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Abstract. Imputing missing meteorological site temperature data is necessary 

and valuable for researchers to analyze climate change and predict related natural 

disasters. Prior research often used interpolation-based methods, which basically 

ignored the temporal correlation existing in the site itself. Recently, researchers 

have attempted to leverage deep learning techniques. However, these models 

cannot fully utilize the spatiotemporal correlation in meteorological stations data. 

Therefore, this paper proposes a global spatiotemporal attention neural network 

(GSTA-Net), which consists of two sub networks, including the global spatial 

attention network and the global temporal attention network, respectively. The 

global spatial attention network primarily addresses the global spatial correla-

tions among meteorological stations. The global temporal attention network pre-

dominantly captures the global temporal correlations inherent in meteorological 

stations. To further fully exploit and utilize spatiotemporal information from me-

teorological station data, adaptive weighting is applied to the outputs of the two 

sub-networks, thereby enhancing the imputation performance. Additionally, a 

progressive gated loss function has been designed to guide and accelerate GSTA-

Net's convergence. Finally, GSTA-Net has been validated through a large num-

ber of experiments on public dataset TND and QND with missing rates of 25%, 

50%, and 75%, respectively. The experimental results indicate that GSTA-Net 

outperforms the latest models, including Linear, NLinear, DLinear, PatchTST, 

and STA-Net, across both the mean absolute error (MAE) and the root mean 

square error (RMSE) metrics. 

Keywords: Attention mechanism, Deep learning, Neural network, Missing data 

imputing, Meteorological station data, Spatiotemporal correlation. 

1. Introduction 

In the field of meteorology, most accurate temperature data comes from meteorolog-

ical observation stations and is collected by temperature sensors. Complete temper-

ature data can improve the accuracy of meteorologists in weather forecasting and 

climate analysis, and is also an important source of data in agricultural and ecologi-

cal disaster research [1-2,4]. However, due to various issues such as electromagnetic 
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interference, equipment failures, harsh environmental conditions, or manual opera-

tion errors, the data collected by meteorological stations is not always complete [1,3-

4], which hinders relevant scientific research. Therefore, reconstructing or imputing 

missing temperature data is an essential preliminary task in conducting related sci-

entific work and is a problem that urgently needs to be addressed. 

Early models used to fill in missing temperature data mostly were based on inter-

polation methods, which could not fully utilize the temporal correlation of meteoro-

logical station data itself. With the development of machine learning, researchers 

have used models such as expectation maximization (EM) [5], multiple regression 

(MR) [6], and Bayesian networks [7] to fill in missing values. However, these mod-

els can uncover the complex relationships or potential distributions present in mete-

orological station data, leading to hardly utilizing spatiotemporal information within 

meteorological stations data. Although deep learning is a branch of machine learn-

ing, deep learning has the ability to extract complex features and correlations from 

large amounts of data [8]. Meanwhile, due to meteorological station data are time-

series data, researchers have used frameworks based on Long Short-Term Memory 

(LSTM) networks [9] to capture the potential temporal features of station data to fill 

in missing data. However, LSTM based models only handle the temporal correlation 

of individual meteorological stations and cannot effectively utilize the spatial corre-

lation between meteorological stations, leading to insufficient imputing perfor-

mance. Recently, STA-Net proposed by Hou et al. [10] successfully used CNN to 

capture the spatial information between stations, improving the imputing perfor-

mance. But this model still lacked extraction of global spatiotemporal information 

in data. 

Faced with the above-mentioned dilemma, this paper designed a novel global spa-

tiotemporal attention neural network (GSTA-Net), based on the research of Hou et 

al. [10]. The core components of GSTA-Net include feature expression model 

(FEM) used to generate high-dimensional feature vectors, global temporal self-at-

tention mechanism used to obtain global temporal information, and global spatial 

self-attention mechanism used to obtain global spatial information. Additionally, to 

further accelerate the convergence speed of GSTA-Net and reconstruction perfor-

mance, we also designed a new loss function—progressive gated loss function. 

