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Abstract. X-ray security inspection is widely used in the subway, high-speed 

rail, airports, key locations, logistics, and other scenarios. However, because of 

the complexity and diversity of objects in the X-ray images in real-world scenar-

ios, it is easy for security personnel to make mistakes or miss inspections when 

they are fatigued or not fully focused. In this paper, we proposed an improved 

model based on YOLOv5 to help security inspectors improve the efficiency of 

security inspection procedures. First, we replaced the SPP (spatial pyramid pool-

ing) feature fusion module with SPPFCSPC to further enhance the feature extrac-

tion capability. Then, we added CoordConv before each feature map input to the 

detection head. This enables the model to perceive positional information and 

enhances its feature extraction capability, effectively addressing the detection of 

small prohibited items in complex backgrounds. Finally, we used decoupled de-

tector head instead of the traditional coupled detector head to separate the classi-

fication and localization tasks further improves the detection speed. The experi-

mental results show that our method achieves 77% accuracy. Compared with 

state-of-the-art methods, our model also achieves significant improvements in 

detection accuracy and recall. 
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1 Introduction 

1.1 A Subsection Sample 

X-ray security inspection, as the primary means of security inspection, is widely used 

in the subway, high-speed rail, airports, key locations, logistics, and other scenarios. 

Due to the large inspection volume and the object's complexity, it is easy for security 

personnel to make mistakes or miss inspections when they are fatigued or not fully 

focused. On the field of X-ray image security detection, object detection algorithms 

have great potential and application prospects. By combining object detection algo-
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rithms with X-ray images, we can achieve fast and accurate identification and position-

ing of potential threats and abnormal situations. This technology has a wide range of 

applications that cover aviation. 

Object detection task is an important part of the field of computer vision. Before the 

popularity of deep learning, limited by computing resources and other constraints, tra-

ditional target detection usually focused on reducing the dependence on computing re-

sources. Like Viola Jones Detectors (original slide windows algorithm) [1], HOG De-

tector (Histogram of directional gradients is used to describe features) [12], and De-

formable Part-based Model (DPM) [3]. After deep neural networks gained attention, 

object detection can be divided into two categories: 'two-stage detection' and 'one-stage 

detection'. The usual method for two-stage models is first to generate a region proposal 

using feature extraction, and then to locate and classify objects based on the region 

proposal. Representative models include RCNN (Region-based Convolutional Neural 

Networks) [4], Fast RCNN [5], and Faster RCNN [6]. In 2015, Joseph proposed the 

groundbreaking detection model YOLO (You Only Look Once) [7,8,9]. The core idea 

of YOLO is to treat target detection as a regression problem and make predictions based 

on the whole image rather than region suggestions or sliding windows, which is fast 

and generalizes well. Since then, the YOLO series has been a focal research point for 

many scientists. After YOLOv5 was proposed, a large number of industrial applications 

emerged. Subsequent iterations like YOLOX [10], YOLOv7 [11], and other models 

with higher accuracy, such as the CornerNet [12] and ExtremeNet [13], also emerged. 

These detection models based on anchor-free [14] and DETR [15] series that appeared 

after the transformer [16] was introduced into the visual field; however, YOLOv5 is 

still the preferred choice in practical applications in terms of speed and accuracy bal-

ance. 

Applying object detection algorithms to X-ray image security detection can not only 

improve detection efficiency and accuracy but also reduce the burden of manual oper-

ations, lower error rates, and demonstrate better application potential in some complex 

scenarios. 

Due to the complexity and diversity of objects in X-ray security inspection images 

in real-world scenarios, as well as varying imaging angles, different levels of occlusion, 

and overlapping of multiple objects, issues such as missed detections, false detections, 

and multiple detections can easily occur. In order to make the model more likely to 

detect dangerous items and improve the accuracy of the model, we made the following 

specific improvements: 

⚫ Pyramid Pooling Module: The SPP (Spatial Pyramid Pooling) module [17] is 

replaced with the CSPC (Cross-Stage Partial Connection) structure [18] to en-

hance feature fusion and improve feature extraction capabilities. It effectively 

prevents the reduction of recall caused by overlapping objects that are difficult 

to detect. 

