the training process of GAN in order to generate
better samples in the input probability space. To achieve this, consider partitioning a set
of non-overlapping representative regions in the input probability space ΩΘ,q:

ΩΘ,q = {x ∈ (R)
n
: |x− θq| ≤ |x− θj |,∀θj ∈Mn, j 6= q} (2)

These representative regions are used to constrain the generator during the GAN train-
ing process. Define a regularization term R (θG) , which adjusts the distribution of
generated samples in the input probability space θG based on the generator parameters
. To achieve this, define the following regularization term:

R (θG) =
∑Q
q=1 wq

∫
ΩΘ,q

D (G (z, θG) , θD) dz (3)
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where Q is the number of representative regions,wq is the weight of the q-th representa-
tive region, and z is the input noise for the generator. By adding the regularization term
R (θG) to the objective function of the original GAN, with λ > 0 as a hyperparameter,
the following optimization problem is obtained:

min
θG

max
θD

Ex∼pdata(x) (logD (x, θD)]

+Ez∼pz(z) (log (1−D (G (z, θG) , θD))] + λR (θG)
(4)

The regularization term controls the impact of the regularization term on the GAN train-
ing process. By adding the regularization term R (θG) , this section explores the gen-
eration of better samples by guiding the generator to produce representative regions in
the input probability space, thereby imposing constraints on the generative adversarial
network.

Smoothing the Integral Function to Improve Integration Accuracy In this section,
Gaussian functions and probability density function mappings are used to compute the
responses of random static and dynamic systems. Here, Pq =

∫
ΩΘ,1

pΘ (θ) dθ repre-
sents the allocation probability in region ΩΘ,q, and g (θq) and g (θq, t) represent the
mapping outputs of the random static and dynamic systems, respectively:

pY (y,t) =
∑N
q=1

 1√
2πσ2

e
−
(y − g (θq, t))2

2σ2 Pq

 (5)

Combining the constraints of GAN, the output of the generator G is regarded as the
response of a random static or dynamic system. The parameters θG of the generator G
are treated as random parameters, and the partitioning of the input probability space
is combined with the GAN training process. Here, wq = Pq/

∑N
i=1 Pi represents the

normalized allocation probability. Under this condition, the following loss function is
minimized:

minθG,θD
{
−Ez∼pZ(z) [logD (G (z, θG) , θD)] + λR (θG)

}
(6)

where λ > 0 is a tunable regularization parameter that balances the quality of the
generator’s output with the constraint of the sample distribution in the input probability
space. By incorporating the above loss function into the GAN training process, this
section achieves constraints on the generator’s output, thereby generating better samples
in the input probability space.

Static-Dynamic Constrained GAN In this section, a solution called the Static-
Dynamic Constrained GAN is proposed, where the implicit generator fres serves as
a predefined network topology for G and D. The predefined topology captures spe-
cific network patterns in terms of layers and nodes. Therefore, by quantifying the con-
straint using the EMS, a higher EMS indicates higher similarity between the networks
and stronger constraint from D to G. R-SGAN introduces Isomorphic, Axial, Self-
Symmetric G-D structures, and a quantization method for GANs, integrating static and
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dynamic constraints to refine the G-D relationship. First, define a regularization term
R (θG) to measure the constraint relationship between the generator G and discrimi-
nator D. This regularization term can be calculated using the EMS [16] quantization
constraint method as follows:

R (θG) = SR = mean (
∑n
i=0maxρjj ) (7)

frate(q, q
∗) =

{
0, q ≤ q∗
αq∗ + (α+ λ)(q − q∗), q > q∗

(8)

where α and λ are two hyperparameters that control the variation of the dropout rate.
Incorporate the above constraint into the loss function of GAN. For the generator G, the
following loss function is defined:

LG = LG,orig + βR (θG) + frate (q, q
∗) (9)

where LG,orig is the original generator loss function, and β is a hyperparameter that
controls the weight of the regularization term. For the discriminator D, the original loss
function remains unchanged:

LD = LD,orig (10)

Optimization algorithms, such as gradient descent, minimize loss functions for gener-
ators and discriminators in static and dynamic constrained GAN training, enhancing
sample quality, stability, and model generalization while mitigating overfitting.

2.3 Class Labels Share Characteristics and Weight Update Constraints

The combination of static and dynamic analysis through the random incentive parame-
ter system leads to the proposal of a method called Class Labels Share Characteristics
and Weight Update Constraints (CLSC-WUC) for generating static and dynamic con-
strained GANs. In GAN methods, incorporating class labels can effectively address
the issue of overfitting in generated data by providing additional constraints. However,
in CGAN [17,18], where label information is directly passed to the discriminator, the
constraint effect is not satisfactory [19,20]. The CLSC-WUC method integrates G, D,
and C modules, where C classifies inputs and imposes conditional constraints on G, en-
hancing sample generation with specific class characteristics. The discriminator and the
classifier are mutually related through shared feature extraction information, as shown
in Figure 1. The noise vector is represented as z, the input image is X, and yXand yG
represent the real label and the label input to the generator, respectively. The label in-
formation only directly affects the generator and does not influence the discriminator.
Specifically: Firstly, consider a semi-supervised learning scenario where a dataset con-
tains labeled data (X, yX ) and unlabeled data Xu. Our goal is to train a GAN and a
classifier C by utilizing this information to introduce class information into the GAN
and improve the performance of the classifier. To achieve this goal, the framework of
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Conditional Generative Adversarial Network (CGAN) is adopted, and the class infor-
mation is incorporated into the optimization objective.