Meanwhile, we conducted abundant experiments on real meteorological datasets—

TND and QND [10]. Results demonstrated that designed GSTA-Net outperformed 

the latest models. In summary, the main contributions of this article are as follows: 

• developing the GSTA-Net, which is a model designed to reconstruct missing data 

from meteorological stations and can effectively harnesses global spatiotemporal 

information, as demonstrated by its enhanced imputing accuracy in experimental 

evaluations; 

• introducing a Feature Expression Model (FEM) that transforms low-dimensional 

meteorological data into high-dimensional feature vectors, and on its basis inte-

grating the global temporal and spatial self-attention modules, which work in tan-

dem to effectively capture and process global spatiotemporal relationships within 

the meteorological station data;  
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• innovating a novel loss function known as the progressive gated loss function, 

which is designed to steer the model's convergence and refine the learning process 

of the FEM, allowing it to effectively distinguish and exclude noise that is irrele-

vant to the global spatiotemporal context. 

2. Related work 

Previous research on modeling missing values in meteorological station data can 

generally be divided into two categories: spatial interpolation methods and data min-

ing-based machine learning methods. 

Space based interpolation methods are according to the mathematical or physical 

properties contained in meteorological station data, and fill in missing values 

through mathematical statistical analysis [11]. They typically include inverse dis-

tance weighting (IDW) [12], kriging [13], and thin plate splines [14] and etc. How-

ever, because of sensitivity to data fluctuations, spatial distance and the number of 

meteorological stations [3], they show a significant performance decline on higher 

missing rate. Even though these methods perform well and fill quickly on low miss-

ing rate.  

To solve above-mentioned problem, researchers started using machine learning 

to mine complex relationships in meteorological station data to fill in missing values. 

Generally, these methods embody EM [5], (MR) [6], Bayesian networks [7], artifi-

cial neural network (ANN) [15] and so on. Although such methods have better miss-

ing value reconstruction performance compared to interpolation methods, they can-

not fully utilize the spatiotemporal correlations in meteorological station data and 

are highly sensitive to data [16], causing a serious decrease in filling accuracy on 

high missing rate.  

To solve above-mentioned problem, researchers have started to use deep learning 

to deal with this issue. For example, Xie et al. [17] used Bi-LSTM to fill in missing 

station temperature data, effectively utilizing the correlations in time series data. But 

it was difficult to capture long-distance dependencies. Nie et al. [18] proposed 

PatchTST to carry out long-term prediction. Although PatchTST solved the global 

dependencies by making use of Transformer [19], it lacked the utilization of spatial 

information. The linear model proposed by Zeng et al. [20] was a time series data 

prediction model, and was not a Transformer architecture. Even so, this model had 

high computational efficiency and could ensure the prediction accuracy of long se-

quence data, it was not suitable for a shorter sequence data. However, the aforemen-

tioned models rarely utilized spatiotemporal information in meteorological station 

data.  

Recently, the STA-Net proposed by Hou et al. [10] addressed this issue. Never-

theless, this model only considers local spatiotemporal correlations, neglecting 

global spatiotemporal information. To solve faced problem, this paper designs a 

global spatiotemporal attention neural network (GSTA-Net). 
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3. Methods 

3.1 Feature Expression Model 

 

Fig. 1. Illustration of feature expression model. It can convert low dimensional masked data 

into high-dimensional feature vectors. 

In the field of deep learning, in order to make the relevant research tasks proceed 

smoothly, it is first necessary to obtain the abstract feature vector representation of 

the research object [21]. Presently, in computer vision (CV) and natural language 

processing (NLP), mostly using the encoder in the encoder-decoder model structure 

to obtain advanced abstract feature representations of data, and then performing sub-

sequent downstream tasks [22-23]. Inspired by this, after in-depth analysis of the 

latest model STA-Net [10], a Feature Expression Model (FEM) was extracted from 

it, as shown in Fig. 1. The main function of FEM is to abstract the temperature data 

of meteorological stations at different times into high-dimensional feature vector 

representations. 

FEM consists of partial convolutional neural network (PConvU-Net) [24] and 

multidimensional temporal attention (MTA) [10]. Among them, the input data of 

PConvU-Net is the hadamard product 𝑋𝑚 ∈ ℝ1×ℎ×𝑤 of the real data 𝑋 ∈ ℝ1×ℎ×𝑤 

and the corresponding mask 𝑀 ∈ ℝ1×ℎ×𝑤, where ℎ and 𝑤 represent the row and col-

umn dimensions of 𝑋. PConvU-Net is composed of 10 layers of PConv [24] whose 

convolution core (Ks in Fig. 1.) is set to 3 × 3, where the first 5 layers form the 

encoder layer and the last 5 layers form the decoder layer. In encoder, set the sliding 