⚫ Coordinate Convolution: After each feature map is fed into the detection head, 

the CoordConv convolution is added to perceive spatial information better and 

improve spatial awareness. 

⚫ Decoupled head: The traditional coupled detection head is replaced with the 

decoupled head from YOLOX [10], which divides the classification task and 
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the positioning task into two independent tasks, further improving the detection 

speed and accuracy. 

2 Related Work 

In recent years, X-ray image security detection technology has developed rapidly, aim-

ing to improve the ability to identify hidden or blocked contraband in complex security 

inspection scenarios. A key research focus is on the development of effective methods 

for removing occlusion effects in images and improving the accuracy and reliability of 

detection systems. In 2019, a pioneering work by Miao et al. laid the foundation for this 

field [19]. The de-occlusion attention module (Depth Attention Module), designed by 

the researchers, employed deep learning technology to enhance attention to the charac-

teristics of items obscured by occlusion, resulting in a notable enhancement in detection 

performance. In conjunction with this innovation, the researchers also constructed and 

publicly released the Occlusion Prohibited Items X-ray (OPIXray) data set, which rep-

resents the inaugural high-quality benchmark data set in the domain of security inspec-

tions. This data set has significantly contributed to the advancement and assessment of 

related algorithms. In 2021, Tao et al. advanced the state of the art by creating the 

HiXray security inspection image dataset [20], which markedly enhanced both quality 

and diversity. Building upon this foundation, they introduced the lateral inhibition mod-

ule (Longitudinal Inhibition Module, LIM). This design is inspired by the way the hu-

man visual system processes overlapping object information. It suppresses irrelevant 

information and focuses on analyzing key identifiable features, thus maintaining effi-

cient recognition in complex situations where objects cover each other. Tao et al. (2022) 

[21] focused on endogenous shift, where the differences between domains are mainly 

caused by intrinsic factors (e.g., imaging mechanisms, hardware components, etc.) and 

are usually inconspicuous. Then, they contribute the first Endogenous Domain Shift 

(EDS) benchmark, X-ray security inspection. Liu et al. (2023) [22] have proposed ad-

versarial attacks that are valuable for evaluating the robustness of deep learning models. 

They develop a differentiable converter that facilitates the generation of 3D-printable 

objects with adversarial shapes, using the gradients of a surrogate model rather than 

directly generating adversarial textures. Furthermore, they present the physical-world 

X-ray adversarial attack dataset XAD, providing a valuable resource for evaluating and 

enhancing the attack resistance of existing detection models. 

3 Method 

3.1 SCD-YOLO 

YOLOv5 achieves competitive accuracy in object detection tasks, especially in detect-

ing small objects and crowded scenes. However, due to the inherent characteristics of 

the single-stage target detection model, the detection speed is faster, but the accuracy 

is slightly lower than the two-stage object detection model. In particular, the accuracy 
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of small object and crowded scene detection needs to be improved. In response to the 

above problems, we made three improvements to the original model. 

Firstly, to improve the feature extraction capability of the model, we replaced the 

original feature pyramidal grouping method of the model with SPPFCSPC [23]. En-

hance the model's ability to capture global and contextual information while expanding 

the receptive field. Secondly, we introduce coordinate convolution(CoordConv) [24] to 

enable our model to better perceive the position information of objects in the image. 

Finally, replace the detection head with decoupled head. Each task head is responsible 

for handling a specific task. This improves resource utilization efficiency while reduc-

ing the number of model parameters and inference speed and accuracy. 

The improved model structure is illustrated in Fig. 1. 

 

Fig. 1. The architecture of our model. 