In the training process, constraints are introduced to achieve feature sharing and
weight updating. To do this, the following strategy is adopted: in the forward propaga-
tion process, both the input image X and the generated image G(z) are fed into the dis-
criminator D and the classifier C. In this way, the discriminator and classifier can share
information from the feature extraction layer. In the backward propagation process, the
parameters of the generator G, discriminator D, and classifier C are updated based on
the loss functions LD, LG, and LC . This enables weight updating during the train-
ing process. To handle unlabeled data in the semi-supervised learning scenario, only
the contribution of labeled data (X, yX) is considered when calculating the classifier
loss function LC . A mask matrix MA is defined to indicate whether the corresponding
true label can be obtained. Then, the mask matrix MA is applied to the classifier loss
function LC as follows:

LC(X, yX , z, yG;C,G)
= E [logP (C = yX | X)MA] + E {logP [C = yG | G(z, yG)]}

(11)

The CLSC-WUC method optimizes GANs and classifiers in semi-supervised learning
by integrating class labels and shared feature information, and applying weight updating
constraints, thus enhancing data quality and classifier accuracy.

3 Generation Experiment

APT few-shot attack data enhancement is achieved by pre-training GAN models with
attack data, simulating attack-defense systems, and constructing APT data enhancers.

3.1 Experiment Objective

The objective of this experiment is to generate sample files containing UNSW-
NB15 [20] and KDD Cup 1999 datasets [21].

3.2 Network Structure Construction

As text is a discrete data, the generator is difficult to update using gradient descent,
i.e., it is difficult to adjust the generator’s parameters using backpropagation algorithm.
Additionally, since the generator can only generate partial text, the discriminator is
unable to accurately evaluate incomplete sequences, i.e., the discriminator is unable to
accurately determine whether the text is real or not when only partial text is available.
Therefore, the basic framework will use Seq-GAN. The reward will come from the
discriminator’s score for the sequence. The framework diagram is shown in Figure 2.

The Seq-GAN framework employs a reinforcement learning approach, with the gen-
erator as the agent and the discriminator as the environment, enhancing text generation
through LSTM and TextCNN models for sequence evaluation and action generation.
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3.3 Training Process

By deploying the Directed Graph Model (DGM), the structure and process of GAN are
analyzed, and a constraint function is defined to ensure that the relationship between the
generator and the discriminator satisfies an affine transformation. The specific imple-
mentation methods are summarized as follows: First, let’s define the generator G, which
takes random noise z as input and generates a sample x’. The discriminator D takes x
as input (which can be either a real or generated sample) and outputs the probability
value D(x), indicating the likelihood of x being a real sample.The objective is to mini-
mize this loss function LD. To add the constraint in the training process, we introduce a
latent variable res. We aim to establish an affine transformation relationship between D
and G, i.e.,D

(
x
′
)
= a∗G (z)+b, where a and b are learnable parameters. Using SGD

or other algorithms for iterative updates in GAN training with Hilbert space constraints
enhances sample quality while suppressing overfitting and mode collapse.
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Fig. 3. Partial results of security log text generation based on Seq-GAN.

3.4 Generate effects

The generated text is judged using the Target LSTM network with the same loss func-
tion as the unsupervised above. Effect section log text generation effect such as Figure 3.

3.5 Generation Results

The generated text is evaluated using the Target LSTM network, with the same unsu-
pervised loss function as mentioned above. The log text generation results are shown in
Figure 3.

3.6 Experimental Conclusion

By using Seq-GAN to generate corresponding log texts, the problem of limited samples
can be effectively addressed. Similarly, it is also possible to generate data such as binary
files and network traffic parameters, thus enhancing the few-shot capability in network
security. This approach has significant implications for threat detection, various attack-
defense scenarios, and cryptographic algorithms.

4 Few-shot APT Data Augmentation Learning Modeling

Iterative training of discriminative and generative models, with weight adjustments
in the D network, generates additional APT attack data, enhancing few-shot learning
against limited samples.