step (Stride in Fig. 1.) to 2; in decoder layer, the sliding step is set to 1. In addition, 

an up-sampling layer is used in front of each layer in decoder to increase the dimen-

sionality of the data, facilitating concatenation with the output of the corresponding 

layer of the Encoder. At the same time, the skip connection line used by PConvU-

Net to concatenate the corresponding feature maps of the Encoder and Decoder lay-

ers, not only do facilitate network learning and convergence, but also alleviates van-

ishing or exploding gradients. The function of this module is to preliminarily explore 

potential spatial information in the data and fill in missing data in space. The input 
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data of the MTA is the feature vector 𝑋̃ ∈ ℝℎ×𝑤×1. To obtain 𝑋̃, need to reshape the 

result fusing 𝑋 and the output of PConvU-Net. The main function of this module 

include: 1) obtaining preliminary temporal information of data; 2) feature vector di-

mension transformation, that is, transforming low dimensional feature vectors into 

high-dimensional feature vectors. In summary, the function of FEM can be defined 

by the following equation (1) and (2): 

 𝑋̃ = 𝑅(𝐺𝑝(𝑋 ⊙ 𝑀; 𝜃𝑝) ⊙ (1 − 𝑀) + 𝑋 ⊙ 𝑀) (1) 

 𝐹𝐸𝑉 =  𝐺𝑀𝐴𝑇(𝑋̃ ⊙ 𝑀; 𝜃𝑀𝐴𝑇) (2) 

wherein 𝑅  denotes the remodeling function, 𝐺𝑝  and 𝐺𝑀𝐴𝑇  are PConvU-Net and 

MAT, respectively. 𝜃𝑝 and 𝜃𝑀𝐴𝑇  are their learnable parameters. ⊙ denotes element-

wise multiplication. 𝐹𝐸𝑉  denotes needed feature vector representations. In sum-

mary, FEM transforms low dimensional input data features 𝑋 into high-dimensional 

feature expression vectors 𝐹𝐸𝑉 ∈ ℝ𝑐×ℎ×𝑤 , which not only increases information 

volume but also preliminarily integrates spatiotemporal information, being benefi-

cial for obtaining complex spatiotemporal information from data in subsequent tasks. 

Wherein 𝑐 represents the dimension of 𝐹𝐸𝑉 

3.2 Global Temporal and Spatial Self-Attention Mechanism 

 

Fig. 2. Illustration of global temporal self-attention mechanism. Through this mechanism, 

making the feature expression vector at any time in sequence contain global temporal infor-

mation. 

Global Temporal Self-Attention Mechanism.  The feature expression vector ac-

quired by FEM can indicate temperature data of meteorological stations at different 

times. Intuitively, the temperature trends of any meteorological station at adjacent 

times are similar. Besides, temperature data is also a highly periodic temporal data. 

That is, there is a certain degree of similarity between the feature expression vectors 

of adjacent moments close periods. Accordingly, we design the global temporal self-

attention mechanism (GTSA), as shown in Fig. 2. 
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In the GTSA, its input sequence data is named and defined as 𝑆 =
(𝒕𝟏, 𝒕𝟐, ⋯ , 𝒕𝒊, ⋯ , 𝒕𝒏−𝟏, 𝒕𝒏), wherein 𝑛 is the length of 𝑆 and 𝒕𝒊  is the high-dimen-

sional vector. To expediently study the global relationships between 𝒕𝒊 and 𝑆, ab-

stract 𝑆 into three tensors: Key 𝑲, Query 𝑸 and Value 𝑽. As shown in Fig. 2, first 

select feature expression vector 𝐾𝑖 from 𝑲 to perform similarity-matching operation 

with all vectors in 𝑸, which will attain the similarity score 𝐸. This process is defined 

as equation (3): 

 𝐸 = 𝑣𝑇(𝐿𝑘(𝑲; 𝜃𝑘) + 𝐿𝑞(𝑸; 𝜃𝑞)) (3) 

wherein 𝑣 is learnable feature vector, 𝐿𝑘 and 𝐿𝑞 are two linear neural networks, and 

𝜃𝑘 and 𝜃𝑞 are the learnable parameters of 𝐿𝑘 and 𝐿𝑞, respectively. 𝐸 indicates how 

much the feature vector at different moments is similar to other all feature expression 

vector. Then, to acquiring 𝑉𝑔 containing global temporal information, carry out ma-

trix multiplication on attention score 𝑨   and 𝑽 , where 𝑨  is come by executing 

𝑠𝑜𝑡𝑓𝑚𝑎𝑥 on 𝐸. This process is defined as equation (4) and (5): 