3.2 SPPFCSPC 

Based on the innovative SPPCSPC module in YOLOv7, it has been noted that it en-

hances the model's ability to adapt to scale variations by employing different sizes of 

max-pooling layers to capture different sizes of receptive fields. The experimental re-

sults demonstrate that this approach leads to significant performance improvements. To 

enhance the effectiveness of the YOLOv5 model in multi-scale feature fusion, we plan 

to incorporate the CSPC (Cross Stage Partial Connections) structure into the existing 

SPPF (Spatial Pyramid Pooling Fusion) module of YOLOv5. 

A new module called SPPFCSPC was designed, which contains two parallel 

branches. One of the branches will be directly involved in the final feature stitching 
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process, while maintaining the original simplicity and efficiency. The other branch un-

dergoes two 1x1 convolutional layers and one 3x3 convolutional layer before entering 

the pooling phase. This aims to achieve deep fusion and dimensionality reduction of 

the input features, in order to extract more representative high-level features. The main 

innovation lies in the adoption of the idea of pooling branches with different convolu-

tional kernel sizes (5x5, 9x9, 13x13) from the SPPCSPC module. This idea has been 

converted into a single branch, but with the implementation of three consecutive max-

pooling operations of 5x5 in this branch. This is done to simulate the different scales of 

receptive fields covered by the original three branches. The feature maps generated by 

each max-pooling operation will be used in the preliminary feature linking session to 

improve the speed of the model operation without sacrificing the original receptive 

field. The structure is depicted in Fig. 2. 

 

Fig. 2. Structural comparison of SPPCSPC(top) and SPPFCSPC(bottom). 

3.3 CoordConv 

X-ray security inspection images often have overlapping objects. Traditional convolu-

tions have translation invariance, which allows them to learn essential features for tasks 

such as classification. However, when positional information needs to be perceived, the 

limitations of traditional convolutions become apparent. In order to allow convolutions 

to perceive spatial information, we introduced CoordConv to replace some of the tra-

ditional convolutions, and a CoordConv is added after each output feature map to fur-

ther improve the performance. The main principle is to add two coordinate channels 

(representing the x and y coordinates of the original input) behind the input feature map 

and then perform traditional convolutions. This enables the convolution process to per-

ceive the spatial information of the feature map, and this method is called CoordConv. 
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Using CoordConv, the network can learn translation invariance or a certain degree of 

translation dependency based on different task requirements. 

 

Fig. 3. The structure of CoordConv. 

Fig. 3 shows the operation where two coordinates, 𝑖 and j, are added. Specifically, the 

𝑖 coordinate channel is an h × x  rank-1 matrix with its first row filled with 0's, its sec-

ond row filled with 1's, its third row filled with 2's, and so on. The j coordinate channel 

is similar, but the columns are filled with constant values instead of rows. And use a 

final linear scaling to both the 𝑖  and j  coordinate values so that they fall in the 

range [−1,1] For convolution over two dimensions, two (𝑖, 𝑗) coordinates are sufficient 

to fully specify an input pixel, but, if desired, additional channels can be added to bias 

the models towards learning particular solutions. It can also use a third channel for an 

r coordinate, where 

𝑟 = √(𝑖 − ℎ/2)2 + (𝑗 − 𝑤/2)2 (1) 
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and reduce the complexity of subsequent computation. Following this, the architecture 

establishes two parallel branch networks, each containing two 3x3 convolutional layers. 

These two branches are divided into two tasks. The first is dedicated to the classification 

task, which involves extracting rich category information from the features and pre-

cisely determining which category the object belongs to. The second branch focuses on 

the regression task, which involves pinpointing the exact position of the object in the 

image, i.e. the bounding box coordinates. The reason for adopting a decoupling strategy 

is that object classification and location positioning require different feature under-

standing and parsing, and focus on different information dimensions. Separating them 

into independent branches helps the model to focus on mining the key features required 

by each, which is expected to improve overall detection performance. 

In addition, the design of decoupled heads helps to reduce the number of parameters 

and computational complexity of the model. This, in turn, reduces the risk of model 

overfitting and enhances the model's generalization ability and robustness in different 

scenarios. The modular structure design not only improves algorithm execution effi-

ciency but also shows higher accuracy and adaptability in practical applications. The 

structure as shown in Fig. 4. 