The Wasserstein distance can be expressed as:

W =
1

K
sup
‖f‖L≤K

Ex∼Prad [f(x)]− Ex∼Pg [f(x)] (12)
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Table 2. Prameter symbol lookup table

Symbols Meaning Symbols Meaning
Pr Distribution of real data Pg The distribution of the generated

data
fω (x) A collection of functions that

are parameters that are lim-
ited by the scope of parameters
fω (−c, c]

K The upper limit of Lipschitz’s
constant

Ex∼Prad Expectations from which to
sample Prad

|f |L The Lipschitz norm of the func-
tion f

To constrain the parameter range of function ω and ensure fω that satisfies Lipschitz
continuity while only slightly fluctuating in local regions, we can define the parameter.
We can derive the loss functions for the generator G and the discriminator D:

L(G) = −Ex∼Pg [fω(x)] (13)

L(D) = Ex∼Pg [fω(x)]− Ex∼Pr [fω(x)] (14)

By maximizing L (G) and minimizing L (D), we can train the generator and the dis-
criminator to generate more APT attack data and improve their ability to discriminate
between real and generated data. The few-shot APT data augmentation learning process
can be defined as follows:

(1) Initialize the parameters θG and θD for the generator G (z; θG) and the discrim-
inator D (x; θD).

(2) For each training iteration t = 1, 2, . . . , T :Randomly sample a mini-batch of
training samples {(xi, yi)}ni=1 from the training set T , where .n� N

Randomly sample a mini-batch of noise samples {zi}ni=1from the noise space z.
Generate a batch of additional samples {x′ i = G (zi; θG)}ni=1using the generator
G (z; θG). Update the discriminator parameters θD to maximize the following objec-
tive function:maxθD

1
n

∑n
i=1

[
logD (xi; θD) + log

(
1−D

(
x
′
i; θD

))]
(3) By optimizing the generator and discriminator parameters, we obtain a generator

that can generate additional samples.
(4) Use the training set T and the generated samples to train a classifier by minimiz-

ing the following loss function:minθC
1

N+n

∑N+n
i=1 L (yi, C (xi; θC))+λR (C),R(C)

here is a regularization term and λ > 0 is the regularization parameter.
(5) Use the trained classifier C (x; θ∗C) for prediction and generalization.
In conclusion, the few-shot APT data augmentation process based on GANs aims

to achieve a Nash equilibrium state where the generated adversarial samples and the
defense strategies reach their optimal points. At this state, the generated adversarial
samples can be considered as the best possible attacks, and the defense strategies can
be considered as the most effective countermeasures.



Few-Shot Constraint Enhancement Based on Generative Adversarial Networks 11

Table 3. Sample data

Data Positive sample Negative samples
Original training set 17725 339200
Test the dataset 17718 339207
Synthetic samples 300000 20000
Enhance datasets 317736 359189

Table 4. Generation validity verification

Dataset processing method Accuracy F1-Score
Unaugmented 0.9839 0.9850
SMOTE 0.9920 0.9494
ROS 0.9883 0.9877
GAN 0.9845 0.9846
AC-GAN 0.9989 0.9543
DCGAN 0.9936 0.9932
GADCN 0.9922 0.9922

5 Result Analysis

In the context of effectiveness evaluation, the NIMS(Network Information Management
and Security Group) [22] and USTC-TFC2016 dataset [23] are divided into training
and testing sets (as shown in Table 3 ). The NIMS dataset consists of a total of 35,443
positive flow samples and 678,407 negative flow samples, with a ratio of approximately
0.0522 between positive and negative samples. Table 3 displays the number of generated
synthetic samples, as well as the training, testing, and augmentation datasets.

Afterwards, the training set is used to train the few-shot augmentation model. Once
the training process is completed, the trained generator (G) is used to generate synthetic
samples with specific labels. Therefore, the trained G network can generate augmented
samples to address the issue of data imbalance in the network dataset. The genera-
tor (post-training) is used to generate new synthetic samples, aiming to address the
data imbalance in the few-shot training set by generating more synthetic samples as
augmentation for positive samples and fewer synthetic samples for negative samples.
The AC-GAN augmented dataset is generated using the AC-GAN method, while the
SMOTE-SVM augmented dataset is generated using the SMOTE-SVM method, which
is a comparative method for artificially synthesizing network traffic data [24].

Finally, the synthesized samples are combined with the training dataset to form the
augmented dataset. The results in this section indicate that the GAN-generated aug-
mented network traffic dataset, when compared to the original imbalanced dataset and
the artificially synthesized SMOTE dataset, improves the performance of supervised
learning classification (Table 4 ).

6 Conclusion

For addressing the challenge of augmenting few-shot data effectively, this article pro-
poses a constrained theoretical model for Generative Adversarial Networks (GANs).
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It incorporates a Directed Graphical Model (DGM)-based structure and process-
constrained training to tackle training instability and enhance the quality of generated
samples. A novel static constraint method is introduced, leveraging the similarity in
an Interpretable Measurement Scale (EMS) and final classification metrics of gener-
ated data by imposing topological constraints on discriminators (D) and generators (G)
across various classifiers. The EMS quantifies the constraint’s strength, effectively mit-
igating overfitting during generation. Additionally, constraints on label feature sharing
and weight updates refine the utilization of label information in the generation process,
significantly lowering the risk of mode collapse. Consequently, this paper presents a
GAN-based constrained augmentation approach tailored for few-shot data scenarios.
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