 𝐴 = 𝑠𝑜𝑡𝑓𝑚𝑎𝑥(𝐸) (4) 

  𝑉𝑔 = 𝐴𝑉 (5) 

Global Spatial Self-Attention Mechanism. For a certain meteorological station and 

other stations close to it, they have similar temperature and variation patterns, within 

adjacent time and space [25]. Furthermore, since the 𝑋 is a two-dimensional numer-

ical matrix, it can be regarded as single-channel image data. And previous studies 

have shown that a pixel in an image can maintain continuity and consistency with 

other pixels in its neighboring space in most cases [26]. Meanwhile, after extensive 

investigation and research, it was found that the DNL-Net [27] was consistent with 

the aforementioned rules. Thus, this paper proposed and designed a global spatial 

self-attention mechanism (GSSA) based on DNL-Net [27], as shown in Fig. 3. 

The GSSA works as follows: let the input data of the global spatial self-attention 

mechanism be 𝐹𝐸𝑉 ∈ ℝ𝑐×ℎ×𝑤. 𝐹𝐸𝑉 first goes through a layer CNN whose convo-

lution kernel is 1 × 1, not undergoes three different CNN layers like in the original 

DNL-Net. This is because our research has found that using a layer of CNN can 

ensure information consistency and reduce computational operations. Through this 

operation, we obtained the output 𝐹𝐸𝑉′ ∈ ℝ𝑐′×ℎ×𝑤. That is, by setting the dimen-

sion 𝑐′ to avoid the information redundancy or insufficiency due to 𝐹𝐸𝑉 is too large 

or too small. Here, Then, in order to obtain the correlation between a certain mete-

orological station and other meteorological stations in the nearby space and adjacent 

time periods, we selected the self-attention mechanism proposed by [19]. To obtain 

𝑲, 𝑸, and 𝑽, we carried out equation (6) and (7) on 𝐹𝐸𝑉′, as shown as follows: 

 𝑲 = 𝑅(𝐹𝐸𝑉′) (6) 

 𝑸 = 𝑲 = 𝑇(𝑅(𝐹𝐸𝑉′)) (7) 
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wherein 𝑅 represents reshape function and 𝑇 represents transpose function. Just, the 

𝐹𝐸𝑉′ was turned into 𝑲 ∈ ℝ𝑐′×ℎ𝑤, 𝑸 ∈ ℝℎ𝑤×𝑐′
 and 𝑽 ∈ ℝℎ𝑤×𝑐′

. Next, use cosine  

 

Fig. 3. Illustration of global spatial self-attention mechanism. Through this mechanism, mak-

ing the feature expression vector contain global spatial information. 

similarity instead of dot product to perform global spatial correlation matching on 𝑲 

and 𝑸. Not selecting dot product in the original DNL-Net is due to it essentially 

belongs to vector product, which cannot accurately indicate the angle between two 

vectors, leading to not accurately reflecting the trend of data change. Performing the 

cosine similarity operation, we need to calculate the vector length 𝑲𝒅 ∈ ℝ1×ℎ𝑤 and 

𝑸𝒅 ∈ ℝℎ𝑤×1 of 𝑲 and 𝑸 in the 𝑐′ dimension, as shown in equation (8) and (9): 

 𝑲𝒅 = √∑ 𝑐𝑖,𝑘
′ 2𝑐′

𝑖=1  (8) 

 𝑸𝒅 = √∑ 𝑐𝑖,𝑞
′ 2𝑐′

𝑖=1  (9) 

After obtaining 𝑲𝒅 and 𝑸𝒅, we can calculate the 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 of 𝑲, 𝑸 and 𝑽, as 

shown in equation (10): 

 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑲, 𝑸, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑸𝑲

𝑸𝒅𝑲𝒅
)𝑽 (10) 
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Obviously, 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑲, 𝑸, 𝑽) contains the global spatial correlation between 

weather stations. Finally, in order to prevent performance degradation of the original 

model after undergoing GSSA, residual operation [28] was used. Specifically, 

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑲, 𝑸, 𝑽) successively goes through the transpose function 𝑇 and the re-

shape function 𝑅, and then is input to a convolutional neural network 𝐹𝑐𝑜𝑛𝑣 with a 

convolution kernel of 1 × 1, obtaining the output in the same dimension as the input 

feature data 𝑋. Add the output and 𝑋 to acquire final result 𝑌, as shown in equation 

(11): 

 𝑌 = 𝑋 + 𝐹𝑐𝑜𝑛𝑣(𝑅(𝑇(𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑲, 𝑸, 𝑽))); 𝜃𝑐𝑜𝑛𝑣) (11) 

wherein 𝜃𝑐𝑜𝑛𝑣  is learnable parameter. 