 

Fig. 4. The structure of decoupled head. 
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consists of domain1, domain2 and domain3, each containing approximately 5000 im-
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YOLOv5
Coupled Head

 ×  
    
   
   

FPN
feature

  
  
  

Decoupled Head

 × ×

        ℎ 𝑟 ×      
+

           ℎ 𝑟 ×      
+

      ℎ 𝑟 × 1   𝑗 

 × ×    
 × ×  

 × ×  

 × ×     .
 2

 2
 × ×    

 × ×    

    

    

                     

                 



8  F. Author and S. Author 

scissor, umbrella, power bank, lighter, laptop, device, and plastic bottle. To increase 

the amount of data, we merged the three parts of the dataset and divided them into 

training, validation, and testing sets in a ratio of 8:1:1. 

4.2 Experimental Configuration 

The training for this experiment was conducted on an NVIDIA GeForce RTX 2080ti 

GPU with 11GB memory. The system used was Centos7 and the experimental frame-

work was Python-3.7.16 torch-1.12.1, with CUDA version 10.2. The batch size was set 

to 16, and the number of epochs was set to 200. For inference, a Tesla T4 GPU with 

16GB memory was used and the batch size was set to 16. All other configurations re-

mained consistent with the training environment. 

4.3 Comparison Experiments 

To validate the advantages of our proposed SCD-YOLO model over existing main-

stream object detection models on the X-ray contraband detection task, we conducted 

an exhaustive comparative review on the EDS dataset. We selected several benchmark 

models, including RT-DETR [25], YOLOX [10], YOLOv8n, and YOLOv8s, and com-

pared their accuracy and average precision mAP50 metrics for each contraband cate-

gory. The results are presented in Table 1. 

Table 1. Comparison of classification average accuracy AP (%), mean average accuracy 

mAP50 (%) of proposed SCD-YOLO, YOLOv5s, YOLOX, YOLOv8n, YOLOv8s and RT-

DETR. 

 knife glassbottle scissor umbrella pressure laptop 

YOLOv5s 59.3 68.3 53.7 94.2 86.4 84.8 
RT-DETR 60.6 67.8 57.6 93.6 84.9 83.1 
YOLOX 58.7 69.4 49.9 94.4 86.3 83.4 

YOLOv8n 57.6 70.0 54.0 95.3 85.7 82.6 
YOLOv8s 64.4 72.7 58.2 96.3 89.5 86.0 

ours 64.9 73.1 58.3 96.4 89.9 87.3 

Table 1. Comparison of classification average accuracy AP (%), mean average accuracy 

mAP50 (%) of proposed SCD-YOLO, YOLOv5s, YOLOX, YOLOv8n, YOLOv8s and RT-

DETR (continued). 

 

 powerbank device lighter plasticbottle mAP50 (%) 

YOLOv5s 70.9 79.0 71.2 73.1 74.1 
RT-DETR 71.5 75.1 69.6 73.5 73.7 
YOLOX 64.4 75.3 66.5 69.9 71.8 

YOLOv8n 62.5 75.0 65.9 67.6 71.6 
YOLOv8s 69.2 80.1 71.2 73.4 76.1 

ours 72.8 81.4 72.7 73.6 77.0 
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The table data clearly shows that our SCD-YOLO model outperforms the original 

YOLOv5 and other comparative models in terms of overall performance and in each 

specific category. Notably, the detection accuracy for three categories of contraband, 

namely knives, glass bottles, and pressure vessels, has significantly improved compared 

to YOLOv5s, with an increase of 5.6%, 4.8%, and 4.6% in accuracy, respectively. 

On the mAP50 metric, which is a comprehensive measure of detection performance, 

the SCD-YOLO model improved by 3.3% compared to RT-DETR, 5.2% compared to 

YOLOX, 5.4% compared to the YOLOv8n version, and 0.9% compared to the 

YOLOv8s, albeit with a smaller overall improvement. Finally, an increase of 2.9% 

compared to the original YOLOv5 model. These results demonstrate the superiority of 

our model in the field of X-ray contraband detection and the effectiveness of the im-

provements. 