3.3 Global Spatiotemporal Attention Model 

 

Fig. 4. Illustration of global spatiotemporal attention neural network. Through it, spatiotem-

poral information in the data can be fully utilized. 

On the basis of the first two sections, we design the global spatiotemporal attention 

neural network (GSTA-Net), which is composed of two sub networks: global tem-

poral attention network (GTA-Net) and global spatial attention network (GSA-Net). 

Each sub network consists of FEM, corresponding global attention, and gated neural 

networks. The architecture of GSTA-Net is shown in the Fig. 4. The following par-

agraph will describe its execution process. 

It can be found from Fig. 4 that the input data of GSTA-Net is the same as FEM, 

namely is 𝑋𝑚 . When training GSTA-Net, 𝑋𝑚  first passes through GSA-Net and 

GTA-Net in sequence to obtain the corresponding outputs. And then to obtain the 

final output result, fusing the output results of the two sub networks. For GSA-Net 

or GTA-Net, 𝑋𝑚 first goes through FEM to get the feature expression vector (𝐹𝐸𝑉). 

Then 𝐹𝐸𝑉 passes through corresponding global attention and gated neural networks 

in parallel, outputting two feature map with and without global information. In paper, 
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using linear neural networks to represent gated neural networks, whose function is 

to regulate the learning process of FEM and filter out components or noise in 𝐹𝐸𝑉 

that are not related to global temporal or spatial information. In short, when 𝑋𝑚 

passes through GTA-Net, outputting 𝑌𝑟
𝑔𝑡

 with global temporal information and 𝑌𝑓
𝑔𝑡

 

without global temporal information. Similarly, when 𝑋𝑚 passes through GSA-Net, 

outputting 𝑌𝑟
𝑔𝑠

 with global temporal information and 𝑌𝑓
𝑔𝑠

 without global temporal 

information. This process can be defined as equations (12), (13), (14) and (15): 

 𝑌𝑟
𝑔𝑡

= 𝐿𝑡(𝐺𝑡(𝐹𝐸𝑀𝑡(𝑋⨀𝑀; 𝜃𝑓𝑡); 𝜃𝑔𝑡); 𝜃𝑙𝑡) (12) 

 𝑌𝑟𝑓
𝑔𝑡

= 𝐿𝑡(𝐹𝐸𝑀𝑡(𝑋⨀𝑀; 𝜃𝑓𝑡); 𝜃𝑙𝑡) (13) 

 𝑌𝑟
𝑔𝑡

= 𝐿𝑠(𝐺𝑠(𝐹𝐸𝑀𝑠(𝑋⨀𝑀; 𝜃𝑓𝑠); 𝜃𝑔𝑠); 𝜃𝑙𝑠) (14) 

 𝑌𝑟
𝑔𝑡

= 𝐿𝑠(𝐹𝐸𝑀𝑠(𝑋⨀𝑀; 𝜃𝑓𝑠); 𝜃𝑙𝑠) (15) 

wherein 𝐿𝑡  and 𝐿𝑠 are gated neural networks, 𝐹𝐸𝑀𝑡  and 𝐹𝐸𝑀𝑠 are FEM of GTA-

Net and GSA-Net, respectively. 𝐺𝑡  and 𝐺𝑠  denote GTA-Net and GSA-Net, sepa-

rately. 𝜃𝑙𝑡 and 𝜃𝑙𝑠 are corresponding learnable parameter. 𝜃𝑙𝑡, 𝜃𝑔𝑡, 𝜃𝑓𝑡, 𝜃𝑙𝑠, 𝜃𝑔𝑠 and 

𝜃𝑓𝑠 are learnable parameters of the corresponding network. 