4.4 Ablation Experiments 

In order to further verify the validity of the three modules added to the original 

YOLOv5 model and the feasibility of the SCD-YOLO model, we conducted ablation 

experiments on the test dataset for the three innovations improved in this paper. It can 

be seen from Table 2. Ablation Experiments. that each of our improved modules shows 

varying degrees of improvement in the mAP50, mAP50:95 and recall metrics compared 

to the original YOLOv5 model. This suggests that our modifications are effective in 

improving the detection accuracy of the model. Firstly, we evaluate the mAP50, 

mAP50:95 and Recall metrics of the original YOLOv5 model, which yield results of 

74.1%, 50.4% and 66.8% respectively. Then we introduced the SPPFCSPC module, 

and this improvement resulted in the model’s mAP50, mAP50:95 and Recall improving 

by 0.6%, 0.9% and 0.8% relative to the original model. After introducing the Coord-

Conv, mAP50, mAP50:95 and Recall achieved 66.9%, 74.3%, and 51% respectively. 

In addition, by adding the Decoupled head, mAP50, mAP50:95 and Recall improved 

1%, 1.2% and 1.5% respectively. Finally, our model SCD-YOLO improved the mAP50 

metrics by 2.9%, mAP50:95 by 1.6%, and the Recall metrics by 3% over the original 

YOLOv5 model. 

Table 2. Ablation Experiments. 

SPPFCSPC Coord-

Conv 

Decoupled 

head 

mAP50 

(%) 

mAP50:5:95 

(%) 
Recall 

 (%) 

   74.1 50.4 66.8 

✓   74.7 51.3 67.6 

 ✓  74.3 51.0 66.9 

  ✓ 75.1 51.6 68.3 

✓ ✓  75.0 50.5 69.0 

✓  ✓ 75.3 52.2 69.6 

 ✓ ✓ 75.4 52.1 68.7 

✓ ✓ ✓ 77.0(+2.9) 52.0(+1.6) 69.8(+3.0) 
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We also compared the P-R curve between the two models. As shown in Fig. 5, it is 

evident that our improved model outperforms the original model. This shows that the 

improved model achieved more ideal results in balancing precision and recall, signifi-

cantly improving the model's superior ability to identify target categories. 

Fig. 5. P-R training curves of the Yolov5s(left) model and ours(right).

 

Fig. 5. P-R training curves of the Yolov5s(left) model and ours(right). 

The experimental results comprehensively demonstrate the effectiveness of our inno-

vation in the object detection task, affirming the contribution of these methods to per-

formance enhancement. Our approach performs admirably across various evaluation 

metrics, thereby further validating its potential for practical applications. 

Finally, we present several sets of comparison images to briefly examine the actual 

detection results in Fig. 6. 

YOLOv5s SCD-YOLO
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Fig. 6. Actual detection results comparison: on the left side is yolov5s, and on the right side is 

the improved model. 

In the first three sets of images, (a)(b)(c) represents that the original model often has 

false detections for dangerous items like knives. In the fourth set of images (d), the 

original model missed the detection of a knife, and in the fifth and sixth sets (e)(f), it 

missed the detection of a lighter. The improved model shows significant improvements 

in these cases.  This indicates that the improved model performs better in detecting 

dangerous items, with a reduction in the number of false alarms and missed detections. 

Our method enhances target perception and improves positional accuracy, thereby in-

creasing overall robustness. 

(a)

(b)

(c)

(d)

(e)

(f)
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5 Conclusion 

In this paper, we proposed a security detection model for X-ray security inspection 

images to improve the accuracy of contraband detection. The experimental data showed 

that our improvement model SCD-YOLO have significantly improved accuracy and 

recall compared to YOLOv5 and other mainstream detection models, which means that 

our model can detect more contraband with higher accuracy under the same circum-

stances. While this model may not completely replace human work and there are areas 

that necessitate further improvement, it has shown significant promise and practical 

significance. 
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