To fuse the outputs of two sub networks and obtain outputs 𝑌𝑟
𝑔𝑠𝑡

 with global spatio-

temporal information, we used the adaptive weighting formula, as shown as equa-

tions (16): 

 𝑌𝑟
𝑔𝑠𝑡

=
𝛼𝑌𝑟

𝑔𝑡
+𝛽𝑌𝑟

𝑔𝑡

𝛼+𝛽
 (16) 

wherein 𝛼 and 𝛽 are learnable parameters, used for adjusting 𝑌𝑟
𝑔𝑡

 and 𝛽𝑌𝑟
𝑔𝑡

. 

3.4 Progressive Gated Loss Function 

Being aimed at designed GSTA-Net, we propose a progressive gated loss function 

𝐿𝑜𝑠𝑠𝑝𝑔, whose core principle stems from gated convolution recurrent neural net-

works [29]. It mainly is used for accelerating GSTA-Net convergence and guiding 

the learning process of FEM. To get 𝐿𝑜𝑠𝑠𝑝𝑔, we design following equations: 

 𝐿𝑜𝑠𝑠𝑓
𝑔𝑡

= ‖(𝑋 − 𝑌𝑓
𝑔𝑡

) ⊙ (1 − 𝑀)‖
2
 (17) 

 𝐿𝑜𝑠𝑠𝑟
𝑔𝑡

= ‖(𝑋 − 𝑌𝑟
𝑔𝑡

) ⊙ (1 − 𝑀)‖
2
 (18) 

 𝐿𝑜𝑠𝑠𝑓
𝑔𝑠

= ‖(𝑋 − 𝑌𝑓
𝑔𝑠

) ⊙ (1 − 𝑀)‖
2
 (19) 

 𝐿𝑜𝑠𝑠𝑟
𝑔𝑠

= ‖(𝑋 − 𝑌𝑟
𝑔𝑠

) ⊙ (1 − 𝑀)‖
2
 (20) 

 𝐿𝑜𝑠𝑠𝑝𝑔 = 𝛾 (1 −
𝑒

𝑒𝑚𝑎𝑥
) (𝐿𝑜𝑠𝑠𝑓

𝑔𝑡
+ 𝐿𝑜𝑠𝑠𝑓

𝑔𝑠
) + 𝐿𝑜𝑠𝑠𝑟

𝑔𝑡
+ 𝐿𝑜𝑠𝑠𝑟

𝑔𝑠
 (21) 
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wherein 𝐿𝑜𝑠𝑠𝑓
𝑔𝑡

 and 𝐿𝑜𝑠𝑠𝑓
𝑔𝑠

 represent the loss values without global temporal infor-

mation and global spatial information, respectively. 𝐿𝑜𝑠𝑠𝑟
𝑔𝑡

 and 𝐿𝑜𝑠𝑠𝑟
𝑔𝑠

 represent 

the loss values with global temporal information and global spatial information, re-

spectively. 𝑒 and 𝑒𝑚𝑎𝑥 represent iterations and maximum iterations in learning pro-

cess. 𝛾  It is a hyperparameter, used to control the contributions of 𝐿𝑜𝑠𝑠𝑓
𝑔𝑡

 and 

𝐿𝑜𝑠𝑠𝑓
𝑔𝑠

 and set to 4. According to the equation (21), it can be inferred that as itera-

tions increases, the contributions of 𝐿𝑜𝑠𝑠𝑓
𝑔𝑡

 and 𝐿𝑜𝑠𝑠𝑓
𝑔𝑠

 to the entire loss 𝐿𝑜𝑠𝑠𝑝𝑔 

gradually decrease. This means that the gated neural network gradually adjusts the 

learning process of the FEM, making 𝐹𝐸𝑉 gradually reduce components or noise 

irrelated to global temporal or spatial information. 

4. Experiments  

4.1 Experimental Setup and Evaluation Indicators 

To verify GSTA-Net, we conducted extensive experiments on two real datasets: 

TND and QND [10], both of which are single channel numerical matrix data. TND 

contains 2918 data samples and dimensions of each sample are (24, 61). QND con-

tains 4980 data samples and dimensions of each sample are (24, 37). During the 

experiment, they were divided into two parts: the training set (accounting for 80% 

of the total) and the testing set (accounting for 20% of the total). The mask dataset 

used in the experiment came from literature [11].  

All experiments were conducted on a server configured with 8 Nvidia P100 

GPUs, Intel (R) Xeon (R) Silver 4216 CPUs @ 2.10GHz, and 256GB of memory. 

GSTA-Net was implemented on the deep learning framework Pytorch 1.8.1. During 

the experiment, the epoch, the initial learning rate and batch size were set to 600, 

0.001, and 32 separately. Hyperparameter 𝑐′ was set to 512. To optimize the training 

of the entire model, we first trained two sub models separately and saved their pa-

rameters. Then, we loaded the trained parameters into the entire model and per-

formed fine-tuning, where initial learning rate was set to 10−6. 

In the experiment, mean absolute error (MAE) and root mean square error 

(RMSE) were used as validation indicators. The relevant calculation formulas are as 

follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1  (22) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (23) 

wherein 𝑥𝑖  and 𝑦𝑖  represent the true and predicted values, respectively. 𝑥̅ is average 

and 𝑛 is sample size. 
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4.2 Analysis of Experimental Results 

Table 1. Results of different models on the TND 

Missing Rate Methods MAE (↓) RMSE (↓) 

25% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

0.3383 

0.3421 

0.3387 

0.1615 

0.1430 

0.1361 

0.8920 

0.9031 

0.8892 

0.4575 

0.4093 

0.3913 

50% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

0.8116 

0.8150 

0.8194 

0.3686 

0.3874 

0.3275 

1.4994 

1.4997 

1.5133 

0.7565 

0.7536 

0.6589 

75% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

1.4608 

1.4571 

1.4590 

0.7950 

0.8819 

0.6522 

2.2011 

2.1893 

2.1935 

1.3386 

1.3496 

1.0573 

Table 2. Results of different models on the QND 

Missing Rate Methods MAE (↓) RMSE (↓) 

25% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

0.3326 

0.3359 

0.3310 

0.1426 

0.1427 

0.1340 

0.8705 

0.8808 

0.8682 

0.4153 

0.4065 

0.3844 

50% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

0.8219 

0.8184 

0.8181 

0.3569 

0.3303 

0.3230 

1.5126 

1.5072 

1.5073 

0.7286 

0.6574 

0.6431 

75% 

Linear 

DLinear 

NLinear 

PatchTST 

STA-Net 

GSTA-Net 

1.4588 

1.4759 

1.4654 

0.7628 

0.6480 

0.5993 

2.1919 

2.2211 

2.2069 

1.2680 

1.0326 

0.9622 



12  T. Hou et al. 

 

 
                                  (a) 

 
                                   (b) 

 
                                    (c) 

 
                                   (d) 

 
                                    (e) 

 
                                    (f) 



 Imputing Missing Temperature Data of Meteorological Stations Based 13 

Fig. 5. Show the differences between reconstruction values 𝑌 and real values 𝑋 under three 

different missing rates, where figure (a), (b) and (c) are the reconstruction results of different 

models at Lhasa meteorological station with missing rates of 25%, 50%, and 75%, respec-

tively; figure (d), (e) and (f) are the reconstruction results of different models at Qamdo me-

teorological station with missing rates of 25%, 50%, and 75%, respectively. 

For better comparison, this study selected five up-to-date models: STA-Net [10], 

PatchTST [18], DLiner [20], NLiner [20], and Linear [20]. 

Due to the phenomenon of significant missing data in the meteorological field 

frequently occurred, this study selected to conduct comparative experiments under 

the conditions of missing rates of 25%, 50%, and 75%. The experimental results are 

shown in the table 1 and table 2. And table 1 and table 2 list the performance com-

parison of GSTA-Net with other methods on the TND and QND, respectively, where 

the best results are shown in bold.To further demonstrate the performance of GSTA-

Net, we have conducted experiments on two real meteorological stations which are 

Lhasa and Qamdo meteorological station, respectively. The results are shown in the 

Fig. 5, which shows the difference between the missing filling values and the true 

values of different models under three different missing rates. Apparently, the filling 

performance of GSTA-Net is superior to other models. The following will provide a 

detailed analysis. 

According to table 1, table 2 and Fig. 5, it can be inferred that Linear, DLinear, 

and NLinear exhibit the worst reconstruction performance in experiments, but the 

filling abilities of each other are commensurate. This may be because of they have 

similar model architectures, which are adapted to multivariate long sequence data, 

not univariate short sequence data in paper. Besides, they do not actively utilize the 

spatiotemporal information in the data, only passively utilize it. Meanwhile, it is also 

observed that PatchTST and STA-Net have better filling performance than linear 

models, but inferior to GSTA-Net. This may be due to they only utilize the local 

spatiotemporal relationships, not the global spatiotemporal information. It is worth 

noting that the imputing performance of STA-Net is slightly better than that of 

PatchTST on the dataset QND, which may be derived from that compared to the 

TND dataset, the QND dataset has a denser distribution of meteorological stations 

and a more concentrated regional distribution. In the case, it is more conducive to 

the local spatial attention of STA-Net rather than the patch mechanism of PatchTST. 

However, since GSAT-Net can fully utilize spatiotemporal information through 

GSA-Net and GTA-Net, these models cannot compare to it in terms of filling accu-

racy. 

Ablation experiment. To verify the effectiveness of GSSA and GTSA, we selected 

FEM as baseline and carried out corresponding ablation experiments on the TND 

dataset under missing rates of 25%, 50%, and 75%, respectively. The results are 

shown in table 3. It can be observed that FEM has the worst filling performance, 

which is likely due to its insufficient acquisition of the global spatiotemporal infor-

mation contained in the data. When FEM is combined with GSSA or GTSA, it can 

utilize global spatial or temporal information, resulting in better filling performance 
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than FEM. When GSSA and GTSA are integrated into FEM, the best filling perfor-

mance is achieved due to utilizing global spatiotemporal information. 

Table 3. Results of ablation experiment 

Missing Rate Methods MAE (↓) RMSE (↓) 

25% 

FEM 

FEM+GSSA 

FEM+GTSA 

FEM+GSSA+GTSA 

0.1487 

0.1366 

0.1361 

0.1361 

0.4216 

0.3935 

0.3920 

0.3913 

50% 

FEM 

FEM+GSSA 

FEM+GTSA 

FEM+GSSA+GTSA 

0.4154 

0.3489 

0.3527 

0.3275 

0.7989 

0.6932 

0.6985 

0.6589 

75% 

FEM 

FEM+GSSA 

FEM+GTSA 

FEM+GSSA+GTSA 

0.9363 

0.6979 

0.7602 

0.6522 

1.4252 

1.1135 

1.1932 

1.0573 

Table 4. Comparison of efficiency between GSTA-Net and STA-Net 

Missing Rate Model Parameter (M) Time(s/epoch) 

25% 

STA-Net 192.99 102.62 

GSTA-Net 12.33 35.76 

50% 

STA-Net 192.49 87.70 

GSTA-Net 12.50 42.34 

75% 

STA-Net 192.47 84.91 

GSTA-Net 13.23 61.58 

Performance comparison. Because of the GSTA-Net is proposed based on the 

STA-Net, and the previous experiments have demonstrated that GSTA-Net has bet-

ter filling performance compared to STA-Net. This paragraph will demonstrate that 

GSTA-Net has better operational efficiency compared to STA-Net. Table 4 shows 

the number of parameters and training time per epoch required for obtaining the op-

timal model on TND datasets. Obviously, GSTA-Net has a faster convergence speed 

and fewer parameters compared to STA-Net. Therefore, GSTA-Net has better filling 

performance compared to STA-Net. 
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5. Conclusion and future work 

This paper introduces a novel Global Spatiotemporal Attention Network model 

(GSTA-Net) for imputing missing temperature data in multiple meteorological sta-

tions, by developing three key components: a feature expression model, a global 

spatial attention mechanism, and a global temporal attention mechanism. Extensive 

experimental comparisons demonstrate that GSTA-Net can effectively capture the 

global spatiotemporal information and sustains a comparatively excellent perfor-

mance in imputing missing values, even at high missing rates. Ablation studies cor-

roborate that both attention mechanisms uniquely enhance the effectiveness of miss-

ing value reconstruction. 

The model proposed in this paper shows promise for reconstructing missing tem-

perature data at weather stations and offering theoretical grounding and reference for 

related missing value imputing tasks. However, the GSTA-Net model still has some 

limitations: It mainly concentrates on missing temperature values without addressing 

other meteorological data such as wind speed and precipitation, which indicates a 

potential deficiency in generalization capability. Future work should focus on en-

hancing the dataset, developing more appropriate network architectures and refining 

loss functions to boost the model generalization. This improvement will facilitate 

broader application including support for diverse meteorological data types and ex-

pansion into other domains such as sensor, electrical, and similar data. 
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